首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several components of mitogen-activated protein kinase (MAPK) cascades have been identified in higher plants and have been implicated in cellular responses to a wide variety of abiotic and biotic stimuli. Our recent work has demonstrated that a MAP kinase cascade is involved in the regulation of cytokinesis in plant cells. The MAP kinase cascade in tobacco includes NPK1 MAPK kinase kinase, NQK1 MAPK kinase, and NRK1 MAPK, and its activation is triggered by the binding of NACK1/2 kinesin-like protein to the NPK1 MAPK kinase kinase at the late M-phase of the cell cycle. We refer to this cascade as the NACK-PQR pathway. In this review, we introduce a mechanism for the regulation of plant cytokinesis, focusing on the role of the NACK-PQR pathway.  相似文献   

2.
The tobacco mitogen-activated protein kinase kinase kinase NPK1 regulates lateral expansion of the cell plate at cytokinesis. Here, we show that the kinesin-like proteins NACK1 and NACK2 act as activators of NPK1. Biochemical analysis suggests that direct binding of NACK1 to NPK1 stimulates kinase activity. NACK1 is accumulated specifically in M phase and colocalized with NPK1 at the phragmoplast equator. Overexpression of a truncated NACK1 protein that lacks the motor domain disrupts NPK1 concentration at the phragmoplast equator and cell plate formation. Incomplete cytokinesis is also observed when expression of NACK1 and NACK2 is repressed by virus-induced gene silencing and in embryonic cells from Arabidopsis mutants in which a NACK1 ortholog is disrupted. Thus, we conclude that expansion of the cell plate requires NACK1/2 to regulate the activity and localization of NPK1.  相似文献   

3.
Stressing the role of MAP kinases in mitogenic stimulation   总被引:1,自引:0,他引:1  
In yeast and animal cells, distinct subfamilies of mitogen-activated protein kinases (MAPKs) have evolved for transmitting different types of signals, such as the extracellular signal-regulated kinase (ERK) for mitogenic stimuli and differentiation, p38 and JUN kinase (JNK) for stress factors. Based on sequence analysis, the presently known plant MAPKs are most similar to ERKs, even though compelling evidence implies a role in various forms of biotic and abiotic stress responses. However, knowledge of their involvement in controlling proliferation is just emerging. A subgroup of the plant MAPKs, containing the alfalfa MMK3 and tobacco NTF6, are only active in mitotic cells and their localisation to the cell plate suggests a role in cytokinesis. An upstream regulator of MAPKs, the tobacco NPK1, appears to be also activated during mitosis. NPK1 might be associated and regulated by a microtubule motor protein. The localisation of NPK1 to the cell plate and its mitosis-specific activation suggest that together with NTF6 it could constitute a mitotic MAPK signalling module in tobacco. NPK1 appears to have a second role in repression of auxin-induced gene expression. MAPKs might also be involved in signalling within the meristems as suggested by the recruitement of a small G-protein to the CLAVATA 1 receptor-like protein kinase upon activation. In animal and yeast cells some of the small G-proteins relay signals from receptors to MAPK pathways.  相似文献   

4.
A cDNA (cNPK2) that encodes a protein of 518 amino acids was isolated from a library prepared from poly(A)+ RNAs of tobacco cells in suspension culture. The N-terminal half of the predicted NPK2 protein is similar in amino acid sequence to the catalytic domains of kinases that activate mitogen-activated protein kinases (designated here MAPKKs) from various animals and to those of yeast homologs of MAPKKs. The N-terminal domain of NPK2 was produced as a fusion protein in Escherichia coli, and the purified fusion protein was found to be capable of autophosphorylation of threonine and serine residues. These results indicate that the N-terminal domain of NPK2 has activity of a serine/threonine protein kinase. Southern blot analysis showed that genomic DNAs from various plant species, including Arabidopsis thaliana and sweet potato, hybridized strongly with cNPK2, indicating that these plants also have genes that are closely related to the gene for NPK2. The structural similarity between the catalytic domain of NPK2 and those of MAPKKs and their homologs suggests that tobacco NPK2 corresponds to MAPKKs of other organisms. Given the existence of plant homologs of an MAP kinase and tobacco NPK1, which is structurally and functionally homologous to one of the activator kinases of yeast homologs of MAPKK (MAPKKKs), it seems likely that a signal transduction pathway mediated by a protein kinase cascade that is analogous to the MAP kinase cascades proposed in yeasts and animals, is also conserved in plants.  相似文献   

