首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Wild-type measles virus (MV) isolated in B95a cells could be adapted to Vero cells after several blind passages. In this study, we have determined the complete nucleotide sequences of the genomes of the wild type (T11wild) and its Vero cell-adapted (T11Ve-23) MV strain and identified amino acid substitutions R516G, E271K, D439E and G464W (D439E/G464W), N481Y/H495R, and Y187H/L204F in the nucleocapsid, V, fusion (F), hemagglutinin (H), and large proteins, respectively. Expression of mutated H and F proteins from cDNA revealed that the H495R substitution, in addition to N481Y, in the H protein was necessary for the wild-type H protein to use CD46 efficiently as a receptor and that the G464W substitution in the F protein was important for enhanced cell-cell fusion. Recombinant wild-type MV strains harboring the F protein with the mutations D439E/G464W [F(D439E/G464W)] and/or H(N481Y/H495R) protein revealed that both mutated F and H proteins were required for efficient syncytium formation and virus growth in Vero cells. Interestingly, a recombinant wild-type MV strain harboring the H(N481Y/H495R) protein penetrated slowly into Vero cells, while a recombinant wild-type MV strain harboring both the F(D439E/G464W) and H(N481Y/H495R) proteins penetrated efficiently into Vero cells, indicating that the F(D439E/G464W) protein compensates for the inefficient penetration of a wild-type MV strain harboring the H(N481Y/H495R) protein. Thus, the F and H proteins synergistically function to ensure efficient wild-type MV growth in Vero cells.Measles virus (MV), which belongs to the genus Morbillivirus in the family Paramyxoviridae, is an enveloped virus with a nonsegmented negative-strand RNA genome. The MV genome encodes six structural proteins: the nucleocapsid (N), phosphoprotein (P), matrix (M), fusion (F), hemagglutinin (H), and large (L) proteins. The P gene also encodes two other accessory proteins, the C and V proteins. The C protein is translated from an alternative translational initiation site leading a different reading frame, and the V protein is synthesized from an edited mRNA. MV has two envelope glycoproteins, the F and H proteins. The former is responsible for envelope fusion, and the latter is responsible for receptor binding (12).Wild-type MV strains isolated in B95a cells and laboratory-adapted MV strains have distinct phenotypes (18). Wild-type MV strains can grow in B95a cells but not in Vero cells, while laboratory-adapted MV strains can grow in both B95a and Vero cells. Wild-type MV strains do not cause hemadsorption (HAd) in African green monkey red blood cells (AGM-RBC), while most of laboratory-adapted MV strains cause HAd. Importantly, wild-type MV strains are pathogenic and induce clinical signs that resemble human measles in experimentally infected monkeys while laboratory-adapted MV strains do not.One approach to identify amino acid substitutions responsible for these phenotypic differences is the comparison of a wild-type MV strain with a standard laboratory-adapted MV strain such as the Edmonston strain. With regard to the H protein, amino acid substitutions important for HAd activity and cell-cell fusion in tissue culture cells were identified by expressing the H proteins in mammalian cells (15, 21). Recently, Tahara et al. revealed that the M, H, and L proteins are responsible for efficient growth in Vero cells by constructing a series of recombinant viruses in which part of the genome of the wild-type MV was replaced with the corresponding sequences of the Edmonston strain (45, 46, 47).Another approach is the comparison of wild-type MV strains with their Vero cell-adapted MV strains. It was reported that Vero cell-adapted MV strains could be obtained by successive blind passages of wild-type MV strains in Vero cells (18, 24, 30, 43). Interestingly, in vivo and in vitro phenotypes of Vero cell-adapted MV strains were similar to those of laboratory-adapted standard MV strains (18, 19, 24, 30, 43). Comparison of the complete nucleotide sequences of the genomes of wild-type MV strains with those of Vero cell-adapted wild-type MV strains revealed amino acid substitutions in the P, C, V, M, H, and L proteins (27, 42, 48, 53).At present, these phenotypic differences are explained mainly by the receptor usage of MV. Wild-type MV strains can use signaling lymphocyte activation molecule (SLAM; also