首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 605 毫秒
1.
During the conjugal transfer of the R64-11 plasmid at 42 C from donor cells thermosensitive for vegetative deoxyribonucleic acid (DNA) synthesis to recipient minicells, the plasmids are conjugally replicated in the donor cells. This conjugal replication is inhibited by nalidixic acid, and the degree of inhibition is comparable to the reduction in the amount of plasmid DNA transferred to the recipient minicells in the presence of the drug. In addition, the size of DNA transferred to the minicells and the fraction of conjugally replicated DNA in the donor cells that can be isolated as closed-circular plasmid DNA under alkaline conditions are both reduced by nalidixic acid. When the drug is added to a mating that is underway, the rate of conjugal replication is immediately reduced. This change is accompanied by a reduction in the amount of conjugally replicated DNA in the donor cells that can be isolated as closed-circular plasmid DNA. Furthermore, conjugally replicated plasmid DNA that is not associated with the donor cell membrane becomes membrane bound after the addition of nalidixic acid.  相似文献   

2.
Conjugal replication of R64-11 deoxyribonucleic acid (DNA) and the concomitant transfer of R64-11 DNA to DNA-deficient minicells are dependent upon processes that are inhibited by rifampin and chloramphenicol. The rifampin-sensitive product is not present in vegetatively growing cells and is needed to initiate both conjugal DNA replication in donor cells and DNA transfer to recipient minicells. If the rifampin-sensitive product is a ribonucleic acid (RNA) molecule (rather than RNA polymerase itself), our data indicate that this RNA species required for initiation of conjugal activity does not need to be translated into a protein product. The chloramphenicol-sensitive product(s) is present in vegetatively growing cells in sufficient quantity to permit most donor cells to carry out one round of plasmid conjugal replication and transfer. The initiation of second and subsequent rounds of conjugal replication and transfer are dependent on the synthesis of both the rifampin-sensitive and chloramphenicol-sensitive products. Our results demonstrate a correspondence between the amount of conjugal DNA replication in the donor and the amount of DNA transferred to recipient minicells under all conditions, and therefore suggest but do not prove that plasmid transfer is dependent on conjugal DNA replication. The results also add additional proof that R64-11 transfer to minicells is discontinuous. All of these results are discussed in regard to further refinements of old models for the mechanism of conjugal transfer as well as a more radical departure from current dogma.  相似文献   

3.
A single strand of plasmid DNA is transferred during conjugation. We examined the mechanism of complementary strand synthesis in recipient cells following conjugative mobilization of derivatives of the IncQ plasmid R1162. A system for electroporation of donor cells, followed by immediate mating, was used to eliminate plasmid-specific replicative functions. Under these conditions, Escherichia coli recipients provided a robust mechanism for initiation of complementary strand synthesis on transferred DNA. In contrast, plasmid functions were important for efficient strand replacement in recipient cells of Salmonella enterica serovar Typhimurium. The mobilizing vector for R1162 transfer, the IncP1 plasmid R751, encodes a DNA primase with low specificity for initiation. This protein increased the frequency of transfer of R751 into Salmonella, but despite its low specificity, it was inactive on the R1162 derivatives. The R751 primase was slightly inhibitory for the transfer of both R751 and R1162 into E. coli. The results show that there is a chromosomally encoded mechanism for complementary strand synthesis of incoming transferred DNA in E. coli, while plasmid-specific mechanisms for this synthesis are important in Salmonella.  相似文献   

4.
Molecular Studies on Entry Exclusion in Escherichia coli Minicells   总被引:11,自引:9,他引:2       下载免费PDF全文
Minicells produced by abnormal cell division in a strain of Escherichia coli (K-12) have been employed here to investigate the phenomenon of "entry exclusion." When purified minicells from strains containing F' or R factors, or both, are mated with radioactive thymidine-labeled Hfr or R(+) donors, the recipient minicells can be conveniently separated from normal-sized donors following mating, and the products of conjugation can be analyzed in the absence of donors and of further growth of the recipients. Transmissible plasmids or episomes are transferred less efficiently to purified minicells derived from strains carrying similar or related elements than to strains without them. Measurement of deoxyribonucleic acid (DNA) degradation and determination of weight-average molecular weights following transfer indicate that degradation of transferred DNA or transfer of smaller pieces cannot account for the comparative reduction in transfer to entry-excluding recipients. Therefore, we conclude that entry exclusion operates to prevent the physical entry of DNA into recipients expressing the exclusion phenotype. The R-produced repressor (product of the drd(+) gene), which represses fertility (i.e., ability to act as donor), reduces exclusion mediated by R or F factor, or both, in matings between strains carrying homologous elements. Furthermore, the data suggest that the presence of the F pilus or F-like R pilus on recipient cells ensures maximum expression of the exclusion phenotype but is not essential for its expression. In contrast to previous suggestions, we found no evidence for a reduction of entry exclusion attributable to the DNA temperature-sensitive chromosomal mutation dnaB(TS).  相似文献   

