首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 967 毫秒
1.
2.
Herpes simplex virus type 1 (HSV-1) immediate-early regulatory protein ICP0 is important for stimulating the initiation of the lytic cycle and efficient reactivation of latent or quiescent infection. Extensive investigation has suggested several potential functions for ICP0, including interference in the interferon response, disruption of functions connected with PML nuclear bodies (ND10), and inhibition of cellular histone deacetylase (HDAC) activity through an interaction with the HDAC-1 binding partner CoREST. Analysis of the significance of these potential functions and whether they are direct or indirect effects of ICP0 is complicated because HSV-1 mutants expressing mutant forms of ICP0 infect cells with widely differing efficiencies. On the other hand, transfection approaches for ICP0 expression do not allow studies of whole cell populations because of their limited efficiency. To overcome these problems, we have established a cell line in which ICP0 expression can be induced at levels pertaining during the early stages of HSV-1 infection in virtually all cells in the culture. Such cells enable 100% complementation of ICP0-null mutant HSV-1. Using cells expressing the wild type and a variety of mutant forms of ICP0, we have used this system to analyze the role of defined domains of the protein in stimulating lytic infection and derepression from quiescence. Activity in these core functions correlated well the ability of ICP0 to disrupt ND10 and inhibit the recruitment of ND10 proteins to sites closely associated with viral genomes at the onset of infection, whereas the CoREST binding region was neither sufficient nor necessary for ICP0 function in lytic and reactivating infections.Herpes simplex virus type 1 (HSV-1) is an important human pathogen that infects the majority of the population at an early age and then establishes a life-long latent infection in sensory neurones. Periodic reactivation of latent virus causes episodes of active disease characterized by epithelial lesions at the site of the original primary infection. As with all herpesviruses, the ability of HSV-1 to establish and reactivate from latency is key to its clinical importance and evolutionary success. Therefore, the molecular mechanisms that regulate these processes have been the subject of intensive research (reviewed in reference 15). HSV-1 immediate-early (IE) protein ICP0 is required for efficient reactivation from latency in both mouse models and cultured cell systems of quiescent infection (15). ICP0 is also required to stimulate lytic infection by enhancing the probability that a cell receiving a viral genome will engage in productive infection (reviewed in references 19, 20 and 42). Therefore, a full understanding of the biology of HSV-1 infection requires a definition of the functions and mode of action of ICP0.The basic phenotype of ICP0-null mutant HSV-1 is a low probability of plaque formation, particularly in human diploid fibroblasts, that causes a high particle-to-PFU ratio (reference 20 and references therein). Biochemically, ICP0 is an E3 ubiquitin ligase of the RING finger class (4) that induces the degradation of several cellular proteins, including the promyelocytic leukemia (PML) protein (23), centromere proteins including CENP-C (54, 55), and the catalytic subunit of DNA-protein kinase (53, 72). Among the consequences of these activities are the disruption of PML nuclear bodies (herein termed nuclear domain 10 [ND10]) (24, 58) and centromeres (54). ICP0 has also been reported to interact with histone deacetylase enzymes (HDACs) (56) and the CoREST repressor protein, thereby disrupting the CoREST/HDAC-1 complex (37, 39). Evidence has also been presented that expression of ICP0 correlates with increased acetylation of histones on viral chromatin (12). ICP0-null mutant viruses replicate less efficiently than the wild type (wt) in cells pretreated with interferon (IFN) (44, 66), and there is evidence that ICP0 is able to impede an IFN-independent induction of IFN-stimulated genes that arises after infection with defective HSV-1 mutants (16, 59, 60, 65, 67, 76). As a further complication, ICP0-null mutant HSV-1 replicates more efficiently in cells that have been highly stressed by a variety of treatments (5, 6, 79).On the basis of this evidence, several not necessarily mutually exclusive hypotheses have been put forward to explain the biological effects of ICP0. These include (i) that ICP0 counteracts an intrinsic cellular resistance mechanism that involves PML and other components of ND10, (ii) that ICP0 overcomes the innate cellular antiviral defense based on the IFN pathway, and (iii) that ICP0 counteracts the establishment of a repressed chromatin structure on the viral genome by interfering with histone deacetylation. The aim of this paper is to investigate some of these issues using a novel inducible expression system. The question of the effects of ICP0 on IFN pathways is considered in the companion paper (28).The brief and by no means exhaustive summary of the functions and activities attributed to ICP0, presented above, illustrates that the understanding of ICP0 is a difficult issue. It is further complicated by the difficulty of working with ICP0-null mutant viruses under tightly controlled conditions. This arises because the defect varies greatly between different cell types, is highly dependent on the multiplicity of infection (MOI), and varies in a nonlinear manner with respect to virus dose (reference 20 and references therein). Furthermore, use of ICP0 mutant viruses in cultured cell models of reactivation of quiescent HSV-1 is complicated by competition between the resident quiescent viral genome targeted for reactivation and the genomes of the superinfecting virus used to induce the reactivation (75). Therefore, it is very difficult to establish infections with wt and ICP0 mutant viruses that are truly comparable in a way that allows clear distinctions between the direct effects of ICP0 and indirect effects that are due either to expression of other viral proteins that are expressed more efficiently in the presence of ICP0 or to less specific consequences of an active infection and subsequent effects on the cell. Here, we describe a system that enables expression of ICP0 in an inducible manner at levels similar to those at the early stages of infection in almost all cells in a population. We have used this system to study wt and mutant forms of ICP0 in assays of lytic infection and derepression of quiescent viral genomes in a cultured cell model of latency. We discuss the results in terms of the requirements of specific regions of the ICP0 protein for stimulating lytic infection and derepression of quiescent genomes, the potential biological significance of ND10 disruption, recruitment of ND10 components to the sites of HSV-1 genomes at the outset of virus infection, and the interaction of ICP0 with CoREST.  相似文献   

3.