5.
Mitogen-activated protein kinase (MAPK) cascades are rapidly activated upon plant recognition of invading pathogens. Here, we describe the use of virus-induced gene silencing (VIGS) to study the role of candidate plant MAP kinase kinase kinase (MAPKKK) homologs of human MEKK1 in pathogen-resistance pathways. We demonstrate that silencing expression of a tobacco MAPKKK, Nicotiana Protein Kinase 1 (NPK1), interferes with the function of the disease-resistance genes N, Bs2, and Rx, but does not affect Pto- and Cf4-mediated resistance. Further, NPK1-silenced plants also exhibit reduced cell size, defective cytokinesis, and an overall dwarf phenotype. Our results provide evidence that NPK1 functions in the regulation of N-, Bs2-, and Rx-mediated resistance responses and may play a role in one or more MAPK cascades, regulating multiple cellular processes.  相似文献   

6.
MAPK级联途径调控植物细胞胞质分裂   总被引:1,自引:0,他引:1  
胞质分裂(cytokinesis)是细胞分裂的最后关键一步,产生2个含有完整的遗传物质和胞质细胞器的子细胞.植物胞质分裂包括细胞板的形成,这一过程是在成膜体的牵引下由一些植物特有的步骤完成的.促分裂原活化蛋白激酶(MAPK)级联途径在真核生物中是高度保守的,由MAPKs,MAPKKs,MAPKKKs组成,通过MAPKKK→ MAPKK → MAPK的逐级磷酸化传递细胞信号.近来的研究表明, NACK-MAPKKK→MAPKK→MAPK→MAP65构成的信号途径调控植物细胞的胞质分裂.本文就这一信号途径,总结了植物胞质分裂机制的研究进展,并对其中的问题进行了讨论与展望.  相似文献   

7.
Mitogen-activated protein kinase (MAPK) cascades consist ofmembers of three families of protein kinases: the MAPK family,the MAPK kinase family, and the MAPK kinase kinase (MAPKKK)family. Some of these cascades have been shown to play centralroles in the transmission of signals that control various cellularprocesses including cell proliferation. Protein kinase NPK1is a structural and functional tobacco homologue of MAPKKK,but its physiological function is yet unknown. In the presentstudy, we have investigated sites of expression of the NPK1gene in a tobacco plant and developmental and physiologicalcontrols of this expression. After germination, expression ofNPK1 was first detected in tips of a radicle and cotyledons,then in shoot and root apical meristems, surrounding tissuesof the apical meristems, primordia of lateral roots, and youngdeveloping organs. No expression was, however, observed in matureorgans. Incubation of discs from mature leaves of tobacco withboth auxin and cytokinin induced NPK1 expression before thedivision of cells. It was also induced at early stages of thedevelopment of primordia of lateral roots and adventitious roots.Thus, NPK1 expression appears to be tightly correlated withcell division or division competence. Even when an inhibitorof DNA synthesis was added during the germination or the inductionof lateral roots by auxin, NPK1 expression was detected. Theseresults showed that the NPK1 expression precedes DNA replication.We propose that NPK1 participates in a process involving thedivision of plant cells. (Received January 26, 1998; Accepted April 9, 1998)  相似文献   

