首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 148 毫秒
1.
A previous paper in this series (C. K. Mathews, (1972) J. Biol. Chem.247, 7430) showed that deoxynucleoside triphosphate pools expand manyfold when DNA synthesis is blocked genetically in infection by bacteriophage T4. This paper describes a more detailed analysis of this phenomenon. The key approach involves labeling with thymine or thymidine under conditions of infection where both phage and host bear mutations that inactivate thymidylate synthetase. Principal findings include the following: (1) Nucleotides in the expanded pools are derived in roughly equal measure from breakdown of host cell DNA and from nucleotide synthesis de novo after infection. (2) Thymidine diphosphate pool expansion is comparable, in rate and extent, to thymidine triphosphate pool expansion, but thymidine monophosphate pools accumulate much less. (3) The rate of expansion of the total thymine nucleotide pool following temperature upshift in infection by a temperature-sensitive gene 45 mutant is approximately equal to the rate of thymine incorporation into DNA immediately preceding the upshift. (4) Similarly, when DNA synthesis is restored by a downshift, the total thymine nucleotide pool drains at a rate commensurate with that of thymine incorporation into DNA. (5) Under these latter conditions the dTTP pool begins to drain earlier than the dTDP pool, suggesting that dTTP is the more proximal DNA precursor in this system.  相似文献   

2.
Of 42 amber mutants of bacteriophage phi W-14, 6 were defective in DNA synthesis. Three of the mutants synthesized DNA in the nonpermissive host, but were defective in post-replicational modification of the DNA. The DNA synthesized by two of these mutants, am36 and am42, contained more thymine and less alpha-putrescinylthymine than did wild-type DNA; that synthesized by the third mutant, am37, contained the normal amount of thymine, no alpha-putrescinylthymine, and hydroxymethyluracil. The properties of these mutants suggested that the presence of the normal amount of alpha-putrescinylthymine in phi W-14 DNA was essential for the production of viable progeny. Three of the mutants, am6, am35, and am45, failed to synthesize DNA in the nonpermissive host. These mutants were analogous to the DNA off mutants of T4. Nonpermissive cells infected with DNA off mutants accumulated dATP, dGTP, dCTP, and hydroxymethyl dUTP, but not dTTP or alpha-putrescinyldeoxythymidine triphosphate, confirming that both thymine and alpha-putrescinylthymidine in phi W-14 DNA are formed from hydroxymethyluracil at the polynucleotide level. The synthesis of phi W-14 DNA is unusual because (i) thymine is formed from hydroxymethyluracil at the polynucleotide level, (ii) the hypermodification forming alpha-putrescinylthymine is essential, and (iii) thymine and alpha-putrescinylthymine must be made in the correct proportions. Complementation tests showed that the mutants defined three genes involved in DNA polymerization and two genes involved in post-replicational modification.  相似文献   

3.
An Escherichia coli B mutant, SG14, accumulates glycogen at 28% the rate observed for the parent E. coli B strain. The glycogen accumulated in the mutant is similar to the glycogen isolated from the parent strain with respect to alpha- and beta-amylosis, chain length determination, and I2-complex absorption spectra. The SG14 mutant contains normal glycogen synthase and branching enzyme activity but has an ADP-glucose pyrophosphorylase with altered kinetic and allosteric properties. The mutant enzyme has been partially purified and requires a 12-fold higher concentration of fructose-P2 or a 26 fold higher concentration of pyridoxal-P than the parent type enzyme for 50% of maximal allosteric activation. TPNH, an effective activator of the E. coli B enzyme, does not activate the SG14 ADP-glucose pyrophosphorylase. Other studies show that for the SG14 enzyme the concentrations of ATP and Mg2+ in the synthesis direction and the concentrations of ADP-glucose and PPi in the pyrophosphorolysis direction required to give 50% of maximal activity are 3- to 6-fold higher than those observed for the parent E. coli B ADP-glucose pyrophosphorylase. The Km for alpha-glucose-1-P at saturating to half-saturating concentrations of the activator, fructose-P2, are about the same for both enzymes. However, in the presence of no activator, the concentration of glucose-1-P required for half-maximal activity is about 1.8-fold higher for the SG14 enzyme. Thus SG14 ADP-glucose pyrophosphorylase has lower affinity for its substrates than does the parent enzyme. Previously the SG14 enzyme had been shown to be less sensitive to inhibition by 5'-AMP than the E. coli B enzyme. This ensensitivity to inhibition renders the SG14 enzyme less responsive to energy charge than the E. coli B ADP-glucose pyrophosphorylase. On the basis of the above results and taking into account the reported concentrations of fructose-P2, of pyridoxal-P, and of the adenine nucleotide pool and its energy charge in E. coli strains, it is concluded that furctose-P2 is the important physiological allosteric activator of E. coli ADP-glucose pyrophosphorylase. Furthermore, the 1.7-fold increased rate of accumulation of glycogen observed when E. coli B or SG14 shifts from exponential phase to stationary phase of growth in nitrogen-limiting media can be accounted for by the 2.4-fold increase of the levels of the glycogen biosynthetic enzymes, glycogen synthase, and ADP-glucose pyrophosphorylase. Thus both allosteric regulation of the ADP-glucose pyrophosphorylase as well as the genetic regulation of the biosynthesis of the glycogen biosynthetic enzymes are involved in the regulation of glycogen accumulation in E. coli B.  相似文献   

