首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Research efforts in biology increasingly require use of methodologies that enable high-volume collection of high-resolution data. A challenge laboratories can face is the development and attainment of these methods. Observation of phenotypes in a process of interest is a typical objective of research labs studying gene function and this is often achieved through image capture. A particular process that is amenable to observation using imaging approaches is the corrective growth of a seedling root that has been displaced from alignment with the gravity vector. Imaging platforms used to measure the root gravitropic response can be expensive, relatively low in throughput, and/or labor intensive. These issues have been addressed by developing a high-throughput image capture method using inexpensive, yet high-resolution, flatbed scanners. Using this method, images can be captured every few minutes at 4,800 dpi. The current setup enables collection of 216 individual responses per day. The image data collected is of ample quality for image analysis applications.  相似文献   

3.
4.
5.
6.
Little is known about the molecular processes that govern female gametophyte (FG) development and function, and few FG-expressed genes have been identified. We report the identification and phenotypic analysis of 31 new FG mutants in Arabidopsis. These mutants have defects throughout development, indicating that FG-expressed genes govern essentially every step of FG development. To identify genes involved in cell death during FG development, we analyzed this mutant collection for lines with cell death defects. From this analysis, we identified one mutant, gfa2, with a defect in synergid cell death. Additionally, the gfa2 mutant has a defect in fusion of the polar nuclei. We isolated the GFA2 gene and show that it encodes a J-domain-containing protein. Of the J-domain-containing proteins in Saccharomyces cerevisiae (budding yeast), GFA2 is most similar to Mdj1p, which functions as a chaperone in the mitochondrial matrix. GFA2 is targeted to mitochondria in Arabidopsis and partially complements a yeast mdj1 mutant, suggesting that GFA2 is the Arabidopsis ortholog of yeast Mdj1p. These data suggest a role for mitochondria in cell death in plants.  相似文献   

7.
8.
9.
Previously, we identified a peptide transport gene, AtPTR2-B, from Arabidopsis thaliana that was constitutively expressed in all plant organs, suggesting an important physiological role in plant growth and development. To evaluate the function of this transporter, transgenic Arabidopsis plants were constructed expressing antisense or sense AtPTR2-B. Genomic Southern analysis indicated that four independent antisense and three independent sense AtPTR2-B transgenic lines were obtained, which was confirmed by analysis of the segregation of the kanamycin resistance gene carried on the T-DNA. RNA blot data showed that the endogenous AtPTR2-B mRNA levels were significantly reduced in transgenic leaves and flowers, but not in transgenic roots. Consistent with this reduction in endogenous AtPTR2-B mRNA levels, all four antisense lines and one sense line exhibited significant phenotypic changes, including late flowering and arrested seed development. These phenotypic changes could be explained by a defect in nitrogen nutrition due to the reduced peptide transport activity conferred by AtPTR2-B. These results suggest that AtPTR2-B may play a general role in plant nutrition. The AtPTR2-B gene was mapped to chromosome 2, which is closely linked to the restriction fragment length polymorphism marker m246.  相似文献   

10.
We describe a method for gene function discovery and chemical mode-of-action analysis via nutrient utilization using a high throughput Nutritional Profiling platform suitable for filamentous microorganisms. We have optimized the growth conditions for each fungal species to produce reproducible optical density growth measurements in microtiter plates. We validated the Nutritional Profiling platform using a nitrogen source utilization assay to analyze 21 Aspergillus nidulans strains with mutations in the master nitrogen regulatory gene, areA. Analysis of these data accurately reproduced expected results and provided new data to demonstrate that this platform is suitable for fine level phenotyping of filamentous fungi. Next, we analyzed the differential responses of two fungal species to a glutamine synthetase inhibitor, illustrating chemical mode-of-action analysis. Finally, a comparative phenotypic study was performed to characterize carbon catabolite repression in four fungal species using a carbon source utilization assay. The results demonstrate differentiation between two Aspergillus species and two diverse plant pathogens and provide a wealth of new data on fungal nutrient utilization. Thus, these assays can be used for gene function and chemical mode-of-action analysis at the whole organism level as well as interspecies comparisons in a variety of filamentous fungi. Additionally, because uniform distribution of growth within wells is maintained, comparisons between yeast and filamentous forms of a single organism can be performed.Electronic Supplementary Material Supplementary material is available in the online version of this article at The revised version of the PDF file was published online in January 2004. The figures are now in color.An erratum to this article can be found at  相似文献   

