首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Human telomeric DNA composed of (TTAGGG/CCCTAA)n repeats may form a classical Watson-Crick double helix. Each individual strand is also prone to quadruplex formation: the G-rich strand may adopt a G-quadruplex conformation involving G-quartets whereas the C-rich strand may fold into an i-motif based on intercalated C*C+ base pairs. Using an equimolar mixture of the telomeric oligonucleotides d[AGGG(TTAGGG)3] and d[(CCCTAA)3CCCT], we defined which structures existed and which would be the predominant species under a variety of experimental conditions. Under near-physiological conditions of pH, temperature and salt concentration, telomeric DNA was predominantly in a double-helix form. However, at lower pH values or higher temperatures, the G-quadruplex and/or the i-motif efficiently competed with the duplex. We also present kinetic and thermodynamic data for duplex association and for G-quadruplex/i-motif unfolding.  相似文献   

2.
We have created a hybrid i-motif composed of two DNA and two peptide nucleic acid (PNA) strands from an equimolar mixture of a C-rich DNA and analogous PNA sequence. Nano-electrospray ionization mass spectrometry confirmed the formation of a tetrameric species, composed of PNA–DNA heteroduplexes. Thermal denaturation and CD experiments revealed that the structure was held together by C-H+-C base pairs. High resolution NMR spectroscopy confirmed that PNA and DNA form a unique complex comprising five C-H+-C base pairs per heteroduplex. The imino protons are protected from D2O exchange suggesting intercalation of the heteroduplexes as seen in DNA4 i-motifs. FRET established the relative DNA and PNA strand polarities in the hybrid. The DNA strands were arranged antiparallel with respect to one another. The same topology was observed for PNA strands. Fluorescence quenching revealed that both PNA–DNA parallel heteroduplexes are intercalated, such that both DNA strands occupy one of the narrow grooves. H1′–H1′ NOEs show that both heteroduplexes are fully intercalated and that both DNA strands are disposed towards a narrow groove, invoking sugar–sugar interactions as seen in DNA4 i-motifs. The hybrid i-motif shows enhanced thermal stability, intermediate pH dependence and forms at relatively low concentrations making it an ideal nanoscale structural element for pH-based molecular switches. It also serves as a good model system to assess the contribution of sugar–sugar contacts in i-motif tetramerization.  相似文献   

3.
The RNA i-motif     
Oligodeoxynucleotides with stretches of cytidine residues associate into a four-stranded structure, the i-motif, in which two head-to-tail, intercalated, parallel-stranded duplexes are held together by hemiprotonated C.C+ pairs. We have investigated the possibility of forming an i-motif structure with C-rich ribonucleic acids. The four C-rich RNAs studied, r(UC5), r(C5), r(C5U) and r(UC3), associate into multiple intercalated structures at acidic pH. r(UC5) forms two i-motif structures that differ by their intercalation topologies. We report on a structural study of the main form and we analyze the small conformational differences found by comparison with the DNA i-motif. The stacking topology of the main structure avoids one of the six 2'-OH/2'-OH repulsive contacts expected in a fully intercalated structure. The C3'-endo pucker of the RNA sugars and the orientation of the intercalated C.C+ pairs result in a modest widening of the narrow grooves at the steps where the hydroxyl groups are in close contact. The free energy of the RNA i-motif, on average -4 kJ mol(-1) per C.C+ pair, is half of the value found in DNA i-motif structures.  相似文献   

4.
5.
In the recently discovered i-motif, four stretches of cytosine form two parallel-stranded duplexes whose C.C+ base pairs are fully intercalated. The i-motif may be recognized by characteristic Overhauser cross-peaks of the proton NMR spectrum, reflecting short H1'-H1' distances across the minor groove, and short internucleotide amino-proton-H2'/H2" across the major groove. We report the observation of such cross-peaks in the spectra of a fragment of the C-rich telomeric strand of vertebrates, d[CCCTAA]3CCC. The spectra also demonstrate that the cytosines are base-paired and that proton exchange is very slow, as reported previously for the i-motif. From UV absorbance and gel chromatography measurements, we assign these properties to an i-motif which includes all or nearly all the cytosines, and which is formed by intramolecular folding at slightly acid or neutral pH. A fragment of telomeric DNA of Tetrahymena, d[CCCCAA]3CCCC, has the same properties. Hence four consecutive C stretches of a C-rich telomeric strand can fold into an i-motif. Hypothetically, this could occur in vivo.  相似文献   

6.