4.
Immediate-early protein ICP0 of herpes simplex virus type 1 (HSV-1) is an E3 ubiquitin ligase of the RING finger class that is required for efficient lytic infection and reactivation from latency. Other alphaherpesviruses also express ICP0-related RING finger proteins, but these have limited homology outside the core RING domain. Existing evidence indicates that ICP0 family members have similar properties, but there has been no systematic comparison of the biochemical activities and biological functions of these proteins. Here, we describe an inducible cell line system that allows expression of the ICP0-related proteins of bovine herpes virus type 1 (BHV-1), equine herpesvirus type 1 (EHV-1), pseudorabies virus (PRV), and varicella-zoster virus (VZV) and their subsequent functional analysis. We report that the RING domains of all the proteins have E3 ubiquitin ligase activity in vitro. The BHV-1, EHV-1, and PRV proteins complement ICP0-null mutant HSV-1 plaque formation and induce derepression of quiescent HSV-1 genomes to levels similar to those achieved by ICP0 itself. VICP0, the ICP0 expressed by VZV, was found to be extremely unstable, which limited its analysis in this system. We compared the abilities of the ICP0-related proteins to disrupt ND10, to induce degradation of PML and Sp100, to affect key components of the interferon signaling pathway, and to interfere with induction of interferon-stimulated genes. We found that the property that correlated most closely with their biological activities was the ability to preclude the recruitment of cellular ND10 proteins to sites closely associated with incoming HSV-1 genomes and early replication compartments.The members of the alphaherpesvirus subfamily are characterized by their ability to establish life-long latent infections in neuronal tissues after the primary infection. Although certain core genes are conserved in all herpesviruses of all subfamilies, there are also genes that are characteristic of particular subfamilies. Among these are the genes that encode the ICP0-related proteins of the alphaherpesviruses, of which the most widely studied is ICP0 of herpes simplex virus type 1 (HSV-1). The interest in ICP0 stems from its biological roles in stimulating lytic infection and reactivation from latency (for reviews, see references 17, 18 and 33). Members of the ICP0 family of proteins are characterized by the presence of a RING finger domain near their N termini, a zinc-stabilized fold that in many other proteins confers E3 ubiquitin ligase activity (43). This has proved to be true of ICP0 (3), and the available evidence indicates that other members of the ICP0 family have similar biochemical functions (13, 61). Although a number of ICP0-related alphaherpesvirus proteins have been studied in a variety of contexts, notably those expressed by bovine herpesvirus 1 (BHV-1), equine herpes virus 1 (EHV-1), pseudorabies virus (PRV), and varicella-zoster virus (VZV), there has been no systematic comparison of their abilities to complement ICP0 null mutant HSV-1 or to induce derepression of quiescent HSV-1 genomes.This paper describes a comparative study of the ICP0-related proteins expressed by the viruses listed above. In terms of nomenclature, the proteins expressed by BHV-1 and EHV-1 have been named BICP0 and EICP0, so although other names have been used for the PRV and VZV proteins (such as EP0 and orf61, respectively), we have adopted the names PICP0 and VICP0 for this study. Previous work found that, like ICP0 itself, all four proteins activate gene expression in reporter assays in a RING finger-dependent manner (4, 5, 8, 29, 38, 41, 45, 51, 54, 59, 64, 75, 76, 78). VICP0 and EICP0 also complement, at least partially, ICP0 null mutant HSV-1 (15, 48, 53, 54). BHV-1, EHV-1, PRV, and VZV mutants in which the ICP0-related genes have been deleted have been isolated and found to have reduced replication efficiencies, as expected by analogy with ICP0 null mutant HSV-1 (2, 7, 11, 12, 30, 46, 74, 77).A prominent property of ICP0 is its localization to and disruption of cellular nuclear substructures known as ND10 or promyelocytic leukemia (PML) nuclear domains. Interactions between ND10 and BICP0, EICP0, PICP0, and VICP0 have also been observed, with various consequences for ND10 integrity (47, 60, 63). Whereas ICP0 achieves ND10 disruption through induction of the degradation of PML and SUMO-modified forms of Sp100 (21, 60), EICP0 appears less efficient than ICP0 in inducing PML degradation (60) while VICP0 is inactive (47). While it is likely that all the ICP0 family members discussed here have RING finger-mediated E3 ubiquitin ligase activity (61), the only other protein for which this has been confirmed is BICP0 (13).The similarities between these members of the ICP0 family of proteins and their apparent differences prompted us to investigate in more detail the properties of these proteins in order to determine which of their properties correlate most closely with biological functions in complementing ICP0 null mutant HSV-1. In addition, there was no existing evidence on whether the related proteins could, like ICP0, induce derepression of gene expression from quiescent HSV-1 genomes. We have taken two approaches to these issues. The first is the use of an inducible cell line system that has been used to study ICP0 itself (24, 26). Although inducible cell line systems