called CD150) but not CD46 as a cellular receptor, whereas laboratory-adapted MV strains can use both SLAM and CD46 as cellular receptors (7, 10, 16, 29, 56, 60).However, receptor usage per se cannot explain all of the phenotypic differences (20, 25, 48, 53). For example, recombinant Edmonston strains expressing wild-type H proteins can grow in Vero cells to some extent (17, 54). Several reports suggested the presence of the third MV receptor on Vero cells (14, 44, 54, 60). Other reports indicated the contribution of the M protein on cell-cell fusion and growth of MV in Vero cells (4, 27, 47). Recently, the unidentified epithelial cell receptor for MV was predicted in primary culture of human cells (1, 55) and several epithelial cell lines (23, 51). However, the identity of the third receptor on Vero cells and the unidentified epithelial cell receptor is not clear yet. Thus, the mechanism of Vero cell adaptation of wild-type MV is not completely understood.In order to understand the molecular mechanism of these phenotypic changes of wild-type MV strains during adaptation in Vero cells, we determined the complete nucleotide sequences of the genomes of the wild-type (T11wild) and its Vero cell-adapted (T11Ve-23) MV strains (43) and examined the effect of individual amino acid substitutions using a mammalian cell expression system and reverse genetics. We show here that previously unrecognized new amino acid substitutions in the H and F proteins are important for MV adaptation and HAd activity.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
The coronavirus nucleocapsid protein (N), together with the large, positive-strand RNA viral genome, forms a helically symmetric nucleocapsid. This ribonucleoprotein structure becomes packaged into virions through association with the carboxy-terminal endodomain of the membrane protein (M), which is the principal constituent of the virion envelope. Previous work with the prototype coronavirus mouse hepatitis virus (MHV) has shown that a major determinant of the N-M interaction maps to the carboxy-terminal domain 3 of the N protein. To explore other domain interactions of the MHV N protein, we expressed a series of segments of the MHV N protein as fusions with green fluorescent protein (GFP) during the course of viral infection. We found that two of these GFP-N-domain fusion proteins were selectively packaged into virions as the result of tight binding to the N protein in the viral nucleocapsid, in a manner that did not involve association with either M protein or RNA. The nature of each type of binding was further explored through genetic analysis. Our results defined two strongly interacting regions of the N protein. One is the same domain 3 that is critical for M protein recognition during assembly. The other is domain N1b, which corresponds to the N-terminal domain that has been structurally characterized in detail for two other coronaviruses, infectious bronchitis virus and the severe acute respiratory syndrome coronavirus.The assembly of coronaviruses is driven principally by homotypic and heterotypic interactions between the two most abundant virion proteins, the membrane protein (M) and the nucleocapsid protein (N) (14, 32). The M protein is a triple-spanning transmembrane protein residing in the virion envelope, which is derived from the cellular budding site, the endoplasmic reticulum-Golgi intermediate compartment. More than half of the M molecule, its carboxy-terminal endodomain, is situated in the interior of the virion, where it contacts the nucleocapsid (46, 50). Also found in the virion envelope is the spike protein (S), which, although crucial for viral infectivity, is not an essential participant in assembly. The other canonical component of the coronavirus envelope is the small envelope protein (E), the function of which is enigmatic. Some evidence suggests that the E protein does not make sequence-specific contacts with other viral proteins (27) but instead functions by modifying the budding compartment, perhaps as an ion channel (56, 57). Alternatively, or additionally, E could act in a chaperone-like fashion to facilitate homotypic interactions between M protein monomers or oligomers (4).The N protein is the only protein constituent of the helically symmetric nucleocapsid, which is located in the interior of the virion. Coronavirus N proteins are largely basic phosphoproteins that share a