11.
12.
Brassinosteroids (BRs) are a group of plant steroid hormones involved in regulating growth, development, and stress responses. Many components of the BR pathway have previously been identified and characterized. However, BR phenotyping experiments are typically performed in a low-throughput manner, such as on Petri plates. Additionally, the BR pathway affects drought responses, but drought experiments are time consuming and difficult to control. To mitigate these issues and increase throughput, we developed the Robotic Assay for Drought (RoAD) system to perform BR and drought response experiments in soil-grown Arabidopsis plants. RoAD is equipped with a robotic arm, a rover, a bench scale, a precisely controlled watering system, an RGB camera, and a laser profilometer. It performs daily weighing, watering, and imaging tasks and is capable of administering BR response assays by watering plants with Propiconazole (PCZ), a BR biosynthesis inhibitor. We developed image processing algorithms for both plant segmentation and phenotypic trait extraction to accurately measure traits including plant area, plant volume, leaf length, and leaf width. We then applied machine learning algorithms that utilize the extracted phenotypic parameters to identify image-derived traits that can distinguish control, drought-treated, and PCZ-treated plants. We carried out PCZ and drought experiments on a set of BR mutants and Arabidopsis accessions with altered BR responses. Finally, we extended the RoAD assays to perform BR response assays using PCZ in Zea mays (maize) plants. This study establishes an automated and non-invasive robotic imaging system as a tool to accurately measure morphological and growth-related traits of Arabidopsis and maize plants in 3D, providing insights into the BR-mediated control of plant growth and stress responses.  相似文献   

13.
Large volumes of genomic data have been generated for several plant species over the past decade, including structural sequence data and functional annotation at the genome level. Various technologies such as expressed sequence tags (ESTs), massively parallel signature sequencing (MPSS) and microarrays have been used to study gene expression and to provide functional data for many genes simultaneously. This review focuses on recent advances in the application of microarrays in plant genomic research and in gene expression databases available for plants. Large sets of Arabidopsis microarray data are publicly available. Recently developed array platforms are currently being used to generate genome-wide expression profiles for several crop species. Coupled to these platforms are public databases that provide access to these large-scale expression data, which can be used to aid the functional discovery of gene function.  相似文献   

14.
In order to investigate the effects of HBK3, a spruce gene member of the class I KNOX family, during somatic embryogenesis, sense (HBK3-S) and antisense (HBK3-A) Norway spruce (Picea abies) lines were generated. Somatic embryos produced from these lines were then analysed at morphological and structural levels. Compared with control, differentiation of immature somatic embryos from pro-embryogenic masses (PEMs) was accelerated in lines overexpressing HBK3 (HBK3-S). Such immature embryos showed enlarged embryogenic heads and were able to produce fully developed cotyledonary embryos at higher frequency. Furthermore, HBK3-S embryos had enlarged shoot apical meristems (SAMs) and enlarged expression pattern of PgAGO, a molecular marker gene specific to meristematic cells. Lines in which HBK3 (HBK3-A) was down-regulated had reduced ability to produce immature somatic embryos from PEMs and were not able to complete the maturation processes. To assess the function of HBK3 in comparison with that of angiosperm KNOX genes, this gene was ectopically expressed in Arabidopsis plants. As observed for spruce, Arabidopsis embryos overexpressing HBK3 had enlarged meristems and enlarged expression pattern of SHOOTMERISTEMLESS, a SAM molecular marker gene. In addition, transformed embryos were able to germinate at a higher rate and the resulting plants showed a variety of phenotypic aberrations, including abnormal leaves and reduced apical dominance. Overall, these data confirm the importance of KNOTTED genes during development and reveal the participation of HBK3 in conifer embryogeny. Furthermore, the results show redundant functions of this gene during embryonic growth of spruce and Arabidopsis, but not during post-embryonic growth.  相似文献   