4.
Mutants induced at the adenine phosphoribosyl transferase (aprt) locus by dTTP or dCTP pool imbalances were examined for alterations in genomic DNA sequences. No observable changes were detected by Southern blot analysis of most mutant DNAs, suggesting induction of base pair alterations or other events below our level of detection (approximately 30 base pairs). However, in a few strains (11 from a total collection of 125 mutant cell strains), we were able to localize these events to restriction endonuclease recognition sequences when the mutations resulted in the loss or gain of a particular site. The distribution of lost or gained sites in aprt-deficient mutants induced by the two types of pool imbalances clearly varied, with those occurring in a mutator strain with increased dCTP clustering at one end of the aprt gene. Mutants induced by dTTP also revealed novel events: multiple restriction site modifications in a small region of the aprt gene in one mutant and a small (approximately 50 base pairs) insertion or duplication of DNA sequences. As in previous studies, very few deletion or insertion mutants were detected at the aprt locus. The significance of these findings in terms of the known biochemical and genetic consequences of these pool imbalances is discussed.  相似文献   

5.
Hydroxyurea (HU) causes inhibition of DNA synthesis in regenerating rat liver due to an inhibition of the ribonucleotide reductase. We studied the consequences of a continuous HU infusion for deoxyribonucleoside triphosphate (dNTP) pools in the liver after partial hepatectomy and tried to modify imbalances by application of deoxyribonucleosides in vivo. In normal liver, an intracellular concentration of 0.16, 0.84, 0.33 and 0.27 pmol/micrograms DNA was observed for dATP, dCTP, dGTP and dTTP, respectively. In regenerating liver the dNTP pools show minor changes until 18 h after partial hepatectomy. During and after a continuous HU infusion 14--24 h after partial hepatectomy, the intracellular dNTP pools change considerably. At 19.5 h after partial hepatectomy, 5.5 h after the start of HU infusion, and at 25 h after partial hepatectomy, 1 h after termination of HU infusion, the dTTP pool was more than 10-times, and the dGTP pool about 2-times higher than in controls, while the dATP and dCTP pools remain relatively unchanged. Simultaneous infusion of HU and deoxythymidine (dThd) 14--25 h after partial hepatectomy results in a further increase of the dTTP pool during and after HU infusion. Administration of deoxycytidine (dCyd) leads to a moderate increase of the dCTP pool and a weak decrease of the dTTP pool during HU infusion. The combined application of dCyd and dThd after HU infusion had similar effects on dNTP pools as observed with dThd alone. These results show that intracellular pools of dNTPs in hepatocytes can be altered by exogenous factors in a controlled pattern. This system can be used as a model for studying the implications of induced dNTP pool dysbalances for the initiation of liver carcinogenesis by mutagenic chemicals.  相似文献   