5.
Gene organization of the 54-kb transfer region of IncI1 plasmid R64 was deduced from the DNA sequence. Forty-eight ORFs were found in this region. A unique DNA rearrangement designated shufflon is located at the downstream region of an operon responsible for synthesis of thin pilus. The shufflon of R64 consists of four DNA segments, designated as A, B, C, and D, which are flanked and separated by seven 19-bp repeat sequences. Site-specific recombination mediated by the product of the rci gene between any two inverted repeats results in a complex DNA rearrangement. An analysis of open reading frames revealed that the shufflon is a biological switch to select one of seven C-terminal segments of the pilV genes. The products of pilV genes were shown to be components of thin pilus which was required for liquid mating.Seven R64 derivatives where the pilV genes were fixed in the seven C-terminal segments were constructed and their transfer frequencies in liquid mating were measured using various bacterial strains as recipients. Transfer frequencies of R64 in liquid mating strongly depended on the combination of C-terminal segments of the pilV genes in donor cells and bacterial strains of recipient cells, suggesting that the shufflon determines the recipient specificity in liquid mating of plasmid R64.  相似文献   

6.
Deoxyribonucleic acid (DNA) transfer from (3)H-thymine-labeled Hfr cells has been measured by determining the amount of radioactivity remaining after selective lysis of the donor cells in the mating mixture. DNA transfer was less effectively reduced by ultraviolet irradiation of excision-defective Hfr cells than was the yield of recombinants. The buoyant density of DNA transferred from unirradiated and irradiated Hfr cells was equivalent to that of double-stranded DNA. Mating-dependent DNA synthesis in the recipient has been measured by mating Hfr cells deficient in thymidine kinase with irradiated thymine-requiring F(-) cells in the presence of (3)H-thymine. The extent of such DNA synthesis approximated the amount of DNA transferred from unirradiated donors. Neither DNA transfer nor mating-dependent DNA synthesis could be reliably measured when both parents were irradiated. It is proposed that transferred Hfr DNA is replicated in the recipient and that this replication still occurs when the Hfr DNA contains dimers.  相似文献   

7.
The effects of rifampin and chloramphenicol on the transfer of ColIdrd-1 have been examined to determined whether transfer requires the synthesis of an untranslated species of ribonucleic acid (RNA), as proposed in models for the transfer of another IncIalpha plasmid, R64drd-11. When RNA synthesis was inhibited throughout mating by rifampin, ColI transfer between dna+ bacteria occurred at the normal rate for about 10 min and then stopped abruptly. Conjugational deoxyribonucleic acid (DNA) synthesis in dnaB mutants indicates that plasmid DNA was made in the rifampin-treated donors to replace the transferred material but the DNA tended to be unstable. In the presence of chloramphenicol, transfer of ColI gradually diminished over a longer period. Rifampin, but not chloramphenicol, was found to have unpredicted effects on chromosomal DNA metabolism in unmated dna+ and dnaB bacteria when they harbor any of three IncIalpha plasmids (ColIdrd-1, R144drd-3, and R64drd-11). Replication of the bacterial chromosome in such cells stopped abruptly about 15 min after the addition of rifampin, and at 41 degrees C, but not 37 degrees C, this was followed by extensive DNA breakdown. These findings suggest that curtailment of IncIalpha plasmid transfer by the drug results from a general disruption of DNA metabolism rather than from inhibition of a species of RNA essential for transfer.  相似文献   

