首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HIV-1 and HIV-2 are derived from two distinct primate viruses and share only limited sequence identity. Despite this, HIV-1 and HIV-2 Gag polyproteins can coassemble into the same particle and their genomes can undergo recombination, albeit at an extremely low frequency, implying that HIV-1 and HIV-2 RNA can be copackaged into the same particle. To determine the frequency of HIV-1 and HIV-2 RNA copackaging and to dissect the mechanisms that allow the heterologous RNA copackaging, we directly visualized the RNA content of each particle by using RNA-binding proteins tagged with fluorescent proteins to label the viral genomes. We found that when HIV-1 and HIV-2 RNA are present in viral particles at similar ratios, ~10% of the viral particles encapsidate both HIV-1 and HIV-2 RNAs. Furthermore, heterologous RNA copackaging can be promoted by mutating the 6-nucleotide (6-nt) dimer initiation signal (DIS) to discourage RNA homodimerization or to encourage RNA heterodimerization, indicating that HIV-1 and HIV-2 RNA can heterodimerize prior to packaging using the DIS sequences. We also observed that the coassembly of HIV-1 and HIV-2 Gag proteins is not required for the heterologous RNA copackaging; HIV-1 Gag proteins are capable of mediating HIV-1 and HIV-2 RNA copackaging. These results define the cis- and trans-acting elements required for and affecting the heterologous RNA copackaging, a prerequisite for the generation of chimeric viruses by recombination, and also shed light on the mechanisms of RNA-Gag recognition essential for RNA encapsidation.  相似文献   

2.
Human immunodeficiency virus type 2 (HIV-2) has been reported to have a distinct RNA packaging mechanism, referred to as cis packaging, in which Gag proteins package the RNA from which they were translated. We examined the progeny generated from dually infected cell lines that contain two HIV-2 proviruses, one with a wild-type gag/gag-pol and the other with a mutant gag that cannot express functional Gag/Gag-Pol. Viral titers and RNA analyses revealed that mutant viral RNAs can be packaged at efficiencies comparable to that of viral RNA from which wild-type Gag/Gag-Pol is translated. These results do not support the cis-packaging hypothesis but instead indicate that trans packaging is the major mechanism of HIV-2 RNA packaging. To further characterize the mechanisms of HIV-2 RNA packaging, we visualized HIV-2 RNA in individual particles by using fluorescent protein-tagged RNA-binding proteins that specifically recognize stem-loop motifs in the viral genomes, an assay termed single virion analysis. These studies revealed that >90% of the HIV-2 particles contained viral RNAs and that RNAs derived from different viruses were copackaged frequently. Furthermore, the frequencies of heterozygous particles in the viral population could be altered by changing a 6-nucleotide palindromic sequence at the 5'-untranslated region of the HIV-2 genome. This finding indicates that selection of copackaging RNA partners occurs prior to encapsidation and that HIV-2 Gag proteins primarily package one dimeric RNA rather than two monomeric RNAs. Additionally, single virion analyses demonstrated a similar RNA distribution in viral particles regardless of whether both viruses had a functional gag or one of the viruses had a nonfunctional gag, providing further support for the trans-packaging hypothesis. Together, these results revealed mechanisms of HIV-2 RNA packaging that are, contrary to previous studies, in many respects surprisingly similar to those of HIV-1.  相似文献   