6.
In non-proliferating cells mitochondrial (mt) thymidine kinase (TK2) salvages thymidine derived from the extracellular milieu for the synthesis of mt dTTP. TK2 is a synthetic enzyme in a network of cytosolic and mt proteins with either synthetic or catabolic functions regulating the dTTP pool. In proliferating cultured cells the canonical cytosolic ribonucleotide reductase (R1-R2) is the prominent synthetic enzyme that by de novo synthesis provides most of dTTP for mt DNA replication. In non-proliferating cells p53R2 substitutes for R2. Catabolic enzymes safeguard the size of the dTTP pool: thymidine phosphorylase by degradation of thymidine and deoxyribonucleotidases by degradation of dTMP. Genetic deficiencies in three of the participants in the network, TK2, p53R2, or thymidine phosphorylase, result in severe mt DNA pathologies. Here we demonstrate the interdependence of the different enzymes of the network. We quantify changes in the size and turnover of the dTTP pool after inhibition of TK2 by RNA interference, of p53R2 with hydroxyurea, and of thymidine phosphorylase with 5-bromouracil. In proliferating cells the de novo pathway dominates, supporting large cytosolic and mt dTTP pools, whereas TK2 is dispensable, even in cells lacking the cytosolic thymidine kinase. In non-proliferating cells the small dTTP pools depend on the activities of both R1-p53R2 and TK2. The activity of TK2 is curbed by thymidine phosphorylase, which degrades thymidine in the cytoplasm, thus limiting the availability of thymidine for phosphorylation by TK2 in mitochondria. The dTTP pool shows an exquisite sensitivity to variations of thymidine concentrations at the nanomolar level.  相似文献   

7.
Gene 1.2 protein of bacteriophage T7. Effect on deoxyribonucleotide pools   总被引:8,自引:0,他引:8  
The gene 1.2 protein of bacteriophage T7, a protein required for phage T7 growth on Escherichia coli optA1 strains, has been purified to apparent homogeneity and shown to restore DNA packaging activity of extracts prepared from E. coli optA1 cells infected with T7 gene 1.2 mutants (Myers, J. A., Beauchamp, B. B., White, J. H., and Richardson, C. C. (1987) J. Biol. Chem. 262, 5280-5287). After infection of E. coli optA1 by T7 gene 1.2 mutant phage, under conditions where phage DNA synthesis is blocked, the intracellular pools of dATP, dTTP, and dCTP increase 10-40-fold, similar to the increase observed in an infection with wild-type T7. However, the pool of dGTP remains unchanged in the mutant-infected cells as opposed to a 200-fold increase in the wild-type phage-infected cells. Uninfected E. coli optA+ strains contain severalfold higher levels of dGTP compared to E. coli optA1 cells. In agreement with this observation, dGTP can fully substitute for purified gene 1.2 protein in restoring DNA packaging activity to extracts prepared from E. coli optA1 cells infected with T7 gene 1.2 mutants. dGMP or polymers containing deoxyguanosine can also restore packaging activity while dGDP is considerably less effective. dATP, dTTP, dCTP, and ribonucleotides have no significant effect. The addition of dGTP or dGMP to packaging extracts restores DNA synthesis. Gene 1.2 protein elevates the level of dGTP in these packaging extracts and restores DNA synthesis, thus suggesting that depletion of a guanine deoxynucleotide pool in E. coli optA1 cells infected with T7 gene 1.2 mutants may account for the observed defects.  相似文献   

8.
Malate transport in Schizosaccharomyces pombe.   总被引:2,自引:0,他引:2       下载免费PDF全文
The transport of malate was studied in a Schizosaccharomyces pombe wild-type strain and in mutant strains unable to utilize malic acid. Two groups of such mutants, i.e., malic enzyme-deficient and malate transport-defective mutants, were differentiated by a 14C-labeled L-malate transport assay and by starch gel electrophoresis followed by activity staining for malic enzyme (malate dehydrogenase [oxaloacetate decarboxylating] [NAD+]; 1.1.1.38) and malate dehydrogenase (1.1.1.37). Transport of malate in S. pombe was constitutive and strongly inhibited by inhibitors of oxidative phosphorylation and of the formulation of proton gradients. Transport was a saturable function of the malate concentration. The apparent Km and Vmax values for transport by the parent were 3.7 mM and 40 nmol/min per mg of protein, respectively, while those of the malic enzyme-deficient mutant were 5.7 mM and 33 nmol/min per mg of protein, respectively. Malate transport was pH and temperature dependent. The specificity of transport was studied with various substrates, including mono- and dicarboxylic acids, and the possibility of a common transport system for dicarboxylic acids is discussed.  相似文献   