8.
We used the LacO/GFP-LacI system to label and visualize the IncP beta plasmid R751 fluorescently during conjugative transfer between live donor and recipient bacteria. Comparisons of R751 in conjugative and non-conjugative conditions have allowed us to identify key localizations and movements associated with the initiation of conjugative transfer in the donor and the establishment of R751 in the recipient. A survey of successful mating pairs demonstrates that close physical contact between donor and recipient bacteria is required for DNA transfer and that regions of intimate contact can occur at any location on the donor or recipient cell membrane. The transferred DNA is positioned at the characteristic centre or quarter-cell position after conversion to a double-stranded molecule in the recipient cell. Initial duplication of plasmids often results in an asymmetric distribution of plasmid foci. Symmetric localization (either at centre or at 1/4 and 3/4 cell lengths) occurs only after a significant lag, presumably reflecting the time required to synthesize the plasmid-encoded partitioning proteins.  相似文献   

9.
The sog gene of the IncI alpha group plasmid ColIb is known to encode a DNA primase that can substitute for defective host primase in dnaG mutants of Escherichia coli during discontinuous DNA replication. The biological significance of this enzyme was investigated by using sog mutants, constructed from a derivative of ColIb by in vivo recombination of previously defined mutations in a cloned sog gene. The resultant Sog- plasmids failed to specify detectable primase activity and were unable to suppress a dnaG lesion. These mutants were maintained stably in E. coli, implying that the enzyme is not involved in vegetative replication of ColIb. However, the Sog- plasmids were partially transfer deficient in E. coli and Salmonella typhimurium matings, consistent with the hypothesis that the normal physiological role of this enzyme is in conjugation. This was confirmed by measurements of conjugal DNA synthesis. Studies of recipient cells have indicated that plasmid primase is required to initiate efficient synthesis of DNA complementary to the transferred strand, with the protein being supplied by the donor parent and probably transmitted between the mating cells. Primase specified by the dnaG gene of the recipient can substitute partially for the mutant enzyme, thus providing an explanation for the partial transfer proficiency of the mutant plasmids. Conjugal DNA synthesis in dnaB donor cells was deficient in the absence of plasmid primase, implying that the enzyme also initiates synthesis of DNA to replace the transferred material.  相似文献   

10.
Plasmid selection and strand replacement synthesis in donor cells during conjugative transfer was examined by a procedure involving electroporation of test plasmid DNA, containing a base pair mismatch, into donor cells prior to mating. Multiple copies of the plasmid were transferred from a donor cell that allowed vegetative replication of the plasmid. Under conditions non-permissive for vegetative replication, there were further rounds of transfer after a lag period. Strand replacement in the donor did not depend solely on the initiation mechanism for vegetative replication, indicating a conjugation-specific mechanism was also available. The lag period between first and second rounds of transfer argues against the transfer of multiple copies into recipients by the spooling of copies generated on a master molecule by rolling-circle replication.  相似文献   

11.
Parker C  Zhang XL  Henderson D  Becker E  Meyer R 《Plasmid》2002,48(3):7254-192
Strand-replacement synthesis during conjugative mating has been characterized by introducing into donor cells R1162 plasmid DNA containing a base-pair mismatch. Conjugative synthesis in donors occurs in the absence of vegetative plasmid replication, but with a lag between rounds of transfer, and with most strands being initiated at the normal site within the replicative origin. These characteristics argue against the idea that multiple plasmid copies are generated for successive rounds of transfer by rolling-circle replication. However, the R1162 relaxase protein can process molecules containing multiple transfer origins in the manner expected for the conversion of single-strand multimers, generated by rolling-circle replication, to unit-length molecules. This capability appears to be the result of a secondary cleavage reaction carried out by the protein. The possibility is raised that the processing of molecules with more than one origin of transfer might be a repair mechanism directed against adventitious DNA synthesis during transfer.  相似文献   