Background

An expansion of the hexanucleotide repeat (GGGGCC)n·(GGCCCC)n in the C9orf72 promoter has been shown to be the cause of Amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). The C9orf72 repeat can form four-stranded structures; the cationic porphyrin (TMPyP4) binds and distorts these structures.

Methods

Isothermal titration calorimetry (ITC), and circular dichroism (CD) were used to study the binding of TMPyP4 to the C-rich and G-rich DNA and RNA oligos containing the hexanucleotide repeat at pH 7.5 and 0.1?M?K+.

Results

The CD spectra of G-rich DNA and RNA TMPyP4 complexes showed features of antiparallel and parallel G-quadruplexes, respectively. The shoulder at 260?nm in the CD spectrum becomes more intense upon formation of complexes between TMPyP4 and the C-rich DNA. The peak at 290?nm becomes more intense in the c-rich RNA molecules, suggesting induction of an i-motif structure. The ITC data showed that TMPyP4 binds at two independent sites for all DNA and RNA molecules.

Conclusions

For DNA, the data are consistent with TMPyP4 stacking on the terminal tetrads and intercalation. For RNA, the thermodynamics of the two binding modes are consistent with groove binding and intercalation. In both cases, intercalation is the weaker binding mode. These findings are considered with respect to the structural differences of the folded DNA and RNA molecules and the energetics of the processes that drive site-specific recognition by TMPyP4; these data will be helpful in efforts to optimize the specificity and affinity of the binding of porphyrin-like molecules.  相似文献   

7.
Chakraborty S  Krishnan Y 《Biochimie》2008,90(7):1088-1095
We have constructed and characterized a long-lived hybrid DNA(2)-RNA(2) i-motif that is kinetically formed by mixing equivalent amount of C-rich RNA (R) and C-rich DNA (D). Circular dichroism shows that these hybrids are distinct from their parent DNA(4) or RNA(4) i-motif. pH dependent CD and UV thermal melting experiments showed that the complexes were maximally stable at pH 4.5, the pK(a) of cytosine, consistent with the complex being held by CH(+)-C base pairs. Fluorescence studies confirmed their tetrameric nature and established the relative strand polarities of the RNA and DNA strands in the complex. These showed that in a hybrid D(2)R(2) i-motif two DNA strands occupy one narrow groove and the two RNA strands occupy the other. This suggests that even the sugar-sugar interactions are highly specific. Interestingly, this hybrid slowly disproportionates into DNA(4) i-motifs and ssRNA which would be valuable to study intermediates in DNA(4) i-motif formation.  相似文献   

8.

Background

Expansion of the C9orf72 hexanucleotide repeat (GGGGCC)n·(GGCCCC)n is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Both strands of the C9orf72 repeat have been shown to form unusual DNA and RNA structures that are thought to be involved in mutagenesis and/or pathogenesis. We previously showed that the C-rich DNA strands from the C9orf72 repeat can form four-stranded quadruplexes at neutral pH. The cytosine residues become protonated under slightly acidic pH (pH?4.5–6.2), facilitating the formation of intercalated i-motif structures.

Methods

Using CD spectroscopy, UV melting, and gel electrophoresis, we demonstrate a pH-induced structural transition of the C-rich DNA strand of the C9orf72 repeat at pHs reported to exist in living cells under stress, including during neurodegeneration and cancer.

Results

We show that the repeats with lengths of 4, 6, and 8?units, form intercalated quadruplex i-motifs at low pH (pH?<?5) and monomolecular hairpins and monomolecular quadruplexes under neutral-basic conditions (pH?≥?8). Furthermore, we show that the human replication protein A (RPA) binds to the G-rich and C-rich DNA strands under acidic conditions, suggesting that it can bind to i-motif structures.

Conclusions

In the proper sequence context, i-motif structures can form at pH values found in some cells in vivo.

