首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization and regulation of testicular inhibin beta-subunit mRNA   总被引:1,自引:0,他引:1  
To understand the possible structures of testicular inhibin, we have isolated cDNAs coding for inhibin subunits from human testicular cDNA libraries. In this study we report that the nucleotide and predicted amino acid sequences for human testicular inhibin beta-B-subunit are similar to those of human ovary. In rat testis two species of beta-B-subunit mRNA [4.4 and 3.3 kilobases (kb)] appeared to be present in equal concentration, as opposed to rat ovary where a predominant band of 4.4 kb and a minor band of 3.3 kb were observed. One major species of beta-A-subunit mRNA (6.5 kb) was identified in both testis and ovary. The concentration of beta-A-subunit mRNA in the testis was very low, representing only 0.5% of that in rat ovary. The accumulation of beta-B-subunit mRNA peaked at 20 days of age and declined thereafter in a pattern similar to that of the alpha-subunit gene. Hypophysectomy caused a marked increase in the concentration as well as the total content of beta-B-subunit but no change in beta-A-subunit mRNA in rat testis. We have previously reported that FSH markedly increased alpha-subunit mRNA levels both in vivo and in vitro. By contrast, neither FSH nor testosterone has any significant effect on the accumulation of beta-A- or beta-B-subunit mRNAs in hypophysectomized animals or Sertoli cell primary cultures. We conclude that 1) the mRNAs for both beta-subunits are not regulated by FSH; and 2) hypophysectomy does not change and increases, respectively, the mRNAs for the beta-A- and beta-B-subunits. We conclude that the inhibin subunit mRNAs are differentially regulated in rat testis.  相似文献   

2.
Mammalian gametogenesis is regulated through complex interactions between germ and somatic cells. To investigate the mechanism underlying the differentiation of functional gametes, some genes specifically expressed during gametogenesis have been isolated and characterized. In a search for further examples of such genes, we have isolated from a newborn mouse testis cDNA library, a clone corresponding to mouse inhibin alpha-subunit. Although it is known that the inhibin alpha-subunit molecule is abundantly produced in ovarian follicle and in testicular Sertoli cells, the spatial and temporal patterns of expression of this gene remain to be elucidated. In this study, the patterns of expression of inhibin alpha-subunit mRNA during mouse gametogenesis were examined by RNA blot, cytoplasmic dot and in situ hybridization techniques. In the testis, the concentration of inhibin alpha-subunit mRNA increased from about 16 dpc (days post coitum), peaked at birth and then gradually decreased, paralleling testicular development. Inhibin alpha-subunit mRNA was localized in Sertoli cells of wild type as well as W/Wv testes. In adult testis, mRNA was restricted to the perinuclear cytoplasm of Sertoli cells. Inhibin alpha-subunit mRNA was expressed in follicle cells of adult ovary more abundantly than in adult testis. Analysis of expression during folliculogenesis showed that the accumulation of this mRNA began in preantrum follicles and the level of expression reached a maximum in Graafian follicles.  相似文献   

3.
A 3.4 kilobase cDNA complementary to rat transferrin receptor mRNA has been isolated from an adult rat testis cDNA library. The rat transferrin receptor nucleotide sequence was shown to be 82% similar to the human transferrin receptor sequence over the amino acid coding region and over 90% similar in the sequences known to be responsible for iron regulation in the human mRNA. The mRNA was shown by Northern blot analysis to be regulated by iron levels in Sertoli cells in culture. Iron depletion resulted in at least a 5-fold increase in receptor message in Sertoli cells, as well as in an actively growing testicular cell line (S10-7). The level of transferrin receptor mRNA in cultured Sertoli cells was not influenced by hormones; however, chronic administration of testosterone or FSH to hypophysectomized rats resulted in increased transferrin receptor mRNA levels in the testis. Northern blot analysis of mRNAs from testes of rats synchronized at various stages of the cycle of the seminiferous epithelium showed that transferrin receptor mRNA was differentially regulated throughout the cycle. Northern blots of mRNA from germinal cell populations derived from synchronized tests showed that the message was regulated in the nongerminal cell components of the tubule, most likely the Sertoli cell. The comparison of transferrin receptor mRNA levels in normal testes and testes from hypophysectomized rats, as well as in isolated germinal cells and cultured Sertoli cells, suggested that transferrin receptor mRNA levels were considerably higher in Sertoli cells than in other cell types of the seminiferous tubules.  相似文献   