have been described for VICP0 and BICP0 (53, 69), much of the work described in the current study is novel. The second approach is in vitro analysis of the E3 ubiquitin ligase activities of the isolated RING finger domains of the proteins. The major findings of the study are the following: (i) that all the proteins studied are active in E3 ubiquitin ligase assays; (ii) that VICP0 is extremely unstable, compromising comparative functional analysis in this system; (iii) that BICP0, EICP0, and PICP0 complement to various degrees the plaque-forming defect of ICP0 null mutant HSV-1; (iv) that these three proteins also efficiently stimulate derepression of gene expression from quiescent HSV-1 genomes; (v) that none of the ICP0 family members impedes interferon (IFN)-induced expression of IFN-stimulated genes (ISGs) or affects the stability of important components of the IFN signaling system (namely STAT1, STAT2, and IRF3); (vi) that BICP0, EICP0, and PICP0 cause some disruption of ND10 integrity and have various effects on PML and Sp100 abundance; and (vii) that the property of the proteins that correlated most closely with their stimulation of ICP0 null mutant HSV-1 infection and derepression of quiescent genomes is their ability to inhibit the recruitment of PML and other ND10 proteins to sites associated with parental HSV-1 genomes and early replication compartments.  相似文献   

5.
6.
7.
8.
Polyomavirus JC (JCV) infects ∼60% of the general population, followed by asymptomatic urinary shedding in ∼20%. In patients with pronounced immunodeficiency, including HIV/AIDS, JCV can cause progressive multifocal leukoencephalopathy (PML), a devastating brain disease of high mortality. While JCV in the urine of healthy people has a linear noncoding control region called the archetype NCCR (at-NCCR), JCV in brain and cerebrospinal fluid (CSF) of PML patients bear rearranged NCCRs (rr-NCCRs). Although JCV NCCR rearrangements are deemed pathognomonic for PML, their role as a viral determinant is unclear. We sequenced JCV NCCRs found in CSF of eight HIV/AIDS patients newly diagnosed with PML and analyzed their effect on early and late gene expression using a bidirectional reporter vector recapitulating the circular polyomavirus early and late gene organization. The rr-NCCR sequences were highly diverse, but all increased viral early reporter gene expression in progenitor-derived astrocytes, glia-derived cells, and human kidney compared to the expression levels with the at-NCCR. The expression of simian virus 40 (SV40) large T antigen or HIV Tat expression in trans was associated with a strong increase of at-NCCR-controlled early gene expression, while rr-NCCRs were less responsive. The insertion of rr-NCCRs into the JCV genome backbone revealed higher viral replication rates for rr-NCCR compared to those of the at-NCCR JCV in human progenitor-derived astrocytes or glia cells, which was abrogated in SV40 large T-expressing COS-7 cells. We conclude that naturally occurring JCV rr-NCCR variants from PML patients confer increased early gene expression and higher replication rates compared to those of at-NCCR JCV and thereby increase cytopathology.Polyomavirus JC (JCV) infects approximately 60% of the general population, followed by asymptomatic urinary shedding in 20% of healthy individuals (20). Although JCV-associated nephropathy may occur in kidney transplant (14, 33) and HIV/AIDS patients (6, 27), the most prominent JCV disease is progressive multifocal leukoencephalopathy (PML) (44, 60). The pathology of PML was first described in 1958 as a rare complication of patients with chronic lymphocytic leukemia or Hodgkin''s lymphoma (3). Today, PML is recognized as a rare, virus-mediated demyelinating disease of the white brain matter in highly immunocompromised patients, including HIV/AIDS, transplantation, and chemotherapy patients and those exposed to immunomodulatory or depleting biologicals for the treatment of autoimmune diseases (29, 40). During the human immunodeficiency virus type 1 (HIV-1) pandemic, the incidence of PML rose significantly to rates of 1 to 8% prior to the use of highly active antiretroviral therapy (2, 5, 34). The definitive diagnosis requires brain tissue, but the detection of JCV by PCR in cerebrospinal fluid (CSF) is generally accepted for a laboratory-confirmed diagnosis in immunocompromised patients with (multi-)focal neurological deficits and corresponding radiological findings (8, 26). Due to the lack of effective antiviral therapy (13), the treatment of PML is based on improving overall immune functions. While this is difficult to achieve in cancer, chemotherapy, and transplantation, prompt antiretroviral therapy in HIV/AIDS patients has significantly improved PML survival, with increasing JCV-specific immune responses and declining intracerebral JCV replication (7, 15, 23, 35, 37). In patients diagnosed with PML after treatment with natalizumab for multiple sclerosis or inflammatory bowel disease, the removal of the monoclonal antibody by plasmapheresis has been tried to restore lymphocyte homing to, and the immune surveillance of, JCV replication sites in the central nervous system (38, 40, 52). However, the success of immune reconstitution in HIV/AIDS- and natalizumab-associated PML cases is limited by the fact that PML is typically diagnosed clinically by neurological deficits resulting from significant