首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The K1 killer plasmid of Saccharomyces cerevisiae is a 1.5-megadalton linear double-stranded ribonucleic acid molecule. Using simplified screening and complementation procedures, we have isolated mutants in three chromosomal genes that are temperature sensitive for killer plasmid maintenance or replication. One of these genes, mak28-1, was located on chromosome X. Two of the temperature-sensitive mutants rapidly lost the wild-type killer plasmid of A364A during spore germination and outgrowth at nonpermissive temperatures, but during vegetative growth, they only lowered the plasmid copy number. These two mutants did not lose two other wild-type K1 killer plasmids, indicating a heterogeneity of the killer plasmids in laboratory yeast strains.  相似文献   

2.
Watanabe M  Hiraide K  Okada N 《Gene》2007,399(1):46-52
Mutation in the inward rectifier potassium channel gene, kir7.1, was previously identified as being responsible for the broader stripe zebrafish skin pattern mutant, jaguar/obelix. An amino acid substitution in this channel causes a broader stripe pattern than that of wild type zebrafish. In this study we analyzed cichlid homologs of the zebrafish kir7.1 gene. We identified two kinds of homologous genes in cichlids and named them cikir7.1 and cikir7.2. Southern hybridization using cichlid genome revealed that cichlids from the African Great Lakes, South America and Madagascar have two copies of the gene. Cichlids from Sri Lanka, however, showed only one band in this experiment. Database analysis revealed that only one copy of the kir7.1 gene exists in the genomes of the teleosts zebrafish, tetraodon, takifugu, medaka and stickleback. The deduced amino acid sequence of cikir7.1 is highly conserved among African cichlids, whereas that of cikir7.2 has several amino acid substitutions even in conserved transmembrane domains. Gene expression analysis revealed that cikir7.1 is expressed specifically in brain and eye, and cikir7.2 in testis and ovary; zebrafish kir7.1, however, is expressed in brain, eye, skin, caudal fin, testis and ovary. These results suggest that gene duplication of the cichlid kir7.1 occurred in a common ancestor of the family Cichlidae, that the function of parental kir7.1 was then divided into two genes, cikir7.1 and cikir7.2, and that the evolutionary rate of cikir7.2 might have been accelerated, thereby effecting functional diversification in the cichlid lineage. Thus, the evolution of kir7.1 genes in cichlids provides a typical example of gene duplication--one gene is conserved while the other becomes specialized for a novel function.  相似文献   

3.
The synthesis of killer double-stranded ribonucleic acid (dsRNA) in Saccharomyces cerevisiae was examined in seven different cell division cycle mutants (cdc) that are defective in nuclear deoxyribonucleic acid replication and contain the "killer character." In cdc28, cdc4, and cdc7, which are defective in the initiation of nuclear deoxyribonucleic acid synthesis, and in cdc23 or in cdc14, defective in medial or late nuclear division, an overproduction of dsRNA at the restrictive temperature was observed. In contrast to the above mutants, the synthesis of killer dsRNA is not enhanced at the restrictive temperature in either cdc8 or cdc21, which are defective in deoxyribonucleic acid chain elongation. Examination of killer sensitive strains (cdc7 K- and cdc4 K-) has shown that the complete killer dsRNA genome is essential for the overproduction of dsRNA at the restrictive temperature.  相似文献   

4.
The killer character of some Kluyveromyces lactis strains is associated with the presence of two linear double-stranded DNA, pGKl-1 (or k1) and pGKl-2 (or k2). Nucleotide sequencing has revealed that each DNA has inverted terminal repetitions of about 200 base-pairs whose 5' ends seem to be blocked. The repetitions of the two DNA do not share extensive sequence homology. The role of these repetitions in the replication of killer DNA is discussed.  相似文献   

5.
A novel killer toxin, encoded by a double-stranded linear DNA plasmid pGK l-1 (5.4 MDa) in Kluyveromyces lactis IFO 1267 was purified 320 000-fold from the culture broth of yeast. The toxin was obtained in an electrophoretically homogeneous state with a yield of 24% by hydroxyapatite column chromatography, chromatofocusing and polyacrylamide gel electrophoresis. The purified toxin was dissociated into two subunits with molecular masses of 27 kDa and above 80 kDa, as estimated by Laemmli's sodium dodecylsulfate gel electrophoresis; the exact composition ratio of the two subunits remains unestablished. The isoelectric point was between 4.4 and 4.8. As compared with the reported narrow pH range of action and instability of k1 killer toxin encoded by a double-stranded RNA plasmid of Saccharomyces cerevisiae, the K. Lactis toxin was effective with sensitive strains of S. cerevisiae in a relatively wider pH range between 4 and 8; it was stable for several months at pH 6.0 when stored below -20 degrees C. In contrast to the simple protein nature of the k1 killer toxin with a molecular mass of 11.47 kDa, the K. lactis toxin maintained a mannoprotein nature, as it was absorbed by a ConA-Sepharose column and eluted by methyl alpha-D-mannoside. The growth inhibitory activity of K. lactis toxin was enhanced 2-35-fold by the presence of 4-60% glycerol.  相似文献   