4.
The effect of uni- and bilateral cryptorchidism on testicular inhibin and testosterone secretion and their relationships to gonadotropins were studied in rats. Mature Wistar male rats weighing approximately 300 g were made either uni- or bilaterally cryptorchid. Testicular inhibin and testosterone content and plasma levels of LH and FSH were examined 2 weeks later. A similar remarkable decrease in testicular inhibin content was found in uni- and bilaterally cryptorchid testes. On the other hand, the testicular testosterone content was significantly decreased only in unilaterally cryptorchid testis with an inverse increase in the contralateral testis. Plasma testosterone levels were normal and plasma LH and FSH increased significantly in both of the cryptorchid groups. These results showed that cryptorchidism impairs both Sertoli and Leydig cell functions. While testosterone production was compensated by increased LH for 2 weeks, neither inhibin secretion nor storage changed in cryptorchid or contralateral testes during the same period.  相似文献   

5.
Inhibin B is a testicular peptide hormone that regulates FSH secretion in a negative feedback loop. Inhibin B is a dimer of an alpha and a beta(B) subunit. In adult testes, the cellular site of production is still controversial, and it was hypothesized that germ cells contribute to inhibin B production. To determine which cell types in the testes may produce inhibin B, the immunohistochemical localization of the two subunits of inhibin B were examined in adult testicular biopsies with normal spermatogenesis, spermatogenic arrest, or Sertoli cell only (SCO) tubules. Moreover, using in situ hybridization with mRNA probes, the mRNA expression patterns of inhibin alpha and inhibin/activin beta(B) subunits have been investigated. In all testes, Sertoli cells and Leydig cells showed positive immunostaining for inhibin alpha subunit and expressed inhibin alpha subunit mRNA. Using inhibin beta(B) subunit immunoserum on testes with normal spermatogenesis and with spermatogenic arrest, intense labeling was located in germ cells from pachytene spermatocytes to round spermatids but not in Sertoli cells. Inhibin beta(B) subunit mRNA expression was intense in germ cells from spermatogonia to round spermatids and in Sertoli cells in these testes. In testes with SCO, high inhibin beta(B) subunit mRNA labeling density was observed in both Sertoli cells and Leydig cells, whereas beta(B) subunit immunostaining was negative for Sertoli cells and faintly positive for Leydig cells. These results agree with the recent opinion that inhibin B in adult men is possibly a joint product of Sertoli cells and germ cells.  相似文献   