brain damage, where mounting antiviral immunity often may be too slow to modify the outcome. On the other hand, rapid recovery may cause immune reconstitution inflammatory syndrome with paradoxical clinical worsening and fatal outcomes (9, 16, 25, 38, 46). Although the etiologic role of JCV in PML is well documented, the pathogenesis and, in particular, the role of viral determinants is less clear. Virtually all JCV strains isolated from the brain or CSF of PML patients are characterized by highly variable genomic rearrangements of the noncoding control region (NCCR), which governs viral early and late genes in opposite directions of the circular polyomavirus DNA genome (1, 4, 31, 39, 41, 43, 49, 54, 59). In contrast, JCV detected in the urine of immunocompetent individuals show a consistent linear architecture called the archetype NCCR (at-NCCR). Thus, detecting rearranged NCCRs (rr-NCCRs) JCV in the central nervous system has been viewed as being derived from the archetype and closely linked to PML (4), but the functional consequences of rearrangements are unclear. To address the consequences of the rr-NCCR for JCV gene expression and replication, we characterized the sequences of JCV rr-NCCR from patients with PML and analyzed their effect on viral gene expression and replication with JCV at-NCCR in a bidirectional reporter assay and in recombinant JCV.  相似文献   

9.
10.
11.
Herpesviruses can enter host cells using pH-dependent endocytosis pathways in a cell-specific manner. Envelope glycoprotein B (gB) is conserved among all herpesviruses and is a critical component of the complex that mediates membrane fusion and entry. Here we demonstrate that mildly acidic pH triggers specific conformational changes in herpes simplex virus (HSV) gB. The antigenic structure of gB was specifically altered by exposure to low pH both in vitro and during entry into host cells. The oligomeric conformation of gB was altered at a similar pH range. Exposure to acid pH appeared to convert virion gB into a lower-order oligomer. The detected conformational changes were reversible, similar to those in other class III fusion proteins. Exposure of purified, recombinant gB to mildly acidic pH resulted in similar changes in conformation and caused gB to become more hydrophobic, suggesting that low pH directly affects gB. We propose that intracellular low pH induces alterations in gB conformation that, together with additional triggers such as receptor binding, are essential for virion-cell fusion during herpesviral entry by endocytosis.Herpes simplex virus (HSV) is an important human pathogen, causing significant morbidity and mortality worldwide. HSV enters host cells by fusion of the viral envelope with either an endosomal membrane (38) or the plasma membrane (63). The entry pathway taken is thought to be determined by both virus (17, 45) and host cell (4, 17, 35, 39, 45) factors. Based on experiments with lysosomotropic agents, which elevate the normally low pH of endosomes, acidic pH has been implicated in the endocytic entry of HSV into several cell types, including human epithelial cells (37). Low pH has also recently been implicated in cell infection by several other human and veterinary herpesviruses (1, 21, 26, 47). The mechanistic role of endosomal pH in herpesvirus entry into cells is not known.Herpesviruses are a paradigm for membrane fusion mediated by a complex of several glycoproteins. We have proposed that HSV likely encodes machinery to mediate both pH-dependent and pH-independent membrane fusion reactions. Envelope glycoproteins glycoprotein B (gB) and gD and the heterodimer gH-gL are required for both pH-independent and pH-dependent entry pathways (11, 22, 30, 39, 46). Interaction of gD with one of its cognate receptors is an essential trigger for membrane fusion and entry (13, 52), regardless of the cellular pathway. However, engagement of a gD receptor is not sufficient for fusion, and at least one additional unknown trigger involving gB or gH-gL is likely necessary. gB is conserved among all herpesviruses, and in all cases studied to date, it plays roles in viral entry, including receptor binding and membrane fusion. The crystal structure of an ectodomain fragment of HSV type 1 (HSV-1) gB is an elongated, rod-like structure containing hydrophobic internal fusion loops (28). This structure bears striking architectural homology to the low pH, postfusion form of G glycoprotein from vesicular stomatitis virus (VSV-G) (43). Both the gB and G structures have features of class I and class II fusion proteins and are thus designated class III proteins (57).During entry of the majority of virus families, low pH acts directly on glycoproteins to induce membrane fusion (60). In some cases, the low pH trigger is not sufficient, or it plays an indirect role. For example, host cell proteases, such as cathepsins D and L, require intravesicular low pH to cleave Ebola virus and severe acute respiratory syndrome (SARS) glycoproteins to trigger fusion (14, 51).We investigated the role of low pH in the molecular mechanism of herpesviral entry. The results suggest that mildly acidic pH, similar to that found within endosomes, triggers a conformational change in gB. We propose that, together with other cellular cues such as receptor interaction, intracellular low pH can play a direct activating role in HSV membrane fusion and entry.  相似文献   

12.