15.
Fertilization of the female gametophyte in angiosperm plants initiates a process of coordinated development of embryo, endosperm, and seed coat that ensures the production of a viable seed. Mutant analysis has suggested that communication between the endosperm and the seed coat is an important determinant in this process. In addition, cell groups within the embryo, derived from the apical and from the basal cell, respectively, after zygote division, concertedly establish a functional root meristem, and cells in the apical region of the embryo are hypothesized to repress cell divisions in the basal cell-derived suspensor. The available evidence for these interregional communication events mostly relies on the analysis of mutant phenotypes in Arabidopsis. To provide independent and direct evidence for communication events, we used conditional domain-specific expression of the diphtheria toxin A chain (DTA) in developing Arabidopsis seeds. By using a collection of cell- or tissue-type-specific promoters, we show that the mGAL4:VP16/UAS two-component gene expression allows reliable spatiotemporal and conditional expression of the GFP:GUS reporter and the DTA gene in the developing embryo and endosperm. Expression of DTA in the protoderm of the embryo proper led to excessive proliferation of suspensor cells, sometimes resulting in the formation of secondary embryos. Endosperm-specific expression of DTA caused complete cessation of seed growth, followed by pattern defects in the embryo and embryo arrest. Taken together, the results presented here substantiate the evidence for and underline the importance of interregional communication in embryo and seed development and demonstrate the usefulness of conditional toxin expression as a method complementary to phenotypic analysis of developmental mutants.  相似文献   

16.
In unisexual flowers, sex is determined by the selective repression of growth or the abortion of either male or female reproductive organs. The mechanism by which this process is controlled in plants is still poorly understood. Because it is known that the identity of reproductive organs in plants is controlled by homeotic genes belonging to the MADS box gene family, we analyzed floral homeotic mutants from cucumber, a species that bears both male and female flowers on the same individual. To study the characteristics of sex determination in more detail, we produced mutants similar to class A and C homeotic mutants from well-characterized hermaphrodite species such as Arabidopsis by ectopically expressing and suppressing the cucumber gene CUCUMBER MADS1 (CUM1). The cucumber mutant green petals (gp) corresponds to the previously characterized B mutants from several species and appeared to be caused by a deletion of 15 amino acid residues in the coding region of the class B MADS box gene CUM26. These homeotic mutants reveal two important concepts that govern sex determination in cucumber. First, the arrest of either male or female organ development is dependent on their positions in the flower and is not associated with their sexual identity. Second, the data presented here strongly suggest that the class C homeotic function is required for the position-dependent arrest of reproductive organs.  相似文献   

17.
Measuring the effects of mutation, natural variation or treatment on the development of plant form is often complicated by the shapes, dynamics or small size of the organismal structures under study. This limits accuracy and throughput of measurement and thereby limits progress toward understanding the underlying gene networks and signaling systems. A computer-vision platform based on electronic image capture and shape-analysis algorithms was developed as an alternative to the mostly manual methods of measuring seedling development currently in use. The spatial and temporal resolution of the method is in the range of microns and minutes, respectively. The algorithm simultaneously quantifies apical hook opening and inhibition of hypocotyl elongation during photomorphogenesis of Arabidopsis thaliana seedlings. It can determine when and where gravitropic curvature develops along the root axis in A. thaliana and Medicago truncatula seedlings. Novel features of gravitropic curvature development were discovered as a result of the high resolution. The computer-vision algorithms developed and demonstrated here could be used to study mutant phenotypes in detail, to form the basis of a high-throughput screening platform, or to quantify natural variation in a population of plants.  相似文献   

18.
19.
Multicellular eukaryotes demonstrate nongenetic, heritable phenotypic versatility in their adaptation to environmental changes. This inclusive inheritance is composed of interacting epigenetic, maternal, and environmental factors. Yet-unidentified maternal effects can have a pronounced influence on plant phenotypic adaptation to changing environmental conditions. To explore the control of phenotypy in higher plants, we examined the effect of a single plant nuclear gene on the expression and transmission of phenotypic variability in Arabidopsis (Arabidopsis thaliana). MutS HOMOLOG1 (MSH1) is a plant-specific nuclear gene product that functions in both mitochondria and plastids to maintain genome stability. RNA interference suppression of the gene elicits strikingly similar programmed changes in plant growth pattern in six different plant species, changes subsequently heritable independent of the RNA interference transgene. The altered phenotypes reflect multiple pathways that are known to participate in adaptation, including altered phytohormone effects for dwarfed growth and reduced internode elongation, enhanced branching, reduced stomatal density, altered leaf morphology, delayed flowering, and extended juvenility, with conversion to perennial growth pattern in short days. Some of these effects are partially reversed with the application of gibberellic acid. Genetic hemicomplementation experiments show that this phenotypic plasticity derives from changes in chloroplast state. Our results suggest that suppression of MSH1, which occurs under several forms of abiotic stress, triggers a plastidial response process that involves nongenetic inheritance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号