6.
Inhibins and activins are implicated as endocrine regulators of follicle-stimulating hormone production and of testicular steroidogenesis and spermatogenesis in mammals. The potential involvement of these proteins in cockerels was investigated by measurement of circulating inhibin A, inhibin B, total inhibin alpha-subunit immunoreactivity (ir-alpha), activin A, LH, FSH, and testosterone from the juvenile state through to sexual maturity. Plasma inhibin A remained low between 6 to 12 wk of age and increased approximately threefold (P < 0.05) to a prepubertal peak between Weeks 14 to 18, followed by a gradual decline to the end of the study (Week 24). Although plasma FSH levels were not correlated to inhibin A before Week 16 (r = -0.17), they were negatively correlated from Week 18 (r = -0.49; P < 0.005). Inhibin B levels were below the assay detection limit until 16 wk of age but thereafter rose steadily in parallel with FSH (r = 0.27; P < 0.02) and testosterone (r = 0.35; P < 0.005). Thus, inhibins A and B showed divergent profiles during sexual maturation. Plasma ir-alpha levels were much higher than dimeric inhibin levels throughout, although the relative difference varied with age. Plasma activin A levels were below the assay detection at all times. Juvenile cockerels were actively immunized against a synthetic chicken inhibin alpha-subunit peptide conjugate to determine effects on plasma hormones and on testicular weight, morphology, and activin A content. Immunization generated circulating antibodies that bound (125)I-bovine 32-kDa inhibin but did not affect plasma FSH or testosterone levels at any stage of development. However, immunization reduced postpubertal plasma LH levels (P < 0.05) and promoted increased testicular weight (24%; P < 0.01) and total testicular activin A content (42%; P < 0.001) at 24 wk. Testis weight of immunized birds was positively correlated with inhibin antibody titer (r = 0.61; P < 0.05). Live weight gain was not affected by immunization. Morphometric analysis of testis sections showed that inhibin immunization had no effect on the fractional volume of the seminiferous tubule wall, seminiferous tubule lumen, or interstitial tissue area. Likewise, seminiferous tubule surface area and surface area:volume ratios were not different from controls. These findings support differential roles for inhibins A and B in regulating the pituitary-testicular axis during sexual maturation in the cockerel but highlight the need for more detailed studies to distinguish between potential endocrine and local intragonadal roles of inhibin-related peptides and to elucidate the mechanism by which immunization against inhibin alpha-subunit promotes testis enlargement without raising plasma FSH.  相似文献   

7.
FSH mediates its testicular actions via a specific Sertoli cell G protein-coupled receptor. We created a novel transgenic model to investigate a mutant human FSH receptor (FSHR(+)) containing a single amino acid substitution (Asp567Gly) equivalent to activating mutations in related glycoprotein hormone receptors. To examine the ligand-independent gonadal actions of FSHR(+), the rat androgen-binding protein gene promoter was used to direct FSHR(+) transgene expression to Sertoli cells of gonadotropin-deficient hypogonadal (hpg) mice. Both normal and hpg mouse testes expressed FSHR(+) mRNA. Testis weights of transgenic FSHR(+) hpg mice were increased approximately 2-fold relative to hpg controls (P < 0.02) and contained mature Sertoli cells and postmeiotic germ cells absent in controls, revealing FSHR(+)-initiated autonomous FSH-like testicular activity. Isolated transgenic Sertoli cells had significantly higher basal ( approximately 2-fold) and FSH-stimulated ( approximately 50%) cAMP levels compared with controls, demonstrating constitutive signaling and cell-surface expression of FSHR(+), respectively. Transgenic FSHR(+) also elevated testosterone production in hpg testes, in the absence of circulating LH (or FSH), and it was not expressed functionally on steroidogenic cells, suggesting a paracrine effect mediated by Sertoli cells. The FSHR(+) response was additive with a maximal testosterone dose on hpg testicular development, demonstrating FSHR(+) activity independent of androgen-specific actions. The FSHR(+) response was male specific as ovarian expression of FSHR(+) had no effect on hpg ovary size. These findings reveal transgenic FSHR(+) stimulated a constitutive FSH-like Sertoli cell response in gonadotropin-deficient testes, and pathways that induced LH-independent testicular steroidogenesis. This novel transgenic paradigm provides a unique approach to investigate the in vivo actions of mutated activating gonadotropin receptors.  相似文献   