6.
Hairpin plasmid--a novel linear DNA of perfect hairpin structure.   总被引:10,自引:1,他引:9       下载免费PDF全文
Y Kikuchi  K Hirai  N Gunge    F Hishinuma 《The EMBO journal》1985,4(7):1881-1886
The terminal structures of deletion derivatives of linear DNA killer plasmid from yeast were analyzed. The yeast Kluyveromyces lactis harbors two unique double-stranded linear DNA killer plasmids, pGKL1 of 8.9 kb and pGKL2 of 13.4 kb. The killer toxin and the resistance to the killer are coded by pGKL1, while pGKL2 is required for the maintenance of pGKL1 in the cell. When the pGKL plasmids from K. lactis were transferred into Saccharomyces cerevisiae by transformation, non-killer transformants harboring pGKL2 and new plasmids, F1 of 7.8 kb and F2 of 3.9 kb, were obtained. F2 was shown to be a linear DNA arising from a 5-kb deletion of the right part of pGKL1. F1 was an inverted dimer of F2. Here we show that F2 has two different terminal structures: one end has a protein attached at the 5' terminus whereas the two strands of duplex are linked together at the other end, thus forming a hairpin structure. This is a novel type of autonomously replicating DNA molecule.  相似文献   

7.
Yeast killer mutants with altered double-stranded ribonucleic acid   总被引:49,自引:13,他引:36       下载免费PDF全文
Killer strains of Saccharomyces cerevisiae contain two species of double-stranded ribonucleic acid (dsRNA) with molecular weights estimated at 2.5 x 10(6) (L) and 1.4 x 10(6) (M). The M component appears to have a high adenine content. All mutants of killer which are defective for both the toxin and immunity functions lack the M dsRNA. One of these mutants has a novel dsRNA with a molecular weight of 5 x 10(5). Another class of killer mutants contains strains which are defective for either the toxin or the immunity function. They include temperature-sensitive killers, superkillers, and immunity-minus strains. The dsRNA profile of temperature-sensitive killers resembles that of the standard killer. The superkiller has 2.5 times more of the M dsRNA (1.4 x 10(6) daltons) than does the standard killer. Immunity-minus killers have, in addition to the two dsRNAs species of standard killer, a novel dsRNA with a molecular weight of 2.5 x 10(5). The data are consistent with the hypothesis that the M RNA controls toxin production. In addition, the two RNAs, L and M, seem to be regulated together. When the M RNA is missing, the amount of L is either greatly elevated or greatly reduced.  相似文献   

8.
Toh-E A  Wickner RB 《Genetics》1979,91(4):673-682
Yeast strains carrying a 1.5 x 10(6) molecular weight linear double-stranded RNA in virus-like particles (M dsRNA, the killer plasmid or virus) secrete a toxin that is lethal to strains not carrying this plasmid. Recessive mutations in any of four chromosomal genes (called ski1-ski4) result in increased production of toxin activity. We report here a mutation of the killer plasmid (called [KIL-sd] for ski-dependent) that makes the killer plasmid dependent for its replication on the presence of a chromosomal mutation in any ski gene. Thus, the [KIL-sd] plasmid is lost from SKI(+) strains. When the wild-type killer plasmid, [KIL-k], is introduced into a ski2-2 [KIL-o] strain, the killer plasmid changes to a [KIL-sd] plasmid. This may represent a specific form of mutagenesis or selective replication in the ski2-2 strain of [KIL-sd] variants (mutants) in the normal [KIL-k] population. The ski2-1 and ski2-3 mutations do not convert [KIL-k] to [KIL-sd], but ski2-3 does allow maintenance of the [KIL-sd] plasmid. The [KIL-sd] plasmid thus lacks a plasmid site or product needed for replication in wild-type cells.  相似文献   