13.
14.
Several independent lines of evidence indicate that interferon-mediated innate responses are involved in controlling herpes simplex virus type 1 (HSV-1) infection and that the viral immediate-early regulatory protein ICP0 augments HSV-1 replication in interferon-treated cells. However, this is a complex situation in which the experimental outcome is determined by the choice of multiplicity of infection and cell type and by whether cultured cells or animal models are used. It is now known that neither STAT1 nor interferon regulatory factor 3 (IRF-3) play essential roles in the replication defect of ICP0-null mutant HSV-1 in cultured cells. This study set out to investigate the specific role of ICP0 in HSV-1 resistance to the interferon defense. We have used a cell line in which ICP0 expression can be induced at levels similar to those during the early stages of a normal infection to determine whether ICP0 by itself can interfere with interferon or IRF-3-dependent signaling and whether ICP0 enables the virus to circumvent the effects of interferon-stimulated genes (ISGs). We found that the presence of ICP0 was unable to compromise ISG induction by either interferon or double-stranded RNA. On the other hand, ICP0 preexpression reduced but did not eliminate the inhibitory effects of ISGs on HSV-1 infection, with the extent of the relief being highly dependent on multiplicity of infection. The results are discussed in terms of the relationships between ICP0 and intrinsic and innate antiviral resistance mechanisms.The innate immune response mediated through the interferon (IFN) pathway is an important component of antiviral defense mediated by individual cells and whole organisms (10, 28). In turn, many viruses express proteins that counteract the effects of the IFN response (28). In the case of herpes simplex virus type 1 (HSV-1), highly defective HSV-1 mutants activate expression of IFN-stimulated genes (ISGs) through a mechanism that is independent of IFN itself but dependent on IFN regulatory factor 3 (IRF-3) (2, 3, 19, 23, 26). HSV-1 mutants that do not express the immediate-early (IE) regulatory protein ICP0 are more sensitive than the wild-type (wt) virus to IFN pretreatment of cultured cells (13, 20), and ICP0-null mutant HSV-1 is much more pathogenic in mice unable to respond to IFN (12, 15). Furthermore, a number of experimental systems have presented evidence suggesting that a specific function of ICP0 is to interfere with IFN and/or IRF-3-dependent IFN responses (3, 16-18, 21). However, we have reported recently that the replication defect of ICP0-null mutant HSV-1 is not complemented in cultured cells lacking either STAT1 or IRF-3 (9), which raises the question of whether the relative sensitivity of ICP0-null mutant HSV-1 to an IFN-induced antiviral state results from the absence of a specific effect of ICP0 on IFN pathways or is, rather, an indirect consequence of the disabled virus being intrinsically less able to replicate in cells expressing ISGs (9).The investigation of these complex issues is difficult because sensitivity to IFN is highly dependent on multiplicity of infection (MOI) (9) and cell type (20). Therefore, we sought to develop a system in which the specific effects of ICP0 could be examined in the absence of HSV-1 infection and which avoids potential complications arising from the use of viral vectors or plasmid transfection technologies. In an accompanying paper, we describe the construction of a cell line that expresses ICP0 at physiological levels in an inducible manner (7). The cells allow 100% complementation of plaque formation by ICP0-null mutant HSV-1, and induction of ICP0 expression induces efficient reactivation of gene expression from quiescent HSV-1 genomes (7). We have used these cells to investigate whether, by itself, ICP0 is able to impede induction of ISGs in response to IFN (through the normal STAT1 signaling pathway) or to interfere with IRF-3-dependent activation of ISGs induced by double-stranded RNA, the archetypal pathogen-associated molecular pattern (PAMP). We found that preexpression of ICP0 had no deleterious effect on either pathway. On the other hand, preexpression of ICP0 decreased (but did not eliminate) the sensitivity of HSV-1 to an IFN-induced antiviral state. We discuss the relationship between ICP0 and intrinsic and innate cellular defenses to HSV-1 infection.  相似文献   

15.