8.
Rats were given s.c. implants of high (HT) or low (LT) doses of testosterone and 10 days later hypophysectomy or sham-operation was performed. The rats were killed after 50 days. Unilateral efferent duct ligation was performed 16 h before death to measure seminiferous tubule fluid production and the increment in testicular inhibin values (inhibin production). Inhibin levels in testis cytosols were measured by a pituitary cell culture bioassay. The LT implants maintained serum testosterone at control values and decreased testicular weight whereas HT implants raised serum testosterone 3-fold and maintained testicular weight at 75-85% of pretreatment levels. In intact rats, LT implants caused no change in testicular inhibin content but decreased inhibin production; no significant changes occurred with HT implants. After hypophysectomy both values were significantly suppressed and could not be maintained by HT or LT implants. However, the HT implants partly restored inhibin production despite their inability to influence testicular inhibin content. In contrast, tubule fluid production depended mainly on intratesticular testosterone levels and occurred normally in intact or hypophysectomized rats with HT but not LT implants. These results indicate that inhibin and seminiferous tubule fluid production, both functions of the Sertoli cell, are under different hormonal control. The maintenance of inhibin production by the testis requires the support of pituitary hormones, presumably FSH, while seminiferous tubule fluid production requires testosterone, presumably through LH stimulation of Leydig cells. These findings are consistent with the hypothesis that inhibin is produced in response to trophic stimulation by FSH.  相似文献   

9.
Hormonal deprivation achieved by hypophysectomy or gonadotropin-releasing hormone (GnRH)-antagonist treatment of immature rats resulted in markedly lower testicular gamma-glutamyl transpeptidase (GGT) activity than in the testes of age-matched controls. When begun 15 days after hypophysectomy, follicle-stimulating hormone (FSH) treatment significantly increased testicular GGT above that in testes from hypophysectomized controls in a time- and dose-dependent manner. In contrast, testosterone propionate had only a small effect. Testicular GGT was higher in adult hypophysectomized rats treated with FSH from the time of surgery than in untreated hypophysectomized rats; testosterone propionate treatment had no effect. GGT activity in Sertoli cells isolated from GnRH antagonist-treated or hypophysectomized immature rats was also lower than in cells from control rats. FSH treatment from the day of hypophysectomy resulted in Sertoli cell GGT values equivalent to those from intact controls. These data indicate that FSH regulates GGT activity in rat testis and Sertoli cells.  相似文献   

10.
The effects of testosterone administration on testicular inhibin content and histology were studied in bilaterally cryptorchid rats, in which a marked decrease in testicular inhibin content had been observed. Mature male Wistar rats weighing approximately 300 g were made bilaterally cryptorchid by placing the testes in the abdominal cavity. Testosterone in oil, 0.1, 1.0 or 10 mg, was given i.m. each week. Testicular inhibin and testosterone content, histology and plasma LH, FSH and testosterone were studied 2 weeks later. Abnormally decreased testicular inhibin in cryptorchidism was restored toward normal by testosterone in a dose dependent manner in 2 weeks after surgery. Sertoli cell structure also recovered toward normal with increasing amount of testosterone. Decreased testicular testosterone content and Leydig cell atrophy were observed with suppressed plasma LH and FSH after testosterone. These results showed that the increased plasma concentration of testosterone had a stimulatory effect on the Sertoli cell function in cryptorchidism, in which compensated Leydig cell failure was demonstrated.  相似文献   

11.
12.
The various mechanisms regulating testicular and ovarian androgen secretion are reviewed. Testicular androgen secretion is controlled by luteinizing hormone (LH) and follicle stimulating hormone (FSH), which influence the Leydig cell response to the LH. The contribution of prolactin, growth hormone and thyroid hormones to the Leydig cell function is discussed. The ovarian androgen secretion is regulated in a very similar fashion as the Leydig cell of testis. Prolactin, however, has an inhibitory effect on androgen secretion in the ovary. The intratesticular action of androgens is linked to spermatogenesis. Sertoli cells, by producing the androgen-binding protein, contribute to the intratubular androgen concentration. Inhibin production of the Sertoli cell is stimulated by androgens. In the ovary, androgens produced by the theca interna are used as precursors for the aromatization of estradiol, which stimulates together with FSH the mitosis of granulosa cells. The feedback control of androgen secretion is complicated, as the direct feedback mechanisms are joined by indirect feedback regulations like the peptide inhibin, which can be stimulated by androgens. Intragonadal mechanisms regulating androgen production are the cybernins for testicles and ovaries. In the testicle, estrogens from the Sertoli cells regulate the Leydig cell testosterone biosynthesis. In the ovary, nonaromatizable androgens are potent inhibitors of the aromatization activity in the granulosa cell. A peptide with a FSH receptor binding inhibiting activity is found in male and female gonads. Finally, LH-RH-like peptides have been found in the testicle, which are capable of inhibiting steroidogenesis. These gonadocrinins are similarly produced in granulosa cells of the ovary.  相似文献   