moderate degree of homology across all three of the phylogenetic groups within the family (29). Some time ago, we proposed a model that pictured the N protein as comprising three domains separated by two spacers (A and B) (40). This arrangement was originally inferred from a sequence comparison of the N genes of multiple strains of the prototypical group 2 coronavirus, mouse hepatitis virus (MHV), and its validity seemed to be reinforced by numerous sequences that later became available. Part of this model, the delineation of spacer B and the acidic, carboxy-terminal domain 3, has been well supported by subsequent work (22, 25, 41, 42). However, a wealth of recent, detailed structural studies of bacterially expressed domains of the N proteins of the severe acute respiratory syndrome coronavirus (SARS-CoV) and of infectious bronchitis virus (IBV) has much more precisely mapped boundaries within the remainder of the N molecule (8, 16, 21, 23, 47, 51, 60). The latter studies have shown that the N protein contains two independently folding domains, designated the N-terminal domain (NTD) and the C-terminal domain (CTD). It should be pointed out that this nomenclature can be misleading: the NTD does not contain the amino terminus of the protein, and the CTD does not contain the carboxy terminus of the protein. Specifically, the CTD does not include spacer B and domain 3. The NTD and the CTD are separated by an intervening serine- and arginine-rich region; this region was previously noted to resemble the SR domains of splicing factors (42), and it has recently been shown to be intrinsically disordered (6, 7).In the assembled virion, the three known partners of the N protein are the M protein, the genomic RNA, and other copies of the N protein itself. We have sought to develop genetic and molecular biological methods that will begin to elucidate the varied ways in which the N molecule interacts during MHV infection. We previously found that the fusion of N protein domain 3 to a heterologous marker, green fluorescent protein (GFP), results in incorporation of GFP into virions (22). In the present study, we similarly fused each of the individual domains of N to GFP, and we thereby uncovered two strong modes of N protein-N protein interaction that likely contribute to virion architecture.  相似文献   

13.
14.
15.
Stable assembly of murine cytomegalovirus (MCMV) virions in differentiated macrophages is dependent upon the expression of US22 family gene M140. The M140 protein (pM140) exists in complex with products of neighboring US22 genes. Here we report that pM140 protects its binding partner, pM141, from ubiquitin-independent proteasomal degradation. Protection is conferred by a stabilization domain mapping to amino acids 306 to 380 within pM140, and this domain is functionally independent from the region that confers binding of pM140 to pM141. The M140 protein thus contains multiple domains that collectively confer a structure necessary to function in virion assembly in macrophages.Murine cytomegalovirus (MCMV) US22 family genes M36, M139, M140, and M141 promote efficient replication of the virus in macrophages (1, 8, 12, 17). The M139, M140, and M141 genes are clustered within the MCMV genome and appear to function cooperatively (10, 12). During infection, the protein M140 (pM140) forms a stable complex with pM141, and one or more larger complexes are formed by the addition of M139 gene products (15). Although these complexes are evident in infected fibroblasts as well as macrophages, they are required for optimal MCMV replication selectively in macrophages (1, 17). In the absence of M140, virion assembly in macrophages is defective, likely due to the reduced levels of the major capsid protein and tegument protein M25 (11). pM140 also confers stability to its binding partner, pM141; in the absence of the M140 gene, the half-life of pM141 is reduced from 2 h to 1 h (12). Deletion of M141 compromises virus replication in macrophages (12), and pM141 directs pM140 to a perinuclear region of infected macrophages adjacent to an enlarged microtubule organizing center with characteristics of an aggresome (11, 15). Aggresomes are sites where proteins are targeted for degradation by either the proteasome or autophagy (3, 6, 19). We therefore hypothesized that complexing of pM141 to pM140 rescues pM141 from degradation by the proteasome and/or autophagy.  相似文献   

16.
17.
18.
19.