General significance

DNA conformational plasticity exists over broad range of solution conditions.  相似文献   

9.
i-Motifs are four-stranded DNA secondary structures which can form in sequences rich in cytosine. Stabilised by acidic conditions, they are comprised of two parallel-stranded DNA duplexes held together in an antiparallel orientation by intercalated, cytosine–cytosine+ base pairs. By virtue of their pH dependent folding, i-motif forming DNA sequences have been used extensively as pH switches for applications in nanotechnology. Initially, i-motifs were thought to be unstable at physiological pH, which precluded substantial biological investigation. However, recent advances have shown that this is not always the case and that i-motif stability is highly dependent on factors such as sequence and environmental conditions. In this review, we discuss some of the different i-motif structures investigated to date and the factors which affect their topology, stability and dynamics. Ligands which can interact with these structures are necessary to aid investigations into the potential biological functions of i-motif DNA and herein we review the existing i-motif ligands and give our perspective on the associated challenges with targeting this structure.  相似文献   

10.
The i-motif is a four-stranded structure formed by two intercalated parallel duplexes containing hemiprotonated C•C+ pairs. In order to describe the sequence of reactions by which four C-rich strands associate, we measured the formation and dissociation rates of three [TCn]4 tetramers (n = 3, 4 and 5), their dissociation constant and the reaction order for tetramer formation by NMR. We find that TCn association results in the formation of several tetramers differing by the number of intercalated C•C+ pairs. The formation rates of the fully and partially intercalated species are comparable but their lifetimes increase strongly with the number of intercalated C•C+ pairs, and for this reason the single tetramer detected at equilibrium is that with optimal intercalation. The tetramer half formation times vary as the power −2 of the oligonucleotide concentration indicating that the reaction order for i-motif formation is 3. This observation is inconsistent with a model supposing association of two preformed duplex and suggests that quadruplex formation proceeds via sequential strand association into duplex and triplex intermediate species and that triplex formation is rate limiting.  相似文献   

11.
Enrichment of four tandem repeats of guanine (G) rich and cytosine (C) rich sequences in functionally important regions of human genome forebodes the biological implications of four-stranded DNA structures, such as G-quadruplex and i-motif, that can form in these sequences. However, there have been few reports on the intramolecular formation of non-B DNA structures in less than four tandem repeats of G or C rich sequences. Here, using mechanical unfolding at the single-molecule level, electrophoretic mobility shift assay (EMSA), circular dichroism (CD), and ultraviolet (UV) spectroscopy, we report an intramolecularly folded non-B DNA structure in three tandem cytosine rich repeats, 5'-TGTC4ACAC4TGTC4ACA (ILPR-I3), in the human insulin linked polymorphic region (ILPR). The thermal denaturation analyses of the sequences with systematic C to T mutations have suggested that the structure is linchpinned by a stack of hemiprotonated cytosine pairs between two terminal C4 tracts. Mechanical unfolding and Br(2) footprinting experiments on a mixture of the ILPR-I3 and a 5'-C4TGT fragment have further indicated that the structure serves as a building block for intermolecular i-motif formation. The existence of such a conformation under acidic or neutral pH complies with the strand-by-strand folding pathway of ILPR i-motif structures.  相似文献   

12.
Parkinson GN  Ghosh R  Neidle S 《Biochemistry》2007,46(9):2390-2397
Maintenance of telomere integrity is a hallmark of human cancer, and the single-stranded 3' ends of telomeric DNA are targets for small-molecule anticancer therapies. We report here the crystal structure of a bimolecular human telomeric quadruplex, of the sequence d(TAGGGTTAGGG), in a complex with the quadruplex-binding ligand 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4) to a resolution of 2.09 A. The DNA quadruplex topology is parallel-stranded with external double-chain-reversal propeller loops, consistent with previous structural determinations. The porphyrin molecules bind by stacking onto the TTA nucleotides, either as part of the external loop structure or at the 5' region of the stacked quadruplex. This involves stacked on hydrogen-bonded base pairs, formed from those nucleotides not involved in the formation of G-tetrads, and there are thus no direct ligand interactions with G-tetrads. This is in accord with the relative nonselectivity by TMPyP4 for quadruplex DNAs compared to duplex DNA. Porphyrin binding is achieved by remodeling of loops compared to the ligand-free structures. Implications for the design of quadruplex-binding ligands are discussed, together with a model for the formation of anaphase bridges, which are observed following cellular treatment with TMPyP4.  相似文献   