8.
Cytokinesis involves temporally and spatially coordinated action of the cell cycle and cytoskeletal and membrane systems to achieve separation of daughter cells. To dissect cytokinesis mechanisms it would be useful to have a complete catalog of the proteins involved, and small molecule tools for specifically inhibiting them with tight temporal control. Finding active small molecules by cell-based screening entails the difficult step of identifying their targets. We performed parallel chemical genetic and genome-wide RNA interference screens in Drosophila cells, identifying 50 small molecule inhibitors of cytokinesis and 214 genes important for cytokinesis, including a new protein in the Aurora B pathway (Borr). By comparing small molecule and RNAi phenotypes, we identified a small molecule that inhibits the Aurora B kinase pathway. Our protein list provides a starting point for systematic dissection of cytokinesis, a direction that will be greatly facilitated by also having diverse small molecule inhibitors, which we have identified. Dissection of the Aurora B pathway, where we found a new gene and a specific small molecule inhibitor, should benefit particularly. Our study shows that parallel RNA interference and small molecule screening is a generally useful approach to identifying active small molecules and their target pathways.  相似文献   

9.
The tobaccoNPK1 gene encodes a homolog of mitogenactivated protein kinase kinase kinases. We have recently identified tobacco kinesin-like proteins (NACK1/2) as activators for NPK1. Immunochemical analyses of NPK1 and NACK1 proteins suggest that NPK1 is involved in the regulation of some process in the M phase of the plant cell cycle. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Frontier of Plant Biology”  相似文献   

10.
The Drosophila gene polo encodes a conserved protein kinase known to be required to organize spindle poles and for cytokinesis. Here we report two strongly hypomorphic mutations of polo that arrest cells of the larval brain at a point in metaphase when the majority of sister kinetochores have separated by between 20-50% of the total spindle length in intact cells. In contrast, analysis of sister chromatid separation in squashed preparations of cells indicates that some 83% of sisters remain attached. This suggests the separation seen in intact cells requires the tension produced by a functional spindle. The point of arrest corresponds to the spindle integrity checkpoint; Bub1 protein and the 3F3/2 epitope are present on the separated kinetochores and the arrest is suppressed by a bub1 mutation. The mutant mitotic spindles are anastral and have assembled upon centrosomes that are associated with Centrosomin and the abnormal spindle protein (Asp), but neither with gamma-tubulin nor CP190. We discuss roles for Polo kinase in recruiting centrosomal proteins and in regulating progression through the metaphase-anaphase checkpoint.  相似文献   

11.
EVI5 has been shown to be a novel centrosomal protein in interphase cells. In this report, we demonstrate using immunofluorescence microscopy that EVI5 has a dynamic distribution during mitosis, being associated with the mitotic spindle through anaphase and remaining within the midzone and midbody until completion of cytokinesis. Knockdown of EVI5 using siRNA results in a multinucleate phenotype, which is consistent with an essential role for this protein in the completion of cytokinesis. The EVI5 protein also undergoes posttranslational modifications during the cell cycle, which involve phosphorylation in early mitosis and proteolytic cleavage during late mitosis and cytokinesis. Since the subcellular distribution of the EVI5 protein was similar to that characteristic of chromosomal passenger proteins during the terminal stages of cytokinesis, we used immunoprecipitation and GST pull-down approaches to demonstrate that EVI5 is associated with the aurora B kinase protein complex (INCENP, aurora B kinase and survivin). Together, these data provide evidence that EVI5 is an essential component of the protein machinery facilitating the final stages of cell septation at the end of mitosis.  相似文献   

12.
Casein kinase 1 protein kinases are ubiquitous and abundant Ser/Thr-specific protein kinases with activity on acidic substrates. In yeast, the products of the redundant YCK1 and YCK2 genes are together essential for cell viability. Mutants deficient for these proteins display defects in cellular morphogenesis, cytokinesis, and endocytosis. Yck1p and Yck2p are peripheral plasma membrane proteins, and we report here that the localization of Yck2p within the membrane is dynamic through the cell cycle. Using a functional green fluorescent protein (GFP) fusion, we have observed that Yck2p is concentrated at sites of polarized growth during bud morphogenesis. At cytokinesis, GFP-Yck2p becomes associated with a ring at the bud neck and then appears as a patch of fluorescence, apparently coincident with the dividing membranes. The bud neck association of Yck2p at cytokinesis does not require an intact septin ring, and septin assembly is altered in a Yck-deficient mutant. The sites of GFP-Yck2p concentration and the defects observed for Yck-deficient cells together suggest that Yck plays distinct roles in morphogenesis and cytokinesis that are effected by differential localization.  相似文献   