9.
Mark Meuth 《Mutation research》1983,110(2):383-391
Chinese hamster ovary cell strains deficient in deoxycytidine kinase activity were selected by isolating mutants resistant to high concentrations of the analogue arabinosyl cytosine. Mutants isolated were deficient in the pool of dCTP, supporting earlier a suggestion that the deoxycytidine kinase may play a role in the turnover and maintenance of the dCTP pool. Consistent with earlier observations that increased intracellular levels of dTTP relative to dCTP lead to increased sensitivy to monofunctional DNA alkylating agents, deoxycytidine kinase-deficient mutants showed a 2–5-fold increase in sensitivity to the cytotoxic and mutagenic effects of one agent, ethyl methanesulfonate (EMS). The survival of the two kinase-deficient strains after mutagen treatment was clearly related to dCTP level as the strain with lowest dCTP was most sensitive to EMS. Thus hypersensitivity to this class of DNA damaging agents can result from cellular mutations decreasing the intracellular level of dCTP.  相似文献   

10.
A mathematical model has been constructed to describe the accumulation of radioactivity in the DNA of mouse L cells growing exponentially in the presence of [3H]thymidine. The model depends on three parameters: (1) the rate of transformation of exogenous thymidine into dTTP; (2) the rate of synthesis of DNA; and (3) the pool size of dTTP. From experiments in which cells are labeled over short and long periods, respectively, data may be obtained by which the parameters may be estimated. The results show that the size of the dTTP pool estimated in this way agrees with the total amount of dTTP in the cell as estimated by an enzymatic assay; thus all the dTTP in the cell serves as precursor in DNA synthesis. In addition, experiments in which satellite DNA has been separated from bulk DNA show that these two species are made from the same precursor pool of dTTP.  相似文献   

11.
From Escherichia coli K12 W2252-11U-cells, the Ter-15 mutant, the Ter-15 (F'-lac) and the Ter-15 (F+) cells, lipopolysaccharides were isolated and the primary structure of its core oligosaccharides was elucidated. When the F'-lac episome is transferred to the Ter-15 mutant by conjugation, the structure of the glucose III(1 leads to 3)glucose II(1 leads to 3)glucose I residue and the galactose I(1 leads to 2)-linked to the glucose I residue in the core oligosaccharide from the Ter-15 mutant changes into the structure of the glucose IV(1 leads to 6)glucose III(1 leads to 2)glucose II(1 leads to 3)glucose I residue and the galactose I (1 leads to 6)-linked to the glucose I residue in the core oligosaccharide from the Ter-15 (F'-lac) cells, but the core oligosaccharide in the Ter-15 (F+) cells is the same structure with that of the core oligosaccharide from the Ter-15 mutant when F+ episome is transferred to the Ter-15 mutant. Also, the core oligosaccharide from the Ter-15 (F'-lac) cells shows the same structure with that of the core oligosaccharide from E. coli K12 W2252-11U- cells (the parent cells). As the result, the ability to produce the structure of the core oligosaccharide in E. coli K12 W2252-11U- cells is recovered in the Ter-15 (F'-lac) cells by the dominant expression of lac gene or its containing DNA segment in F'-lac episome.  相似文献   

12.
The activities of inorganic pyrophosphatase, thymidine kinase and thymidine phosphorylase were measured in Ter-mutants ofE. coli K12 which have a higher or a lower dTTP pool than the parent strain. The levels of inorganic pyrophosphatase and thymidine kinase were changed in the same direction and that of thymidine phosphorylase in the opposite direction in these mutants.  相似文献   

13.
To investigate whether resting cells of 3T3 mouse fibroblasts carry out de novo synthesis of deoxyribonucleoside triphosphates, we determined the turnover of the thymidine triphosphate pool of G0 cells obtained by starvation of cultures for platelet-derived growth factor. These cells were contaminated by less than 1% S-phase cells. In the absence of deoxyribonucleosides in the medium one million G0 cells contained 5 pmole of dTTP with a turnover of 0.09 pmole/min. S-phase cells in comparison contained a 20 times larger dTTP pool with a more than 200-fold faster turnover. Our results suggest that G0 cells carry out a slow but finite de novo synthesis of deoxyribonucleoside triphosphates to satisfy the cells' requirement for DNA repair and mitochondrial DNA synthesis.  相似文献   