9.
Two linear deoxyribonucleic acid plasmids, designated pGK11 and pGK12, were isolated from the yeast Kluyveromyces lactis IFO 1267. pGK11 and pGK12 had molecular weights of 5.4 X 10(6) and 8.4 X 10(6), respectively. Both plasmids possessed the same density of 1.687 g/cm3, lighter than the densities of mitochondrial (1.692 g/cm3) and nuclear (1.699 g/cm3) deoxyribonucleic acids. A restriction map of pGK11 was constructed from digestions by EcoRI, HindIII, PstI, and BamHI. pGK12 was cleaved by EcoRI into seven fragments and by BamHI into two fragments K. lactis IFO 1267 killed Saccharomyces cerevisiae sensitive and killer strains and certain strains of Saccharomyces italicus, K. lactis, Kluyveromyces thermotolerans, and K. vanudenii. All K. lactis strains lacking the pGK1 plasmids were nonkillers. A hybrid was constructed between K. lactis IFO 1267 and a nonkiller K. lactis strain lacking the plasmids and subjected to tetrad analysis after sporulation. The killer character was extrachromosomally transmitted in all tetrads in association with the pGK1 plasmids. The double-stranded ribonucleic acid killer plasmid could not be detected in any K. lactis killer strains. It is thus highly probable that the killer character is mediated by the linear deoxyribonucleic acid plasmids. A single chromosomal gene was found which was responsible for the resistance to the K. lactis killer.  相似文献   

10.
Chromosomal superkiller mutants of Saccharomyces cerevisiae.   总被引:18,自引:2,他引:16       下载免费PDF全文
Yeast strains carrying a 1.5 X 10(6)-dalton double-stranded RNA in virus-like particles secrete a protein toxin which is lethal to strains not carrying this species of double-stranded RNA. We find that recessive mutations in any of four chromosomal genes result in the superkiller phenotype, i.e., increased secretion of killer toxin activity by strains carrying the killer genome. These genes are designated ski1 through ski4 (for superkiller), ski3 and ski4 are located on chromosome XIV, and ski1 is on chromosome VII. A ski1 mutation results in a decreased rate of cell growth. The kex1 and kex2 mutations are epistatic to each ski mutation.  相似文献   

11.
A Meskauskas  D Citavicius 《Gene》1992,111(1):135-139
The cDNA copies of M2-1, the larger heat-cleavage product of M2 double-stranded (ds) RNA, have been synthesized, cloned, sequenced and expressed in yeast. This sequence, in combination with the known terminal sequence of M2-1 dsRNA, identifies a translation reading frame for a 362-amino-acid protein of 38.7 kDa, similar in size to the one of several protein species produced from M2-1 dsRNA in vitro translation. The expression of this cDNA clone in yeast confers both killer and immunity phenotypes.  相似文献   

12.
Killer plasmids pGKL1 and pGKL2 of double-stranded linear DNAs were transferred from Kluyveromyces lactis to strains of Kluyveromyces fragilis and Candida pseudotropicalis. The resultant killer strains produced 17-fold and 6-fold larger amounts of killer toxin than K. lactis did, respectively. The killer toxin produced by each species appeared to be a glycoprotein.  相似文献   

13.
The K1 killer virus (or plasmid) of Saccharomyces cerevisiae is a noninfectious double-stranded RNA genome found intracellularly packaged in an icosahedral capsid. This genome codes for a protein toxin and for resistance to that toxin. Defective interfering virus mutants are deletion derivatives of the killer virus double-stranded RNA genome; such mutants are called suppressive. Unlike strains carrying the wild-type genome, strains with these deletion derivatives are neither toxin producers nor toxin resistant. If both the suppressive and the wildtype virus are introduced into the same cell, most progeny become toxin-sensitive nonkillers (J. M. Somers, Genetics 74:571-579, 1973). Diploids formed by the mating of a killer with a suppressive strain were grown in liquid culture, and RNA was extracted from samples taken up to 41 generations after the mating. The ratio of killer RNA to suppressive RNA decreased with increasing generations; by 41 generations the killer RNA was barely detectable. The copy numbers of the suppressive genome and its parental killer were virtually the same in isogenic strains, as were the growth rates of diploid strains containing either virus alone. Therefore, suppressiveness, not being due to segregation or overgrowth by faster growing segregants, is likely due to preferential replication or maintenance of the suppressive genome. Three suppressive viruses, all derivatives of the same killer virus (T. K. Sweeney et al., Genetics 84:27-42, 1976), did not coexist stably. The evidence strongly indicates that the largest genome of the three slowly suppressed both of the smaller genomes, showing that larger genomes can suppress smaller ones and that suppression can occur between two suppressives. Of 48 isolates of strains carrying the suppressive viruses, 5 had newly detectable RNA species, all larger than the original suppressive genomes. At least seven genes necessary for maintenance of the wild-type killer virus (MAK genes) were needed by a suppressive mutant. No effect of ski mutations (affecting regulation of killer virus double-stranded RNA replication) on suppressiveness was observed.  相似文献   