The respiratory syncytial virus (RSV) matrix (M) protein is localized in the nucleus of infected cells early in infection but is mostly cytoplasmic late in infection. We have previously shown that M localizes in the nucleus through the action of the importin β1 nuclear import receptor. Here, we establish for the first time that M''s ability to shuttle to the cytoplasm is due to the action of the nuclear export receptor Crm1, as shown in infected cells, and in cells transfected to express green fluorescent protein (GFP)-M fusion proteins. Specific inhibition of Crm1-mediated nuclear export by leptomycin B increased M nuclear accumulation. Analysis of truncated and point-mutated M derivatives indicated that Crm1-dependent nuclear export of M is attributable to a nuclear export signal (NES) within residues 194 to 206. Importantly, inhibition of M nuclear export resulted in reduced virus production, and a recombinant RSV carrying a mutated NES could not be rescued by reverse genetics. That this is likely to be due to the inability of a nuclear export deficient M to localize to regions of virus assembly is indicated by the fact that a nuclear-export-deficient GFP-M fails to localize to regions of virus assembly when expressed in cells infected with wild-type RSV. Together, our data suggest that Crm1-dependent nuclear export of M is central to RSV infection, representing the first report of such a mechanism for a paramyxovirus M protein and with important implications for related paramyxoviruses.The Pneumovirus respiratory syncytial virus (RSV) within the Paramyxoviridae family is the most common cause of lower-respiratory-tract disease in infants (7). The negative-sense single-strand RNA genome of RSV encodes two nonstructural and nine structural proteins, comprising the envelope glycoproteins (F, G, and SH), the nucleocapsid proteins (N, P, and L), the nucleocapsid-associated proteins (M2-1 and M2-2), and the matrix (M) protein (1, 7, 11). Previously, we have shown that M protein localizes in the nucleus at early stages of infection, but later in infection it is localized mainly in the cytoplasm, in association with nucleocapsid-containing cytoplasmic inclusions (13, 16). The M proteins of other negative-strand viruses, such as Sendai virus, Newcastle disease virus, and vesicular stomatitis virus (VSV), have also been observed in the nucleus at early stages of infection (32, 40, 48). Interestingly, the M proteins of all of these viruses, including RSV, play major roles in virus assembly, which take place in the cytoplasm and at the cell membrane (11, 12, 24, 34, 36, 39), but the mechanisms by which trafficking between the nucleus and cytoplasm occurs are unknown.The importin β family member Crm1 (exportin 1) is known to mediate nuclear export of proteins bearing leucine-rich nuclear export signals (NES) (8, 9, 18, 19, 37, 42, 43), such as the human immunodeficiency virus type 1 Rev protein (4). In the case of the influenza virus matrix (M1) protein, binding to the influenza virus nuclear export protein, which possesses a Crm1-recognized NES, appears to be responsible for its export from the nucleus, bound to the influenza virus RNA (3).We have recently shown that RSV M localizes in the nucleus through a conventional nuclear import pathway dependent on the nuclear import receptor importin β1 (IMPβ1) and the guanine nucleotide-binding protein Ran (14). In the present study, we show for the first time that RSV M possesses a Crm1-dependent nuclear export pathway, based on experiments using the specific inhibitor leptomycin B (LMB) (25), both in RSV-infected cells and in green fluorescent protein (GFP)-M fusion protein-expressing transfected cells. We use truncated and point-mutated M derivatives to map the Crm1-recognized NES within the M sequence and show that Crm1-dependent nuclear export is critical to the RSV infectious cycle, since LMB treatment early in infection, inhibiting M export from the nucleus, reduces RSV virion production and a recombinant RSV carrying a NES mutation in M was unable to replicate, probably because M deficient in nuclear export could not localize to areas of virus assembly, as shown in RSV-infected cells transfected to express GFP-M. This is the first report of a Crm1-mediated nuclear export pathway for a paramyxovirus M protein, with implications for the trafficking and function of other paramyxovirus M proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号