14.
Cellular uptake of [3H]thymidine [( 3H]TdR) and incorporation into DNA of Ehrlich ascites tumour cells were studied in relation to the cell cycle by measuring the activity in the acid-soluble and insoluble parts of the cell material. Cells were synchronized at various stages of the cell cycle using centrifugal elutriation. The degree of synchrony of the various cell fractions was measured by flow-cytofluorometric DNA analysis. From the cellular uptake, the TdR triphosphate (dTTP) concentration of a mean cell in an unseparated cell population was calculated to be 20 X 10(-18) mol/cell. The pool activity of G1 cells was unmeasurable but rose to maximum values at the border of the G1-S phase. It decreased again during G2. The [3H]TdR incorporation into DNA was low during early S phase, reached a maximum value at two-thirds of the S phase and decreased again during late S phase. These changes in DNA synthesis were not due to changes in the dTTP pool being a limiting factor. During maximum DNA synthesis, 10% X min-1 of the dTTP pool was utilized, at which time the pool size also decreased by about 30%. Changes in pool size during the cell cycle have to be taken into account when the results of incorporation of radioactive TdR into DNA are discussed.  相似文献   

15.
The effects of various concentrations of thymidine on DNA synthesis and deoxyribonucleoside triphosphate contents of a highly thymidine-sensitive cultured mouse lymphoma cell line (WEHI-7) and a relatively resistant mouse myeloma cell line (HPC-108) have been studied by 32P-labelling techniques. DNA synthesis in the myeloma cells was inhibited by thymidine at concentrations of 10(-3) M or greater, while DNA synthesis in the lymphoma cells was inhibited by concentrations 30-fold lower, consistent with the 25-fold difference between the two cell lines in sensitivity to growth inhibition by thymidine. Thymidine caused marked elevation of the dTTP and dGTP pools, slight elevation or no change in the dATP pool and a marked decrease in the dCTP pool in cells of both lines. The greater resistance of HPC-108 cells to thymidine inhibition was related to the finding that they normally contained a much higher concentration of dCTP than did the WEHI-7 cells. Pool size measurements on thymidine-treated (10(-4) M) cells of an additional seven sensitive lymphoma and six relatively resistant myeloma cell lines indicated that in all 15 lines studied, with one exception, a critical concentration of dCTP of about 32 nmol per ml of cell volume was required for the maintenance of normal rates of DNA synthesis. The dCTP content found normally in the lymphoma cells was only a little above this concentration. Amongst the myeloma lines, three contained similarly low levels of dCTP, but were more resistant to thymidine inhibition probably because of their inefficient production of dTTP from thymidine. Cells of the other four myeloma lines (including HPC-108) normally contained much higher dCTP concentrations. The mechanism of thymidine action was explained by reference to the known allosteric properties of ribonucleotide reductase.  相似文献   

16.
Mutant strains of Aspergillus niger with reduced citrate control of carbohydrate catabolism (cic mutants) grow faster than the parent strain on media containing 5% (wt/vol) citrate. The mutants tolerated a higher intracellular citrate concentration than the parent strain. One mutant (cic-7/3) contained phosphofructokinase activity significantly less sensitive towards citrate than the enzyme from the parent strain. When this mutant was grown under citrate-accumulating conditions, acidogenesis was far less sensitive to inhibition by Mn2+ than in the parent strain. Some of the cic mutants also showed altered citrate inhibition of NADP-specific isocitrate dehydrogenase.  相似文献   

17.
The thymidine nucleotide sources present during herpes simplex virus type 2 (HSV-2) infection were examined. It was concluded that the source of dTTP in HSV-2-infected cells is not only derived from the ribonucleotide reductase-catalyzed de novo pathway, but also from host DNA. When the de novo pathway was inhibited by the addition of hydroxyurea, an inhibitor of ribonucleotide reductase, the dTTP levels were maintained by a compensatory increase in dTTP derived from host DNA. The utilization of host DNA-derived dTTP for viral DNA synthesis was demonstrated. In spite of an increased contribution of dTTP from host DNA in the presence of hydroxyurea, the level of utilization of host DNA-derived dTTP appeared to remain constant. More than one dTTP pool in virus-infected cells is implicated.  相似文献   