3.
Lentiviral genomic RNAs are encapsidated by the viral Gag protein during virion assembly. The intracellular location of the initial Gag-RNA interaction is unknown. We previously observed feline immunodeficiency virus (FIV) Gag accumulating at the nuclear envelope during live-cell imaging, which suggested that trafficking of human immunodeficiency virus type 1 (HIV-1) and FIV Gag may differ. Here we analyzed the nucleocytoplasmic transport properties of both Gag proteins. We discovered that inhibition of the CRM1 nuclear export pathway with leptomycin B causes FIV Gag but not HIV-1 Gag to accumulate in the nucleus. Virtually all FIV Gag rapidly became intranuclear when the CRM1 export pathway was blocked, implying that most if not all FIV Gag normally undergoes nuclear cycling. In FIV-infected feline cells, some intranuclear Gag was detected in the steady state without leptomycin B treatment. When expressed individually, the FIV matrix (MA), capsid (CA), and nucleocapsid-p2 (NC-p2) domains were not capable of mediating leptomycin B-sensitive nuclear export of a fluorescent protein. In contrast, CA-NC-p2 did mediate nuclear export, with MA being dispensable. We conclude that HIV-1 and FIV Gag differ strikingly in a key intracellular trafficking property. FIV Gag is a nuclear shuttling protein that utilizes the CRM1 nuclear export pathway, while HIV-1 Gag is excluded from the nucleus. These findings expand the spectrum of lentiviral Gag behaviors and raise the possibility that FIV genome encapsidation may initiate in the nucleus.  相似文献   

4.
Recombination is a major force for generating human immunodeficiency virus type 1 (HIV-1) diversity and produces numerous recombinants circulating in the human population. We previously established a cell-based system using green fluorescent protein gene (gfp) as a reporter to study the mechanisms of HIV-1 recombination. We now report an improved system capable of detecting recombination using authentic viral sequences. Frameshift mutations were introduced into the gag gene so that parental viruses do not express full-length Gag; however, recombination can generate a progeny virus that expresses a functional Gag. We demonstrate that this Gag reconstitution assay can be used to detect recombination between two group M HIV-1 variants of the same or of different subtypes. Using both gfp and gag assays, we found that, similar to group M viruses, group O viruses also recombine frequently. When recombination between a group M virus and a group O virus was examined, we found three distinct barriers for intergroup recombination. First, similar to recombination within group M viruses, intergroup recombination is affected by the identity of the dimerization initiation signal (DIS); variants with the same DIS recombined at a higher rate than those with different DIS. Second, using the gfp recombination assay, we showed that intergroup recombination occurs much less frequently than intragroup recombination, even though the gfp target sequence is identical in all viruses. Finally, Gag reconstitution between variants from different groups is further reduced compared with green fluorescent protein, indicating that sequence divergence interferes with recombination efficiency in the gag gene. Compared with identical sequences, we estimate that recombination rates are reduced by 3-fold and by 10- to 13-fold when the target regions in gag contain 91% and 72-73% sequence identities, respectively. These results show that there are at least three distinct mechanisms preventing exchange of genetic information between divergent HIV-1 variants from different groups.  相似文献   

5.
6.
The Gag polyprotein is the major structural protein of human immunodeficiency virus-1 (HIV-1) constituting the viral core. Between translation on cytoplasmic polysomes and assembly into viral particles at the plasma membrane, it specifically captures the RNA genome of the virus through binding RNA structural motifs (packaging signals -Psi) in the RNA. RNA is believed to be a structural facilitator of Gag assembly. Using a combined approach of immunofluorescence detection of Gag protein and in situ hybridisation detection of viral genomic RNA, we demonstrate that Gag protein colocalises early after expression with Psi+ RNA in the perinuclear region and also colocalises with centrioles. Colocalised RNA and protein subsequently traffic through the cytoplasm to the plasma membrane of the cell. Gag expressed from Psi- RNA diffuses throughout the cell. It is not found at centrioles and shows delayed cytoplasmic colocalisation with the RNA genome. RNA capture through Psi does not influence binding of Gag to microfilaments. Gag does not bind to tubulin during export. The presence of the packaging signal may coordinate capture of Psi+ RNA by Gag protein at the centrosome followed by their combined transport to the site of budding. HIV-1 Psi thus acts as a subcellular localisation signal as well as a high-affinity-binding site for Gag.  相似文献   