Mature glycoprotein spikes are inserted in the Lassa virus envelope and consist of the distal subunit GP-1, the transmembrane-spanning subunit GP-2, and the signal peptide, which originate from the precursor glycoprotein pre-GP-C by proteolytic processing. In this study, we analyzed the oligomeric structure of the viral surface glycoprotein. Chemical cross-linking studies of mature glycoprotein spikes from purified virus revealed the formation of trimers. Interestingly, sucrose density gradient analysis of cellularly expressed glycoprotein showed that in contrast to trimeric mature glycoprotein complexes, the noncleaved glycoprotein forms monomers and oligomers spanning a wide size range, indicating that maturation cleavage of GP by the cellular subtilase SKI-1/S1P is critical for formation of the correct oligomeric state. To shed light on a potential relation between cholesterol and GP trimer stability, we performed cholesterol depletion experiments. Although depletion of cholesterol had no effect on trimerization of the glycoprotein spike complex, our studies revealed that the cholesterol content of the viral envelope is important for the infectivity of Lassa virus. Analyses of the distribution of viral proteins in cholesterol-rich detergent-resistant membrane areas showed that Lassa virus buds from membrane areas other than those responsible for impaired infectivity due to cholesterol depletion of lipid rafts. Thus, derivation of the viral envelope from cholesterol-rich membrane areas is not a prerequisite for the impact of cholesterol on virus infectivity.Lassa virus (LASV) is a member of the family Arenaviridae, of which Lymphocytic choriomeningitis virus (LCMV) is the prototype. Arenaviruses comprise more than 20 species, divided into the Old World and New World virus complexes (19). The Old World arenaviruses include the human pathogenic LASV strains, Lujo virus, which was first identified in late 2008 and is associated with an unprecedented high case fatality rate in humans, the nonhuman pathogenic Ippy, Mobala, and Mopeia viruses, and the recently described Kodoko virus (10, 30, 49). The New World virus complex contains, among others, the South American hemorrhagic fever-causing viruses Junín virus, Machupo virus, Guanarito virus, Sabiá virus, and the recently discovered Chapare virus (22).Arenaviruses contain a bisegmented single-stranded RNA genome encoding the polymerase L, matrix protein Z, nucleoprotein NP, and glycoprotein GP. The bipartite ribonucleoprotein of LASV is surrounded by a lipid envelope derived from the plasma membrane of the host cell. The matrix protein Z has been identified as a major budding factor, which lines the interior of the viral lipid membrane, in which GP spikes are inserted (61, 75). The glycoprotein is synthesized as precursor protein pre-GP-C and is cotranslationally cleaved by signal peptidase into GP-C and the signal peptide, which exhibits unusual length, stability, and topology (3, 27, 28, 33, 70, 87). Moreover, the arenaviral signal peptide functions as trans-acting maturation factor (2, 26, 33). After processing by signal peptidase, GP-C of both New World and Old World arenaviruses is cleaved by the cellular subtilase subtilisin kexin isozyme-1/site-1 protease (SKI-1/S1P) into the distal subunit GP-1 and the membrane-anchored subunit GP-2 within the secretory pathway (5, 52, 63). For LCMV, it has been shown that GP-1 subunits are linked to each other by disulfide bonds and are noncovalently connected to GP-2 subunits (14, 24, 31). GP-1 is responsible for binding to the host cell receptor, while GP-2 mediates fusion between the virus envelope and the endosomal membrane at low pH due to a bipartite fusion peptide near the amino terminus (24, 36, 44). Sequence analysis of the LCMV GP-2 ectodomain revealed two heptad repeats that most likely form amphipathic helices important for this process (34, 86).In general, viral class I fusion proteins have triplets of α-helical structures in common, which contain heptad repeats (47, 73). In contrast, class II fusion proteins are characterized by β-sheets that form dimers in the prefusion status and trimers in the postfusion status (43). The class III fusion proteins are trimers that, unlike class I fusion proteins, were not proteolytically processed N-terminally of the fusion peptide, resulting in a fusion-active membrane-anchored subunit (39, 62). Previous studies with LCMV described a tetrameric organization of the glycoprotein spikes (14), while more recent data using a bacterially expressed truncated ectodomain of the LCMV GP-2 subunit pointed toward a trimeric spike structure (31). Due to these conflicting data regarding the oligomerization status of LCMV GP, it remains unclear to which class of fusion proteins the arenaviral glycoproteins belong.The state of oligomerization and the correct conformation of viral glycoproteins are crucial for membrane fusion during virus entry. The early steps of infection have been shown for several viruses to be dependent on the cholesterol content of the participating membranes (i.e., either the virus envelope or the host cell membrane) (4, 9, 15, 20, 21, 23, 40, 42, 53, 56, 76, 78, 79). In fact, it has been shown previously that entry of both LASV and LCMV is susceptible to cholesterol depletion of the target host cell membrane using methyl-β-cyclodextrin (MβCD) treatment (64, 71). Moreover, cholesterol not only plays an important role in the early steps during entry in the viral life cycle but also is critical in the virus assembly and release process. Several viruses of various families, including influenza virus, human immunodeficiency virus type 1 (HIV-1), measles virus, and Ebola virus, use the ordered environment of lipid raft microdomains. Due to their high levels of glycosphingolipids and cholesterol, these domains are characterized by insolubility in nonionic detergents under cold conditions (60, 72). Recent observations have suggested that budding of the New World arenavirus Junin virus occurs from detergent-soluble membrane areas (1). Assembly and release from distinct membrane microdomains that are detergent soluble have also been described for vesicular stomatitis virus (VSV) (12, 38, 68). At present, however, it is not known whether LASV requires cholesterol in its viral envelope for successful virus entry or whether specific membrane microdomains are important for LASV assembly and release.In this study, we first investigated the oligomeric state of the premature and mature LASV glycoprotein complexes. Since it has been shown for several membrane proteins that the oligomerization and conformation are dependent on cholesterol (58, 59, 76, 78), we further analyzed the dependence of the cholesterol content of the virus envelope on glycoprotein oligomerization and virus infectivity. Finally, we characterized the lipid membrane areas from which LASV is released.  相似文献   

16.