18.
The effect of methotrexate on the free intracellular pools of thymidylate triphosphate (dTTP) and deoxyadenosine triphosphate (dATP) in normal human phytohaemagglutinin-transformed lymphocytes has been studied. Methotrexate caused a fall in the dTTP pool ranging from 38% to 88% and a rise in the dATP pool ranging from 24% to 185%.A rise in the free intracellular pool of dATP is thought to inhibit both rubonucleotide reduction and polynucleotide ligase, an enzyme concerned in DNA synthesis and repair. The hypothesis is suggested here that folate deficiency per se, as well as a functional folate deficiency induced by methotrexate may cause reduced DNA synthesis, megaloblastic changes, and chromosome abnormalities by producing a rise in the free intracellular pool of dATP as well as by causing a fall in free intracellular dTTP.  相似文献   

19.
Since eucaryotic cell-derived thymidine or thymidine nucleotides are not incorporated into Chlamydia trachomatis DNA, we hypothesized that C. trachomatis must obtain dTTP for DNA synthesis by converting dUMP to dTMP. In most cells, this reaction is catalyzed by thymidylate synthase (TS) and requires 5,10-methylenetetrahydrofolate as a cofactor. We used C. trachomatis serovar L2 and a mutant CHO K1 cell line with a genetic deficiency in folate metabolism as a host for chlamydial growth. This cell line lacks a functional dihydrofolate reductase (DHFR) gene and, as a result, is unable to carry out de novo synthesis of dTTP. C. trachomatis inclusions form normally when DHFR- cells are starved for thymidine 24 h prior to and during the course of infection. When [6-3H]uridine is used as a precursor to label C. trachomatis-infected CHO DHFR- cells, radiolabel is readily incorporated into chlamydia-specific DNA. When DNA from [6-3H]uridine-labelled infected cultures is acid hydrolyzed and subjected to high-performance liquid chromatography analysis, radiolabel is detected in thymine and cytosine nucleobases. By using the DHFR- cell line as a host and [5-3H]uridine as a precursor, we could monitor intracellular C. trachomatis TS activity simply by following the formation of tritiated water. There is a good correlation between in situ TS activity and DNA synthesis activity during the chlamydial growth cycle. In addition, both C. trachomatis-specific DNA synthesis and 3H2O release are inhibited by exogenously added 5-fluorouridine but not by 5-fluorodeoxyuridine. Finally, we demonstrated in vitro TS activity in crude extracts prepared from highly purified C. trachomatis reticulate bodies. The activity is dependent on the presence of methylenetetrahydrofolic acid and can be inhibited with 5-fluoro-dUMP. Taken together, these results indicate that C. trachomatis contains a TS for the synthesis of dTMP.  相似文献   

20.
Escherichia coli strains with mutations in genes dnaB, dnaC, and dnaG were tested for their capacity to replicate pSC101 deoxyribonucleic acid (DNA) at a nonpermissive temperature. Only a small amount of radioactive thymine was incorporated into pSC101 DNA in the dna mutants at 42 degrees C, whereas active incorporation into plasmid DNA took place in wild-type strains under the same conditions. The effects of the dnaB and dnaC mutations were greater on plasmid DNA synthesis than on host chromosomal DNA synthesis, suggesting that these gene products are directly involved in the process of pSC101 DNA replication. In dnaG mutants, both plasmid and chromosomal DNA synthesis were blocked soon after the shift to high temperature; although the extent of inhibition of the plasmid DNA synthesis was greater during the early period of temperature shift to 42 degrees C as compared with that of the host DNA synthesis, during the later period it was less. It was found that the number of copies of pSC101 per chromosome in dnaA and dnaC strains, grown at 30 degrees C, was considerably lower than that in wildtype strains, suggesting that the replication of pSC101 in these mutant strains was partially suppressed even under the permissive conditions. No correlation was found between the number of plasmid copies and the tetracycline resistance level of the host bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号