7.
8.
In most retroviruses, plasma membrane (PM) association of the Gag structural protein is a critical step in viral assembly, relying in part on interaction between the highly basic Gag MA domain and the negatively charged inner leaflet of the PM. Assembly is thought to begin with Gag dimerization followed by multimerization, resulting in a hexameric lattice. To directly address the role of multimerization in membrane binding, we fused the MA domains of Rous sarcoma virus (RSV) and HIV-1 to the chemically inducible dimerization domain FK506-binding protein (FKBP) or to the hexameric protein CcmK4 from cyanobacteria. The cellular localization of the resulting green fluorescent protein (GFP)-tagged chimeric proteins was examined by fluorescence imaging, and the association of the proteins with liposomes was quantified by flotation in sucrose gradients, following synthesis in a reticulocyte extract or as purified proteins. Four lipid compositions were tested, representative of liposomes commonly reported in flotation experiments. By themselves, GFP-tagged RSV and HIV-1 MA proteins were largely cytoplasmic, but both hexamerized proteins were highly concentrated at the PM. Dimerization led to partial PM localization for HIV-1 MA. These in vivo effects of multimerization were reproduced in vitro. In flotation analyses, the intact RSV and HIV-1 Gag proteins were more similar to multimerized MA than to monomeric MA. RNA is reported to compete with acidic liposomes for HIV-1 Gag binding, and thus we also examined the effects of RNase treatment or tRNA addition on flotation. tRNA competed with liposomes in the case of some but not all lipid compositions and ionic strengths. Taken together, our results further underpin the model that multimerization is critical for PM association of retroviral Gag proteins. In addition, they suggest that the modulation of membrane binding by RNA, as previously reported for HIV-1, may not hold for RSV.  相似文献   

9.
Expression of the complete HIV-1 genome depends on the appropriate processing of viral RNA. Altering the balance of viral RNA processing impairs replication of the virus. In this report, we characterize two small molecule modulators of HIV-1 RNA processing, 8-azaguanine and 2-(2-(5-nitro-2-thienyl)vinyl)quinoline (5350150), which function by distinct mechanisms to suppress viral gene expression. Although only 8-Azaguanine dramatically decreased accumulation of HIV-1 unspliced and singly spliced RNAs and altered splice site usage, both compounds blocked Gag and Env expression without affecting production of Tat (p16) and Rev regulatory proteins. Subsequent analyses suggest that these compounds affect Rev-mediated RNA transport by different mechanisms. Both compounds induced cytoplasmic accumulation of Rev, suggesting that they function, in part, by impairing Rev function. This conclusion is supported by the determination that both drugs block the nuclear export of genomic HIV-1 RNA to the cytoplasm. Testing confirmed that these compounds suppress HIV-1 expression in T cells at doses below those previously used in humans for tumour chemotherapy. Together, our observations demonstrate that small molecules can be used to inhibit HIV-1 replication by altering another avenue of viral RNA processing, offering the potential for the development of novel therapeutics for controlling this disease.  相似文献   

10.
During HIV-1 assembly, Gag polypeptides multimerize to form an immature capsid and also package HIV-1 genomic RNA. Assembling Gag forms immature capsids by progressing through a stepwise pathway of assembly intermediates containing the cellular ATPase ABCE1, which facilitates capsid formation. The NC domain of Gag is required for ABCE1 binding, acting either directly or indirectly. NC is also critical for Gag multimerization and RNA binding. Previous studies of GagZip chimeric proteins in which NC was replaced with a heterologous leucine zipper that promotes protein dimerization but not RNA binding established that the RNA binding properties of NC are dispensable for capsid formation per se. Here we utilized GagZip proteins to address the question of whether the RNA binding properties of NC are required for ABCE1 binding and for the formation of ABCE1-containing capsid assembly intermediates. We found that assembly-competent HIV-1 GagZip proteins formed ABCE1-containing intermediates, while assembly-incompetent HIV-1 GagZip proteins harboring mutations in residues critical for leucine zipper dimerization did not. Thus, these data suggest that ABCE1 does not bind to NC directly or through an RNA bridge, and they support a model in which dimerization of Gag, mediated by NC or a zipper, results in exposure of an ABCE1-binding domain located elsewhere in Gag, outside NC. Additionally, we demonstrated that immature capsids formed by GagZip proteins are insensitive to RNase A, as expected. However, unexpectedly, immature HIV-1 capsids were almost as insensitive to RNase A as GagZip capsids, suggesting that RNA is not a structural element holding together immature wild-type HIV-1 capsids.  相似文献   