13.
As part of our investigation of the i-motif, an intercalated structure formed by C-rich nucleic acid sequences, we searched for proteins of Saccharomyces cerevisiae which could associate with a sequence of the C-rich telomeric strand, d((CCCACA)(3)CCC). A gel retardation assay of yeast protein extract, in conditions where the DNA fragment folds into an intramolecular i-motif, shows formation of one major retarded band. The retarding factor was further characterized by a differential affinity procedure using streptavidin beads coated (or not coated) with the biotin-labeled DNA fragment. Differentially bound proteins were isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and identified by mass spectroscopy and Edman degradation as Imd2p, Imd3p and Imd4p. These highly similar (>95%) proteins are analogs of the two human NAD-dependent inosine 5'-monophosphate dehydrogenases (IMPDH) which occur as tetramers. The mass of the protein, as determined by gel exclusion chromatography, is about 250 kDa and is compatible with an IMPDH tetramer, but other compositions, involving non-IMPDH components, are not excluded. We note that the genes coding for Imd2p and Imd3p are located close to the telomere, and could therefore be subject to silencing by the telomere position effect.  相似文献   

14.
In this study, we synthesized an Azo-py phosphoramidite, featuring azobenzene and pyrene units, as a novel fluorescent and isomeric (trans- and cis-azobenzene units) material, which we incorporated in an i-motif DNA sequence. We then monitored the structural dynamics and changes in fluorescence as the modified DNA sequences transformed from single strands at pH 7 to i-motif quadruplex structures at pH 3. After incorporating Azo-py into the 4A loop position of an i-motif sequence, dramatic changes in fluorescence occurred as the DNA structures changed from single-strands to i-motif quadruplex structures. Interestingly, the cis form of Azo-py induced a more stable i-motif structure than did the trans form, as confirmed from circular dichroism spectra and melting temperature data. The absorption and fluorescence signals of these Azo-py-incorporated i-motif systems exhibited switchable and highly correlated signaling patterns. Such isomeric structures based on Azo-py might find potential applications in biology, where control over stable i-motif quadruplex structures might be performed with switchable fluorescence signaling.  相似文献   

15.
We studied the parameters of binding of 5,10,15,20-tetra-(N-methyl-3-pyridyl)porphyrin (TMPyP3) to the anti-parallel human telomeric G-quadruplex d(TTAGGG)4, the oligonucleotide dTTAGGGTTAGAG(TTAGGG)2 that does not form a quadruplex structure, as well as to the double stranded d(AC)8 x d(GT) and single stranded d(AC)8 and d(GT)8 DNAs. The analysis of absorption revealed that the binding constants and the number of DNA binding sites for TMPyP3 were d(AC)8 < d(GT)8 < d(AC)8 x d(GT)8 = d(TTAGGG)4 < dTTAGGGTTAGAG(TTAGGG)2. We demonstrated for the first time that the binding constant of TMPyP3 with the non-quadruplex chain dTTAGGGTTAGAG(TTAGGG)2 (1.3 x 10(7) M(-1)) is approximately 3 times bigger than the binding constant with the quadruplex d(TTAGGG)4 (4.6 x 10(6) M(-1)). Binding of two TMPyP3 molecules to d(TTAGGG)4 led to a decrease of thermostability of the G-quadruplex (deltaT(m) = -8 degrees C). Circular dichroism spectra of TMPyP3:d(TTAGGG)4 complexes revealed a shift of DNA structure from the G-quadruplex to an irregular chain. We hypothesize that partial destabilization of the telomeric G-quadruplex by TMPyP3 might be a reason for relatively low potency of this ligand as a telomerase inhibitor, as well as its marginal cytotoxicity for cultured tumor cells.  相似文献   

16.
The induced chirality of achiral binary aggregates of meso-tetrakis(4-N-methylpyridyl)porphyrine (TMPyP) and meso-tetrakis(4-sulfonatophenyl)porphyrine (TPPS) on a deoxyribonucleic acid (DNA) matrix was investigated. Although the negatively charged TPPS did not show induced chirality in DNA solution due to the electrostatic repulsion, induced chirality was obtained through the addition of a positively charged TMPyP. It was confirmed that the induced chirality was due to the binary complex formation between TPPS and TMPyP on the DNA matrix. Moreover, the induced chirality depended on the relative molar ratio of TPPS to TMPyP (r) and the binding modes of the complex to DNA. When r<1, induced circular dichroism (CD) spectrum of the ternary complex was similar to that of intercalated TMPyP into DNA. For r=1, the induced CD spectrum showed a reversed biphasic signal due to the complex of TMPyP and TPPS stacking along the DNA surface. At a higher r value (>1), there was an induced CD signal at 482 nm attributed to a lateral shifted arrangement of heteroaggregate of TPPS and TMPyP on DNA matrix where TMPyP acted as a spacer to mediate the growth of heteroaggregates. Increasing the concentration of sodium chloride in the solution would favor the formation of the lateral shifted arrangement of heteroaggregate of TPPS and TMPyP. The resonance light scattering (RLS) spectra confirmed the above results. Analysis of the CD spectral changes in DNA conformation showed that during the binary complex formation of TPPS and TMPyP, the intercalated TMPyP could be 'pulled out' from the base pairs of DNA, which might be useful in gene therapy. A model was proposed to account for these observations.  相似文献   