12.
Certain genetic, structural, and biochemical properties of a class 2 R-factor system consisting of the conjugally proficient transfer plasmid I and the naturally occurring non-conjugative tetracycline (Tc) resistance plasmid 219 are reported. I and 219 exist as separate plasmid deoxyribonucleic acid (DNA) species in both Escherichia coli and Salmonella panama, having molecular weights of 42 x 10(6) and 5.8 x 10(6), respectively. The buoyant densities of I and 219 are 1.702 and 1.710 g/cm(3), respectively, in neutral cesium chloride. Although the Tc resistance plasmid is not transmissible in a normal conjugal mating, it is mobilized in a three-component mating by plasmid I and by certain other conjugative plasmids of the fi(+) or fi(-) phenotype. Mobilization does not appear to involve intermolecular recombination between plasmids, and no covalent linkage of resistance markers and fertility functions is observed. Transformation of CaCl(2)-treated E. coli by plasmid DNA is shown to be a useful procedure for studying the biological properties of different plasmid molecular species that have been fractionated in vitro, and for selectively inserting non-self-transmissible plasmids into specific bacterial strains. The effects of tetracycline on the rate of protein synthesis carried out by plasmid 219 were studied by using isolated E. coli minicells into which this plasmid had segregated. Consistent with the results of earlier investigations showing the inducibility of plasmid-mediated Tc resistance in E. coli, the antibiotic was observed to stimulate protein synthesis in minicells carrying the plasmid 219 and totally inhibit (3)H-leucine incorporation by minicells lacking the Tc resistance marker. Five discrete polypeptide species were synthesized by minicells carrying plasmid 219; exposure of minicells or parent bacteria to Tc resulted in specific and reproducible changes in polypeptide synthesis patterns.  相似文献   

13.
Yamada Masao  Hirota Yukinori 《Gene》1982,20(3):471-475
Hybrid plasmids consisting of a non-mobilized plasmid, pBR322, and a segment of chromosomal DNA of Escherichia coli could be transferred from an Hfr donor to recipient cells by a bacterial mating. When the chromosomal DNA in the plasmid corresponded to the early transfer region of the Hfr, the frequency of the transfer was high. The recA function of both donor and recipient cells was required in the transfer. The physical association of the hybrid plasmid with the transferring Hfr chromosome through the homologous sequences may mediate the transfer of the non-mobilized plasmid. This phenomenon is useful for the determination of the chromosomal location of an unidentified fragment cloned in a non-mobilized plasmid.  相似文献   

14.
Although neither rifampicin nor spectinomycin had any effect on the frequency of Flac transfer by a sensitive donor, rifampicin but not spectinomycin prevented donor conjugal DNA synthesis as measured in matings between a dnaB donor and a tdk recipient. An untranslated RNA species is therefore probably required for this synthesis, although transfer took place even in its absence. Donor conjugal DNA synthesis was abolished in a dnaE donor, showing that DNA polymerase III is responsible for this process; again, plasmid DNA transfer was not affected.Flac mutants lacking the F pilus gave neither donor conjugal DNA synthesis nor plasmid DNA transfer, probably because they could not receive a “mating signal” to activate the transfer process. The products of traI and traM were also required both for donor conjugal DNA synthesis and for physical transfer of plasmid DNA, probably being involved in the conversion of covalently closed circular plasmid DNA into the open circular form that is the substrate for the independent although normally simultaneous synthesis and transfer steps. In contrast, donor conjugal DNA synthesis took place at a normal rate in both piliated traG and traN mutants, and at a reduced rate in traD mutants, although in no case was there physical transfer of plasmid DNA. These gene products are therefore required for DNA transfer to the recipient, and in addition, the absence of the traD product may hinder DNA synthesis.Based upon these results, a scheme for the processing of DNA during conjugation is presented.  相似文献   

15.
Exclusion specified by the IncI plasmid R144 was determined by measuring the amount of donor DNA transferred to appropriate recipient cells. When recipient cells harboured an R144-derived Exc+ recombinant plasmid, the exclusion value determined in that way was comparable with the exclusion value determined by measuring the efficiency of transconjugant colony formation. When recipient cells harboured the plasmid R144drd-3, the exclusion value determined by measuring the amount of donor DNA transferred to recipient cells appeared more valid than the value determined by measuring transconjugant colony formation.  相似文献   