11.
Packaging of MLV genomes requires four cis-acting stem-loops. Stem-loops A and B are self-complementary and bind Gag in their dimeric form, while the C and D elements mediate loop-loop interactions that facilitate RNA dimerization. Packaging also requires nuclear export of viral genomes, and their cytoplasmic transport toward the plasma membrane. For MLV, this is mediated by Gag and Env, and occurs on endosomal vesicles. Here, we report that MLV Psi acts at several steps during the transport of genomic RNAs. First, deletion of stem-loop B or C leads to the accumulation of genomic RNAs in the nucleus, suggesting that these elements are involved in export. Second, in chronically infected cells, mutation of the C and D loops impairs endosomal transport. This suggests that RNA dimerization is essential for vesicular transport, consistent with its proposed requirement for Gag binding. Surprisingly, deletion of stem-loop A blocks vesicular transport, whereas removal of stem-loop B has no effects. This suggests that stem-loop A has unique functions in packaging, not predicted from previous in vitro analyses. Finally, in packaging cells that do not express any Psi-containing RNA, endosomal RNA transport becomes sequence-independent. This non-specific activity of Gag likely promotes packaging of cellular mRNAs.  相似文献   

12.
A unique feature of retroviruses is the packaging of two copies of their genome, noncovalently linked at their 5' ends. In vitro, dimerization of human immunodeficiency virus type 2 (HIV-2) RNA occurs by interaction of a self-complementary sequence exposed in the loop of stem-loop 1 (SL-1), also termed the dimer initiation site (DIS). However, in virions, HIV-2 genome dimerization does not depend on the DIS. Instead, a palindrome located within the packaging signal (Psi) is the essential motif for genome dimerization. We reported previously that a mutation within Psi decreasing genome dimerization and packaging also resulted in a reduced proportion of mature particles (A. L'Hernault, J. S. Greatorex, R. A. Crowther, and A. M. Lever, Retrovirology 4:90, 2007). In this study, we investigated further the relationship between HIV-2 genome dimerization, particle maturation, and infectivity by using a series of targeted mutations in SL-1. Our results show that disruption of a purine-rich ((392)-GGAG-(395)) motif within Psi causes a severe reduction in genome dimerization and a replication defect. Maintaining the extended SL-1 structure in combination with the (392)-GGAG-(395) motif enhanced packaging. Unlike that of HIV-1, which can replicate despite mutation of the DIS, HIV-2 replication depends critically on genome dimerization rather than just packaging efficiency. Gag processing was altered in the HIV-2 dimerization mutants, resulting in the accumulation of the MA-CA-p2 processing intermediate and suggesting a link between genome dimerization and particle assembly. Analysis of revertant SL-1 mutant viruses revealed that a compensatory mutation in matrix (70TI) could rescue viral replication and partially restore genome dimerization and Gag processing. Our results are consistent with interdependence between HIV-2 RNA dimerization and the correct proteolytic cleavage of the Gag polyprotein.  相似文献   