13.
Dynamin and dynamin-like proteins are GTP-binding proteins involved in vesicle trafficking. In soybean, a 68-kD dynamin-like protein called phragmoplastin has been shown to be associated with the cell plate in dividing cells (Gu and Verma, 1996). Five ADL1 genes encoding dynamin-like proteins related to phragmoplastin have been identified in the completed Arabidopsis genome. Here we report that ADL1Ap is associated with punctate subcellular structures and with the cell plate in dividing cells. To assess the function of ADL1Ap we utilized a reverse genetic approach to isolate three separate Arabidopsis mutant lines containing T-DNA insertions in ADL1A. Homozygous adl1A seeds were shriveled and mutant seedlings arrested soon after germination, producing only two leaf primordia and severely stunted roots. Immunoblotting revealed that ADL1Ap expression was not detectable in the mutants. Despite the loss of ADL1Ap, the mutants did not display any defects in cytokinesis, and growth of the mutant seedlings could be rescued in tissue culture by the addition of sucrose. Although these sucrose-rescued plants displayed normal vegetative growth and flowered, they set very few seeds. Thus, ADL1Ap is critical for several stages of plant development, including embryogenesis, seedling development, and reproduction. We discuss the putative role of ADL1Ap in vesicular trafficking, cytokinesis, and other aspects of plant growth.  相似文献   

14.
TD-60 and INCENP are two members of the chromosome passenger protein family, and each has been suggested to play a role in the control of cytokinesis. Here we demonstrate by confocal immunofluorescence microscopy that TD-60 and INCENP distribute identically throughout the cell cycle. Both appear coordinately in G2-phase nuclei and become concentrated at centromeres during prophase. TD-60 and INCENP both then leave the chromosome together during anaphase and redistribute to the spindle midzone, as do other chromosome passenger proteins, and traverse the entire equatorial diameter from cortex to cortex. By image overlay and pixel count analysis we show that TD-60 and INCENP are distinct among known chromosome passenger proteins in extending beyond the spindle to the cortex. Further, we show that the cytokinesis-associated protein kinase AIM-1 also shares this distribution property. We suggest that this redistribution is required to signal cytokinesis. TD-60 and INCENP also show identical localization in cells that exit mitosis in the presence of dihydrocytochalasin B (DCB), an inhibitor of actin assembly. Such cells can resume cleavage upon removal of DCB and in a recovery subpopulation that cleaves only on one side, these proteins both colocalize to the cortex only where a cleavage furrow forms. Given the coincident distribution of TD-60 and INCENP during both interphase and mitosis, we suggest that these proteins may cooperate, perhaps within a protein complex, in signalling cytokinesis. Such a mechanism, using chromosome passenger proteins, may ensure that cytokinesis occurs only between the separated chromatids, and only after they have segregated. Received: 12 August 1998; in revised form: 1 September 1998 / Accepted: 2 September 1998  相似文献   

15.
16.
Dividing plant cells perform a remarkable task of building a new cell wall within the cytoplasm in a few minutes. A long-standing paradigm claims that this primordial cell wall, known as the cell plate, is generated by delivery of newly synthesized material from Golgi apparatus-originated secretory vesicles. Here, we show that, in diverse plant species, cell surface material, including plasma membrane proteins, cell wall components, and exogenously applied endocytic tracers, is rapidly delivered to the forming cell plate. Importantly, this occurs even when de novo protein synthesis is blocked. In addition, cytokinesis-specific syntaxin KNOLLE as well as plasma membrane (PM) resident proteins localize to endosomes that fuse to initiate the cell plate. The rate of endocytosis is strongly enhanced during cell plate formation, and its genetic or pharmacological inhibition leads to cytokinesis defects. Our results reveal that endocytic delivery of cell surface material significantly contributes to cell plate formation during plant cytokinesis.  相似文献   