16.
pSAM2 is an 11 kb integrative element from Streptomyces ambofaciens that is capable of conjugal transfer. A system based on differential DNA modification by SalI methyltransferase was used to localize pSAM2 in the donor or recipient strain, and thus to determine the various steps associated with transfer. Initiation (i.e. excision and replication of pSAM2 in the donor) occurs a few hours after mating with a recipient strain. pSAM2 replicates in the recipient strain, spreads within the mycelium and then integrates into the chromosome. Transfer generally involves single-stranded DNA. In Streptomyces, only a few genes, such as traSA for pSAM2, are required for conjugal transfer. Using the differential sensitivity to the SalI restriction-modification system of transfers involving single- and double-stranded DNA, we found that pSAM2 was probably transferred to the recipient as double-stranded DNA. This provides the first experimental evidence for the transfer of double-stranded DNA during bacterial conjugation. Thus, TraSA, involved in pSAM2 transfer, and SpoIIIE, which is involved in chromosome partitioning in Bacillus subtilis, display similarities in both sequence and function: both seem to transport double-stranded DNA actively, either from donor to recipient or from mother cell to prespore.  相似文献   

17.
Estimating the rate of plasmid transfer: an end-point method   总被引:5,自引:0,他引:5  
We describe a method for determining the rate parameter of conjugative plasmid transfer that is based on single estimates of donor, recipient and transconjugant densities and the growth rate in exponential phase of the mating culture. The formula for estimating the plasmid transfer rate, gamma, was derived from a mathematical model describing cell growth and plasmid transfer in batch culture. Computer simulations were used to explore the sensitivity of this method to the realities of bacterial life, such as growth rate differences, plasmid segregation and transitory derepression of pilus synthesis. As predicted by the theory, mating experiments with the plasmid R1 in Escherichia coli K12 demonstrated that the estimate gamma is unaffected by cell density, donor:recipient ratio and mating time. Unlike previous techniques, our method allows us to investigate the effect of environmental factors on plasmid transfer rates when these factors also influence population growth rates. To illustrate this, we examined the effect of temperature on the rate of plasmid transfer.  相似文献   

18.
A stable virulent donor strain (EA 178R1-99) of Erwinia amylovora can transfer, by conjugation during a 3-h mating period, the gene or genes which determine(s) plant virulence to avirulent recipient strains (EA178-M64S1 and EA178-M173S1) of Escherichia amylovora. The virulence of over 200 recombinant clones was tested; they all were as virulent on immature Bartlett pear fruits (and, in the smaller series of strains tested, also, on Pyracantha twigs) as was the parent donor strain. Although the avirulent recipeint strains are amino acid auxotrophs, addition of the required amino acids to the inocula in plant virulence trials does not of itself restore virulence. Two small series of prototrophic revertant clones were selected from the auxotrophic avirulent recipient strains; only nine of the 21 prototrophic revertant clones regained virulence, whereas the other 12 prototrophic revertant clones remained avirulent, again suggesting a lack of parallelism between nutritional status and virulence in this system. Preliminary interrupted mating trials, carried out at 15-min intervals over 3 h, show that ser is transferred during the first 15 min, that pro starts entering at about 75 min (and with a higher frequency later), and that lac (originating from an integrated Escherichia coli F'lac) enters toward the end of the 3-h mating period and at a reduced frequency compared to the other markers. The gene or genes which determine(s) plant virulence in this Escherichia amylovora donor strain appear(s) to be transferred readily and seemingly completely to recipient strains during the first 15 min of a 3-h mating period. Exposure of the virulent donor strain to acridine orange or ethidium bromide does not result in loss of virulence, suggesting (but, of course, not proving conclusively) that the determinant(s) of virulence in Escherichia amylovora might be chromosomal rather than extrachromosomal.  相似文献   

19.
J Duke  D G Guiney 《Plasmid》1983,9(2):222-226
The role of the lipopolysaccharide (LPS) structure in the recipient cell during bacterial conjugation was studied using a series of well-defined LPS mutations in Salmonella minnesota. The plasmids Flac (IncFI) and R1drd19 (IncFII) transferred at a high frequency to the smooth S218 parent strain and the rough LPS mutants. However, R64drd1 1 (IncI alpha) transferred poorly to the LPS mutants compared with transfer to the smooth LPS parent strain. The decrease in R64drd1 1 transfer frequency correlated with the extent of the defect in LPS structure, suggesting that intact LPS on the recipient is a major requirement for R64drd1 1 mating. Transfer of the P-group plasmid, RK2, was not affected by changes in LPS structure. These results show that plasmids use different cell surface structures during conjugation, and that LPS is particularly important for R64drd1 1 transfer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号