13.
14.
Nuclear export of incompletely spliced RNAs is a prerequisite for retroviral replication. Complex retroviruses like human immunodeficiency virus (HIV) encode a viral transport factor (Rev), which binds to its target sequence on the RNA genome and directs it into the Crm-1-mediated export pathway. Other retroviruses, like Mason-Pfizer monkey virus, contain cis-acting constitutive RNA transport elements (CTE) which achieve nuclear export of intron-containing RNA via cellular transport factors. Here, we describe the identification and characterization of a novel cis-acting orientation-dependent RNA expression element in the coding region of the murine intracisternal A-type particle (IAP) MIA14. This IAP expression element (IAPE) can functionally replace the Rev system in the expression of HIV-1 Gag proteins but functions independently of Crm-1. The presence of this element is needed for the expression of the IAP Gag proteins, indicating its biological significance. The IAPE can be functionally replaced by placing a CTE on the MIA14 RNA, further supporting its role in mRNA export. Northern blot analysis revealed that total RNA, as well as cytoplasmic RNA, was increased when the element was present. The element was mapped to a predicted stem-loop structure in the 3' part of the pol open reading frame. There was no overall homology between the IAPE and the CTE, but there was complete sequence identity between short putative single-stranded loops. Deletion of these loops from the IAPE severely reduced Rev-independent Gag expression.  相似文献   

15.
16.
Frequent human immunodeficiency virus type 1 (HIV-1) recombination occurs during DNA synthesis when portions of the two copackaged RNAs are used as templates to generate a hybrid DNA copy. Therefore, the frequency of copackaging of genomic RNAs from two different viruses (heterozygous virion formation) affects the generation of genotypically different recombinants. We hypothesized that the selection of copackaged RNA partners is largely determined by Watson-Crick pairing at the dimer initiation signal (DIS), a 6-nucleotide palindromic sequence at the terminal loop of stem-loop 1 (SL1). To test our hypothesis, we examined whether heterozygous virion formation could be encouraged by manipulation of the DIS. Three pairs of viruses were generated with compensatory DIS mutations, designed so that perfect DIS base pairing could only occur between RNAs derived from different viruses, not between RNAs from the same virus. We observed that vector pairs with compensatory DIS mutations had an almost twofold increase in recombination rates compared with wild-type viruses. These data suggest that heterozygous virion formation was enhanced in viruses with compensatory DIS mutations (from 50% to more than 90% in some viral pairings). The role of the SL1 stem in heterozygous virion formation was also tested; our results indicated that the intermolecular base pairing of the stem sequences does not affect RNA partner selection. In summary, our results demonstrate that the Watson-Crick pairing of the DIS is a major determinant in the selection of the copackaged RNA partner, and altering the base pairing of the DIS can change the proportion of heterozygous viruses in a viral population. These results also strongly support the hypothesis that HIV-1 RNA dimers are formed prior to encapsidation.  相似文献   

17.
Motomura K  Chen J  Hu WS 《Journal of virology》2008,82(4):1923-1933
Human immunodeficiency virus type 1 (HIV-1) and HIV-2 are genetically distinct viruses that each can cause AIDS. Approximately 1 million people are infected with both HIV-1 and HIV-2. Additionally, these two viruses use the same receptor and coreceptors and can therefore infect the same target cell populations. To explore potential genetic interactions, we first examined whether RNAs from HIV-1 and HIV-2 can be copackaged into the same virion. We used modified near-full-length viruses that each contained a green fluorescent protein gene (gfp) with a different inactivating mutation. Thus, a functional gfp could be reconstituted via recombination, which was used to detect the copackaging of HIV-1 and HIV-2 RNAs. The GFP-positive (GFP+) phenotype was detected in approximately 0.2% of the infection events, which was 35-fold lower than the intrasubtype HIV-1 rates. We isolated and characterized 54 GFP+ single-cell clones and determined that all of them contained proviruses with reconstituted gfp. We then mapped the general structures of the recombinant viruses and characterized the recombination junctions by DNA sequencing. We observed several different recombination patterns, including those that had crossovers only in gfp. The most common hybrid genomes had heterologous long terminal repeats. Although infrequent, crossovers in the viral sequences were also identified. Taken together, our study demonstrates that HIV-1 and HIV-2 can recombine, albeit at low frequencies. These observations indicate that multiple factors are likely to restrict the generation of viable hybrid HIV-1 and HIV-2 viruses. However, considering the large coinfected human population and the high viral load in patients, these rare events could provide the basis for the generation of novel human immunodeficiency viruses.  相似文献   