17.
Proteins related to the phosphoinositide-dependent protein kinase family have been identified in the majority of eukaryotes. Although much is known about upstream mechanisms that regulate the PDK1-family of kinases in metazoans, how these kinases regulate cell growth and division remains unclear. Here, we characterize a fission yeast protein related to members of this family, which we have termed Pdk1p. Pdk1p localizes to the spindle pole body and the actomyosin ring in early mitotic cells. Cells deleted for pdk1 display multiple defects in mitosis and cytokinesis, all of which are exacerbated when the function of fission yeast polo kinase, Plo1p, is partially compromised. We conclude that Pdk1p functions in concert with Plo1p to regulate multiple processes such as the establishment of a bipolar mitotic spindle, transition to anaphase, placement of the actomyosin ring and proper execution of cytokinesis. We also present evidence that the effects of Pdk1p on cytokinesis are likely mediated via the fission yeast anillin-related protein, Mid1p, and the septation initiation network.  相似文献   

18.
真核细胞的内吞和分泌途径中蛋白质和脂类的运输主要由膜泡运输介导。参与膜泡运输的蛋白质家族包括SNARE蛋白家族、RAB蛋白家族、被膜蛋白复合体、Sec1蛋白家族、Arf蛋白家族。这些蛋白质家族在进化中高度保守,并且在植物中已经鉴定了许多哺乳动物和酵母蛋白的同源物。近年来一些研究发现这些蛋白质不仅仅调节植物细胞的膜泡运输,还影响植物的许多生理活动和功能,例如向重性生长、胞质分裂、激素极性运输、气孔运动以及抗病性等。现主要阐述迄今在植物中研究这五类蛋白质家族功能的最新进展。  相似文献   

19.
Higher plants have evolved specific mechanisms for partitioning the cytoplasm of dividing cells. In the predominant mode of phragmoplast-assisted cytokinesis, a cell wall and flanking plasma membranes are made de novo from a transient membrane compartment, the cell plate, which in turn forms by vesicle fusion from the centre to the periphery of the dividing cell. Other modes of cytokinesis appear to occur in meiotic cells and developing gametophytes. Here we review recent progress in the analysis of plant cytokinesis, focusing on genetic studies in Arabidopsis which are beginning to identify structural and regulatory components of phragmoplast-assisted cytokinesis. Two classes of mutations have been described. In one class, the defects appear to be confined to cell plate formation, suggesting that the execution of cytokinesis is specifically affected. Mutations in the other class display more general defects in cell division. We also discuss possible roles of proteins that have been localised in cytokinetic cells but not characterised genetically. Finally, mutations affecting meiotic or gametophytic cell divisions suggest that mechanistically different modes of cytokinesis occur in higher plants.  相似文献   

20.
JADE1 belongs to a small family of PHD zinc finger proteins that interacts with histone acetyl transferase (HAT) HBO1 and is associated with chromatin. We recently reported JADE1 chromatin shuttling and phosphorylation during G2/M to G1 transition, which was sensitive to Aurora A inhibition. In the current study we examined mechanisms of the cell cycle regulation by the small isoform of JADE1 protein, JADE1S, and report data showing that JADE1S has a novel function in the regulation of cytokinesis. Using FACS assays, we show that, JADE1S depletion facilitated rates of G1-cells accumulation in synchronously dividing HeLa cell cultures. Depletion of JADE1S protein in asynchronously dividing cells decreased the proportion of cytokinetic cells, and increased the proportion of multi-nuclear cells, indicative of premature and failed cytokinesis. In contrast, moderate overexpression of JADE1S increased the number of cytokinetic cells in time- and dose- dependent manner, indicating cytokinetic delay. Pharmacological inhibition of Aurora B kinase resulted in the release of JADE1S-mediated cytokinetic delay and allowed progression of abscission in cells over-expressing JADE1S. Finally, we show that JADE1S protein localized to centrosomes in interphase and mitotic cells, while during cytokinesis JADE1S localized to the midbody. Neither JADE1L nor partner of JADE1, HAT HBO1 was localized to the centrosomes or midbodies. Our study identifies the novel role for JADE1S in regulation of cytokinesis and suggests function in Aurora B kinase-mediated cytokinesis checkpoint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号