17.
18.
19.
Poxviruses produce complement regulatory proteins to subvert the host''s immune response. Similar to the human pathogen variola virus, ectromelia virus has a limited host range and provides a mouse model where the virus and the host''s immune response have coevolved. We previously demonstrated that multiple components (C3, C4, and factor B) of the classical and alternative pathways are required to survive ectromelia virus infection. Complement''s role in the innate and adaptive immune responses likely drove the evolution of a virus-encoded virulence factor that regulates complement activation. In this study, we characterized the ectromelia virus inhibitor of complement enzymes (EMICE). Recombinant EMICE regulated complement activation on the surface of CHO cells, and it protected complement-sensitive intracellular mature virions (IMV) from neutralization in vitro. It accomplished this by serving as a cofactor for the inactivation of C3b and C4b and by dissociating the catalytic domain of the classical pathway C3 convertase. Infected murine cells initiated synthesis of EMICE within 4 to 6 h postinoculation. The levels were sufficient in the supernatant to protect the IMV, upon release, from complement-mediated neutralization. EMICE on the surface of infected murine cells also reduced complement activation by the alternative pathway. In contrast, classical pathway activation by high-titer antibody overwhelmed EMICE''s regulatory capacity. These results suggest that EMICE''s role is early during infection when it counteracts the innate immune response. In summary, ectromelia virus produced EMICE within a few hours of an infection, and EMICE in turn decreased complement activation on IMV and infected cells.Poxviruses encode in their large double-stranded DNA genomes many factors that modify the immune system (30, 56). The analysis of these molecules has revealed a delicate balance between viral pathogenesis and the host''s immune response (2, 21, 31, 61). Variola, vaccinia, monkeypox, cowpox, and ectromelia (ECTV) viruses each produce an orthologous complement regulatory protein (poxviral inhibitor of complement enzymes [PICE]) that has structural and functional homology to host proteins (14, 29, 34, 38, 41, 45, 54). The loss of the regulatory protein resulted in smaller local lesions with vaccinia virus lacking the vaccinia virus complement control protein (VCP) (29) and in a greater local inflammatory response in the case of cowpox lacking the inflammation-modulatory protein (IMP; the cowpox virus PICE) (35, 45, 46). Additionally, the complete loss of the monkeypox virus inhibitor of complement enzymes (MOPICE) may account for part of the reduced mortality observed in the West African compared to Congo basin strains of monkeypox virus (12).The complement system consists of proteins on the cell surface and in blood that recognize and destroy invading pathogens and infected host cells (36, 52). Viruses protect themselves from the antiviral effects of complement activation in a variety of ways, including hijacking the host''s complement regulatory proteins or producing their own inhibitors (7, 8, 15, 20, 23). Another effective strategy is to incorporate the host''s complement regulators in the outermost viral membrane, which then protects the virus from complement attack (62). The extracellular enveloped virus (EEV) produced by poxviruses acquires a unique outer membrane derived from the Golgi complex or early endosomes that contain the protective host complement regulators (58, 62). Poxviruses have multiple infectious forms, and the most abundant, intracellular mature virions (IMV), are released when infected cells lyse (58). The IMV lacks the outermost membrane found on EEV and is sensitive to complement-mediated neutralization. The multiple strategies viruses have evolved to evade the complement system underscore its importance to innate and adaptive immunity (15, 36).The most well-characterized PICE is VCP (24-29, 34, 49, 50, 53, 55, 59, 60). Originally described as a secreted complement inhibitor (34), VCP also attaches to the surface of infected cells through an interaction with the viral membrane protein A56 that requires an unpaired N-terminal cysteine (26). This extra cysteine also adds to the potency of the inhibitor by forming function-enhancing dimers (41). VCP and the smallpox virus inhibitor of complement enzymes (SPICE) bind heparin in vitro, and this may facilitate cell surface interactions (24, 38, 50, 59). The coevolution of variola virus with its only natural host, humans, likely explains the enhanced activity against human complement observed with SPICE compared to the other PICEs (54, 64).Our recent work with ECTV, the causative agent of mousepox infection, demonstrated that the classical and alternative pathways of the complement system are required for host survival (48). The mouse-specific pathogen ECTV causes severe disease in most strains and has coevolved with its natural host, analogous to variola virus in humans (9). This close host-virus relationship is particularly important for evaluating the role of the complement system, given the species specificity of many complement proteins, receptors, and regulators (10, 47, 62). Additionally, the availability of complement-deficient mice permits dissection of the complement activation pathways involved. Naïve C57BL/6 mouse serum neutralizes the IMV of ECTV in vitro, predominately through opsonization (48). Maximal neutralization requires natural antibody, classical-pathway activation, and amplification by the alternative pathway. C3 deficiency in the normally resistant C57BL/6 strain results in acute mortality, similar to immunodeficiencies in important elements of the antiviral immune response, including CD8+ T cells (19, 32), natural killer cells (18, 51), and gamma interferon (33). During ECTV infection, the complement system acts in the first few hours and days to delay the spread of infection, resulting in lower levels of viremia and viral burden in tissues (48).This study characterized the PICE produced by ECTV, ectromelia virus inhibitor of complement enzymes (EMICE), and assessed its complement regulatory activity. Recombinant EMICE (rEMICE) decreased activation of both human and mouse complement. Murine cells produced EMICE at 4 to 6 h postinfection prior to the release of the majority of the complement-sensitive IMV from infected cells. rEMICE protected ECTV IMV from complement-mediated neutralization. Further, EMICE produced during natural infection inhibited complement deposition on infected cells by the alternative pathway. ECTV likely produces this abundance of EMICE to protect both the IMV and infected cells.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding to CD4 and a chemokine receptor, most commonly CCR5. CXCR4 is a frequent alternative coreceptor (CoR) in subtype B and D HIV-1 infection, but the importance of many other alternative CoRs remains elusive. We have analyzed HIV-1 envelope (Env) proteins from 66 individuals infected with the major subtypes of HIV-1 to determine if virus entry into highly permissive NP-2 cell lines expressing most known alternative CoRs differed by HIV-1 subtype. We also performed linear regression analysis to determine if virus entry via the major CoR CCR5 correlated with use of any alternative CoR and if this correlation differed by subtype. Virus pseudotyped with subtype B Env showed robust entry via CCR3 that was highly correlated with CCR5 entry efficiency. By contrast, viruses pseudotyped with subtype A and C Env proteins were able to use the recently described alternative CoR FPRL1 more efficiently than CCR3, and use of FPRL1 was correlated with CCR5 entry. Subtype D Env was unable to use either CCR3 or FPRL1 efficiently, a unique pattern of alternative CoR use. These results suggest that each subtype of circulating HIV-1 may be subject to somewhat different selective pressures for Env-mediated entry into target cells and suggest that CCR3 may be used as a surrogate CoR by subtype B while FPRL1 may be used as a surrogate CoR by subtypes A and C. These data may provide insight into development of resistance to CCR5-targeted entry inhibitors and alternative entry pathways for each HIV-1 subtype.Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding first to CD4 and then to a coreceptor (CoR), of which C-C chemokine receptor 5 (CCR5) is the most common (6, 53). CXCR4 is an additional CoR for up to 50% of subtype B and D HIV-1 isolates at very late stages of disease (4, 7, 28, 35). Many other seven-membrane-spanning G-protein-coupled receptors (GPCRs) have been identified as alternative CoRs when expressed on various target cell lines in vitro, including CCR1 (76, 79), CCR2b (24), CCR3 (3, 5, 17, 32, 60), CCR8 (18, 34, 38), GPR1 (27, 65), GPR15/BOB (22), CXCR5 (39), CXCR6/Bonzo/STRL33/TYMSTR (9, 22, 25, 45, 46), APJ (26), CMKLR1/ChemR23 (49, 62), FPLR1 (67, 68), RDC1 (66), and D6 (55). HIV-2 and simian immunodeficiency virus SIVmac isolates more frequently show expanded use of these alternative CoRs than HIV-1 isolates (12, 30, 51, 74), and evidence that alternative CoRs other than CXCR4 mediate infection of primary target cells by HIV-1 isolates is sparse (18, 30, 53, 81). Genetic deficiency in CCR5 expression is highly protective against HIV-1 transmission (21, 36), establishing CCR5 as the primary CoR. The importance of alternative CoRs other than CXCR4 has remained elusive despite many studies (1, 30, 70, 81). Expansion of CoR use from CCR5 to include CXCR4 is frequently associated with the ability to use additional alternative CoRs for viral entry (8, 16, 20, 63, 79) in most but not all studies (29, 33, 40, 77, 78). This finding suggests that the sequence changes in HIV-1 env required for use of CXCR4 as an additional or alternative CoR (14, 15, 31, 37, 41, 57) are likely to increase the potential to use other alternative CoRs.We have used the highly permissive NP-2/CD4 human glioma cell line developed by Soda et al. (69) to classify virus entry via the alternative CoRs CCR1, CCR3, CCR8, GPR1, CXCR6, APJ, CMKLR1/ChemR23, FPRL1, and CXCR4. Full-length molecular clones of 66 env genes from most prevalent HIV-1 subtypes were used to generate infectious virus pseudotypes expressing a luciferase reporter construct (19, 57). Two types of analysis were performed: the level of virus entry mediated by each alternative CoR and linear regression of entry mediated by CCR5 versus all other alternative CoRs. We thus were able to identify patterns of alternative CoR use that were subtype specific and to determine if use of any alternative CoR was correlated or independent of CCR5-mediated entry. The results obtained have implications for the evolution of env function, and the analyses revealed important differences between subtype B Env function and all other HIV-1 subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号