13.
Inhibins and activins: chemical properties and biological activity   总被引:2,自引:0,他引:2  
The long-sought, nonsteroidal, gonadal inhibitor of the secretion of FSH has been isolated, characterized, and the primary structure in several species (human, porcine, bovine, murine) has been deduced. Inhibins are proteins consisting of two subunits (18-kDa alpha- and 14-kDa beta-subunits) linked by disulfide bridges and two forms of inhibins were observed in human, porcine, and murine, but only one in bovine. Each form of inhibin (A and B) has a common alpha-subunit, but a highly homologous, distinct beta-subunit (beta A and beta B). The beta-subunits and the alpha-subunit are linked to form inhibins A and B which exert an inhibitory effect on basal FSH secretion, but the dimer formed by either two beta A-subunits or two distinct beta A- and two beta B-subunits (homoactivin-A and activin, respectively) possess FSH-stimulating activity. Inhibin secreted in response to FSH from the pituitary originates primarily from the granulosa cells of the ovary and the Sertoli cells of the testes, thus demonstrating a reciprocal feedback relationship.  相似文献   

14.
Recent reports suggest that activin (the dimer of inhibin beta subunits with FSH-releasing activity) has specific receptors on ovarian granulosa cells. The present study examined the effects of purified porcine activin on inhibin secretion and mRNA levels in granulosa cells obtained from immature, estrogen-treated rats. Cells were cultured for 48 h in culture media, or media containing FSH (10 ng/ml) and/or activin (30 ng/ml). Western blot analyses performed with affinity-purified antisera to inhibin alpha- and beta A-subunits revealed that treatment with either FSH or activin increased the secretion of inhibin alpha beta dimer (Mr 30,000), with a further increase after cotreatment. These results were confirmed by an inhibin alpha-subunit RIA, which revealed 7-, 14-, and 71-fold increases in the secretion of immunoreactive inhibin-alpha by activin, FSH, and activin plus FSH, respectively. TGF beta, a structural homolog of activin, also stimulated inhibin release, whereas follistatin was ineffective. Total RNA from cultured cells was hybridized with 32P-labeled inhibin alpha-subunit cRNA or beta-actin cDNA probes, and inhibin-alpha message levels were normalized with beta-actin mRNA levels. Northern blot analysis revealed that treatment with FSH and activin increased hybridization of a 1.5 kilobase (kb) message, corresponding to the inhibin alpha-subunit mRNA. Slot blot analyses indicated a 6- and 8-fold stimulation of inhibin alpha-subunit mRNA levels by FSH and activin, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
Immunocytochemical study on the localization of inhibin in the testes of human, bonnet monkey, dog and rat was carried out using indirect immunoperoxidase technique, in order to investigate the cell types involved in inhibin production/storage. A positive reaction was observed in the testes of human, monkey and dog while it was negative in rat testis using specific antiserum to human testicular inhibin generated against homogeneous preparation of human testicular inhibin in our laboratory. Inhibin was found to be localized in Sertoli cells, spermatogonia and primary spermatocytes of human, monkey and dog testes. A weak positive reaction was observed in spermatids of human testis only. Interestingly, Leydig cells of human, monkey and dog testes showed positive reaction indicating presence of inhibin in these cells also.  相似文献   