17.
18.
We have performed systematic spectroscopic titrations to characterize the binding reaction of cationic meso-tetrakis(4-(N-methylpyridiumyl))porphyrin (TMPyP4) with the G-quadruplex (G4) of human telomeric single-strand oligonucleotide d[TAGGG(TTAGGG)3T] (S24), for which special effort was made to examine the TMPyP4-G4 binding stoichiometry, the binding modes, and the conformational conversion of the G4 structure under different potassium ion (K+) concentration. It is found that, in the presence of 0, 10 mM, and 100 mM K+, TMPyP4 forms a complex with the anti-parallel G4 in a TMPyP4-to-G4 molar ratio of 5, 5 and 3, respectively, and the increase of K+ concentration would reduce the binding affinity of TMPyP4 to G4. For the TMPyP4-G4 complex, the end-stacking mode and groove binding mode were presumed mainly by the results of time-resolved fluorescence spectroscopy in the three cases. Most importantly, it is found that TMPyP4 can directly induce the formation of the anti-parallel G4 structure from the single-strand oligonucleotide S24 in the absence of K+, and that it can preferentially induce the conformational conversion of the G4 structure from the hybrid-type to the anti-parallel one in the presence of K+.  相似文献   

19.
I-motif or C4 is a four-stranded DNA structure with a protonated cytosine:cytosine base pair (C+:C) found in cytosine-rich sequences. We have found that oligodeoxynucleotides containing adenine and cytosine repeats form a stable secondary structure at a physiological pH with magnesium ion, which is similar to i-motif structure, and have named this structure ‘adenine:cytosine-motif (AC-motif)’. AC-motif contains C+:C base pairs intercalated with putative A+:C base pairs between protonated adenine and cytosine. By investigation of the AC-motif present in the CDKL3 promoter (AC-motifCDKL3), one of AC-motifs found in the genome, we confirmed that AC-motifCDKL3 has a key role in regulating CDKL3 gene expression in response to magnesium. This is further supported by confirming that genome-edited mutant cell lines, lacking the AC-motif formation, lost this regulation effect. Our results verify that adenine-cytosine repeats commonly present in the genome can form a stable non-canonical secondary structure with a non-Watson–Crick base pair and have regulatory roles in cells, which expand non-canonical DNA repertoires.  相似文献   

20.
The cohering telomeres of Oxytricha.   总被引:16,自引:7,他引:9       下载免费PDF全文
Y Oka  C A Thomas  Jr 《Nucleic acids research》1987,15(21):8877-8898
We have studied the process by which purified Oxytricha macronuclear DNA associates with itself to form large aggregates. The various macronuclear DNA molecules all have the same terminal or telomeric DNA sequences that are shown below. 5' C4A4C4A4C4--mean length----G4T4G4T4G4T4G4T4G4 G4T4G4T4G4T4G4T4G4-----2.4 kb------C4A4C4A4C4. When incubated at high concentrations, these telomeric sequences cohere with one another to form an unusual structure--one that is quite different from any DNA structure so far described. The evidence for this is the following: 1) These sequences cohere albeit slowly, in the presence of relatively high concentrations of Na+, and no other cation tested. This contrasts with the rapid coherence of complementary single-chain terminals of normal DNA (sticky ends) which occurs in the presence of any cation tested. 2) If the cohered form is transferred into buffers containing a special cation, K+, it becomes much more resistant to dissociation by heating. We estimate that K+ increases the thermal stability by 25 degrees or more. The only precedent known (to us) for a cation-specific stabilization is that seen in the quadruplex structure formed by poly I. The thermal stability of double helical macronuclear DNA depends on the cation concentration, but not the cation type. Limited treatment with specific nucleases show that the 3' and 5'-ended strands are essential for the formation of the cohering structure. Once in the cohered form, the telomeric sequences are protected from the action of nucleases. Coherence is inhibited by specific, but not by non-specific, synthetic oligomers, and by short telomeric fragments with or without their terminal single chains. We conclude that the coherence occurs by the formation of a novel condensed structure that involves the terminal nucleotides in three or four chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号