18.
The 5' UTR of HIV-2 genomic RNA contains signaling motifs that regulate specific steps of the replication cycle. Two motifs of interest are the C-box and the G-box. The C-box is found in the 5' untranslated region upstream of the primer binding site, while the G-box is found downstream from the major splice donor site, encompassing the gag start codon and flanking nucleotides. Together the C-box and the G-box form a long-range base-pairing interaction called the CGI. We and others have previously shown that formation of the CGI affects RNA dimerization in vitro and the positions of the C-box and the G-box are suggestive of potential roles of the CGI in other steps of HIV-2 replication. Therefore, we attempted to elucidate the role of the CGI using a viral SELEX approach. We constructed proviral DNA libraries containing randomized regions of the C-box or G-box paired with wild-type or mutant base-pairing partners. These proviral DNA libraries were transfected into COS-7 cells to produce viral libraries that were then used to infect permissive C8166 cells. The "winner" viruses were sequenced and further characterized. Our results demonstrate that there is strong selective pressure favoring viruses that can form a branched CGI. In addition, we show that the mutation of the C-box alone can enhance RNA encapsidation, and mutation of the G-box can alter the levels of Gag protein isoforms. These results suggest coordinated regulation of RNA translation, dimerization, and encapsidation during HIV-2 replication.  相似文献   

19.
In HIV, the polyprotein precursor Gag orchestrates the formation of the viral capsid. In the current view of this viral assembly, Gag forms low-order oligomers that bind to the viral genomic RNA triggering the formation of high-ordered ribonucleoprotein complexes. However, this assembly model was established using biochemical or imaging methods that do not describe the cellular location hosting Gag–gRNA complex nor distinguish gRNA packaging in single particles. Here, we studied the intracellular localization of these complexes by electron microscopy and monitored the distances between the two partners by morphometric analysis of gold beads specifically labeling Gag and gRNA. We found that formation of these viral clusters occurred shortly after the nuclear export of the gRNA. During their transport to the plasma membrane, the distance between Gag and gRNA decreases together with an increase of gRNA packaging. Point mutations in the zinc finger patterns of the nucleocapsid domain of Gag caused an increase in the distance between Gag and gRNA as well as a sharp decrease of gRNA packaged into virions. Finally, we show that removal of stem loop 1 of the 5′-untranslated region does not interfere with gRNA packaging, whereas combined with the removal of stem loop 3 is sufficient to decrease but not abolish Gag-gRNA cluster formation and gRNA packaging. In conclusion, this morphometric analysis of Gag-gRNA cluster formation sheds new light on HIV-1 assembly that can be used to describe at nanoscale resolution other viral assembly steps involving RNA or protein–protein interactions.  相似文献   

20.
The relationship between virion protein maturation and genomic RNA dimerization of human immunodeficiency virus type 1 (HIV-1) remains incompletely understood. We have constructed HIV-1 Gag cleavage site mutants to enable the steady state observation of virion maturation steps, and precisely study Gag processing, RNA dimerization, virion morphology and infectivity. Within the virion maturation process, the RNA dimer stabilization begins during the primary cleavage (p2-NC) of Pr55 Gag. However, the primary cleavage alone is not sufficient, and the ensuing cleavages are required for the completion of dimerization. From our observations, the increase of cleavage products may not put a threshold on the transition from fragile to stable dimeric RNA. Most of the RNA dimerization process did not require viral core formation, and particle morphology dynamics during viral maturation did not completely synchronize with the transition of dimeric RNA status. Although the endogenous virion RT activity was fully acquired at the initial step of maturation, the following process was necessary for viral DNA production in infected cell, suggesting the maturation of viral RNA/protein plays critical role for viral infectivity other than RT process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号