14.
The Ustilago maydis virally encoded KP1 killer toxin   总被引:2,自引:1,他引:1  
Some strains of the plant-pathogenic fungus Ustilago maydis secrete toxins (killer toxins) that are lethal to susceptible strains of the same fungus. There are three well-characterized killer toxins in U. maydis–KP1, KP4, and KP6–which are secreted by the P1, P4, and P6 subtypes, respectively. These killer toxins are small polypeptides encoded by segments of an endogenous, persistent double-stranded RNA (dsRNA) virus in each U. maydis subtype. In P4 and P6, the M2 dsRNA segment encodes the toxin. In this work, the KP1 killer toxin was purified for internal amino acid sequence analysis, and P1M2 was identified as the KP1 toxin-encoding segment by sequence analysis of cDNA clones. The KP1 toxin is a monomer with a predicted molecular weight of 13.4kDa and does not have extensive sequence similarity with other viral anti-fungal toxins. The P1M2 segment is different from the P4 and P6 toxin-encoding dsRNA segments in that the 3’non-coding region of its plus strand has no sequence homology to the 3’ends of the plus strands of P1M1, P4M2, or P6M2.  相似文献   

15.
1. Ceramide composition and N-glycolylneuraminic acid content of gangliosides from gray and white matters and myelin of cerebrum and cerebellum were analyzed in eight species belonging to the suborder Odontoceti and two species to Mystacoceti. 2. The most characteristic feature was high contents of C20:0 (10-40%) and C24 species (5-40%). 3. Content of hydroxy fatty acid of C24 species was higher in cerebellum (5-20%) than cerebrum (0-3%). 4. Major component of long-chain base was dC18:1 (70-90%). 5. N-glycolylneuraminic acid was found in sperm whale, Dall's porpoise and killer whale (0.1-1.7%).  相似文献   

16.
A strain of Yarrowia lipolytica isolated from a tropical estuarine environment showed the presence of a double-stranded RNA. The double-stranded RNA had a molecular size of 5kb and a G+C content of 61 mole%. The strain was not a killer. No specific physiological function could be assigned to this plasmid.  相似文献   

17.
18.
A strain of Yarrowia lipolytica isolated from a tropical estuarine environment showed the presence of a double-stranded RNA. The double-stranded RNA had a molecular size of 5kb and a G+C content of 61 mole%. The strain was not a killer. No specific physiological function could be assigned to this plasmid.  相似文献   

19.
20.
Killer yeasts secrete protein toxins that are lethal to sensitive strains of the same or related yeast species. Among the four types of Saccharomyces killer yeasts already described (K1, K2, K28, and Klus), we found K2 and Klus killer yeasts in spontaneous wine fermentations from southwestern Spain. Both phenotypes were encoded by medium-size double-stranded RNA (dsRNA) viruses, Saccharomyces cerevisiae virus (ScV)-M2 and ScV-Mlus, whose genome sizes ranged from 1.3 to 1.75 kb and from 2.1 to 2.3 kb, respectively. The K2 yeasts were found in all the wine-producing subareas for all the vintages analyzed, while the Klus yeasts were found in the warmer subareas and mostly in the warmer ripening/harvest seasons. The middle-size isotypes of the M2 dsRNA were the most frequent among K2 yeasts, probably because they encoded the most intense K2 killer phenotype. However, the smallest isotype of the Mlus dsRNA was the most frequent for Klus yeasts, although it encoded the least intense Klus killer phenotype. The killer yeasts were present in most (59.5%) spontaneous fermentations. Most were K2, with Klus being the minority. The proportion of killer yeasts increased during fermentation, while the proportion of sensitive yeasts decreased. The fermentation speed, malic acid, and wine organoleptic quality decreased in those fermentations where the killer yeasts replaced at least 15% of a dominant population of sensitive yeasts, while volatile acidity and lactic acid increased, and the amount of bacteria in the tumultuous and the end fermentation stages also increased in an unusual way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号