17.
Inhibin is a gonadal protein hormone that suppresses the secretion of FSH from pituitary gonadotrophs. It has previously been characterized as a heterodimer of two dissimilar subunits (alpha, 18 kilodaltons and beta, 14 kilodaltons) the smaller of which exists in two forms (beta A and beta B) and can form dimers that stimulate the secretion of FSH. In the present work, cDNA clones encoding the inhibin alpha- and beta A-subunits have been isolated from rat ovary and characterized. The alpha-inhibin cDNA predicts a precursor protein of 366 amino acids containing the 133 amino acid mature alpha-subunit at its COOH-terminus. The beta A-inhibin cDNA predicts a precursor protein of 424 amino acids containing the 116 amino acid beta A-subunit at its COOH-terminus. Analysis of rat ovarian RNA indicates that alpha-inhibin mRNA levels are stimulated by PMSG treatment in vivo. In cultured granulosa cells, FSH also stimulates alpha-inhibin mRNA, and the FSH effect is suppressed by cotreatment with GnRH. Hybridization in situ to rat ovarian tissue demonstrates that both the alpha-inhibin and beta A-inhibin mRNAs are specifically expressed in granulosa cells of the developing follicles.  相似文献   

18.
Sertoli and Leydig cell functions were evaluated in men with testicular damage due either to cytotoxic chemotherapy (CCT) or radiotherapy (XRT). Serum immunoactive inhibin, follicle-stimulating hormone (FSH), luteinizing hormone (LH) and testosterone concentrations were measured in 15 men (19-50 years) who had received 6-10 courses of combination CCT (mustine, vinblastine, procarbazine and prednisolone) for Hodgkin's disease 1-8 years earlier and 18 men (21-49 years) who had undergone unilateral orchidectomy for testicular seminoma followed by XRT (30 Gy) to the remaining testis, 1-4 years earlier. Normal men (n = 16, 19-36 years) acted as controls. Median inhibin (422 U/l) and testosterone (16.0 nmol/l) levels in the CCT-treated group were not significantly different from controls, whereas median FSH (14.5 IU/l) and LH (10.0 IU/l) levels were higher (p less than 0.0001 and p less than 0.001) than normal (2.9 and 5.5 IU/l). The median inhibin/FSH (I/FSH) ratio in the patients was lower (p less than 0.0001) than in the controls (33.8 vs. 187.0) as was the testosterone/LH (T/LH) ratio (1.7 vs. 3.8, p less than 0.001). In the XRT-treated group, both median inhibin (194.5 U/l) and testosterone (12.7 nmol/l) levels were lower (p less than 0.0001 and p less than 0.01) than normal (532.8 U/l and 20.0 nmol/l) in the presence of greatly elevated FSH (26.0 IU/l) and LH (14.5 IU/l) levels. In conclusion, CCT-induced testicular damage is associated with subtle Sertoli and Leydig cell dysfunction demonstrated by the reduced I/FSH and T/LH ratios; however, compensatory mechanisms maintain normal testosterone and inhibin levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
Mouse testes were cultured for 19--20 days at either 31 or 37 degrees C with a change of medium every 4 days. After treatment with charcoal and dextran T, the recovered testis media were incubated with rat anterior pituitary cells, and secretions of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were estimated by radioimmunoassay 3 days later. FSH release was significantly lowered when pituitary cells were grown with media of testes cultured 31 degrees C compared to cultures grown with fresh medium or with media of testes cultured at 37 degrees C for more than 4 days. LH secretion was normal in one experiment and reduced in the other with the media of testes cultured at 31 degrees C. Treatment of testicular media by heat or trypsin reduced the inhibiting activity. After 8 days at 37 degrees C, both germinal and Sertoli cells were damaged in the testis cultures, while at 31 degrees germinal cells alone were destroyed, Sertoli cells remained normal. These studies suggest that (1) a substance which responds to the definition of inhibition (protein--preferentially acting on FSH) is secreted in the medium of testis culture; (2) inhibin is produced by Sertoli cells; (3) inhibin is secreted only if the temperature is inferior to 37 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号