首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 387 毫秒
1.
Minute virus of mice (MVM) enters the host cell via receptor-mediated endocytosis. Although endosomal processing is required, its role remains uncertain. In particular, the effect of low endosomal pH on capsid configuration and nuclear delivery of the viral genome is unclear. We have followed the progression and structural transitions of DNA full-virus capsids (FC) and empty capsids (EC) containing the VP1 and VP2 structural proteins and of VP2-only virus-like particles (VLP) during the endosomal trafficking. Three capsid rearrangements were detected in FC: externalization of the VP1 N-terminal sequence (N-VP1), cleavage of the exposed VP2 N-terminal sequence (N-VP2), and uncoating of the full-length genome. All three capsid modifications occurred simultaneously, starting as early as 30 min after internalization, and all of them were blocked by raising the endosomal pH. In particles lacking viral single-stranded DNA (EC and VLP), the N-VP2 was not exposed and thus it was not cleaved. However, the EC did externalize N-VP1 with kinetics similar to those of FC. The bulk of all the incoming particles (FC, EC, and VLP) accumulated in lysosomes without signs of lysosomal membrane destabilization. Inside lysosomes, capsid degradation was not detected, although the uncoated DNA of FC was slowly degraded. Interestingly, at any time postinfection, the amount of structural proteins of the incoming virions accumulating in the nuclear fraction was negligible. These results indicate that during the early endosomal trafficking, the MVM particles are structurally modified by low-pH-dependent mechanisms. Regardless of the structural transitions and protein composition, the majority of the entering viral particles and genomes end in lysosomes, limiting the efficiency of MVM nuclear translocation.  相似文献   

2.
The terminal hairpin structures of the DNA of minute virus of mice (MVM) are essential for viral replication. Here we show that the hairpin 3' terminus of MVM replicative-form DNA binds specifically to empty MVM capsids. Binding of the same terminal DNA sequence in its linear double-stranded (extended) conformation was not observed. After heat denaturation and quick cooling of 3'-terminal extended-form fragments, not only the virion strand but also the complementary strand was found to bind to the capsid, presumably because each strand re-formed a similar hairpin structure. No binding affinity for the capsid was found to be associated with hairpin or extended 5' termini or with any other region of the viral DNA. Hydroxyl radical footprinting analyses revealed three protected nucleotide stretches forming a binding site at the branch point of the two 3'-terminal hairpin arms looping out from the DNA stem (T structure). Single base changes within this site did not affect the binding. In band shift experiments, specific binding to the T structure was demonstrated for VPI but not for VP2.  相似文献   

3.
It is uncertain whether nonenveloped karyophilic virus particles may actively traffic from the nucleus outward. The unordered amino-terminal domain of the VP2 major structural protein (2Nt) of the icosahedral parvovirus minute virus of mice (MVM) is internal in empty capsids, but it is exposed outside of the shell through the fivefold axis of symmetry in virions with an encapsidated single-stranded DNA genome, as well as in empty capsids subjected to a heat-induced structural transition. In productive infections of transformed and normal fibroblasts, mature MVM virions were found to efficiently exit from the nucleus prior to cell lysis, in contrast to the extended nuclear accumulation of empty capsids. Newly formed mutant viruses lacking the three phosphorylated serine residues of 2Nt were hampered in their exit from the human transformed NB324K nucleus, in correspondence with the capacity of 2Nt to drive microinjected phosphorylated heated capsids out of the nucleus. However, in normal mouse A9 fibroblasts, in which the MVM capsid was phosphorylated at similar sites but with a much lower rate, the nuclear exit of virions and microinjected capsids harboring exposed 2Nt required the infection process and was highly sensitive to inhibition of the exportin CRM1 in the absence of a demonstrable interaction. Thus, the MVM virion exits the nucleus by accessing nonconventional export pathways relying on cell physiology that can be intensified by infection but in which the exposure of 2Nt remains essential for transport. The flexible 2Nt nuclear transport signal may illustrate a common structural solution used by nonenveloped spherical viruses to propagate in undamaged host tissues.  相似文献   

4.
Herpes simplex virus virion protein 19C (VP19C) is a constituent of both unenveloped (nuclear) and enveloped (cytoplasmic) capsids. In this paper we report that 32P-labeled DNA, either supercoiled or linear double stranded, efficiently bound to VP19C electrically transferred from denaturing polyacrylamide gels containing electrophoretically separated proteins from purified capsids. Analyses of the polypeptides specified by herpes simplex virus type 1 X herpes simplex type 2 recombinants with respect to electrophoretic mobility and binding of 32P-labeled DNA indicate that VP19C maps at the same location as infected cell polypeptide 32 and is derived from it.  相似文献   

5.
A partially purified preparation of DNA polymerase alpha, obtained from the cytosol of Ehrlich ascites tumour cells, has been found to catalyze the conversion of MVM parvovirus, SS DNA (5 kilobases) to RF in vitro. The reaction initiates at a natural 55 base pair hairpin which exists at the 3' terminus of MVM SS DNA. The SS leads to RF conversion is sensitive to aphidicolin, resistant to ddTTP and is promoted by purine ribonucleoside 5' triphosphates, a phenomenon which could not be explained simply by stabilization effects on the in vitro deoxynucleotide precursor pool. In the absence of rNTPs, nascent complementary strands frequently terminate prematurely at a preferred location, between 1300 and 1700 nucleotides from the initiating 3' hairpin terminus. This in vitro system, involving self-primed parvovirus DNA synthesis, provides a convenient assay for those components of the mammalian replicative DNA polymerase complex which are required for the elongation of nascent DNA chains.  相似文献   

6.
The unique N-terminal region of the parvovirus VP1 capsid protein is required for infectivity by the capsids but is not required for capsid assembly. The VP1 N terminus contains a number of groups of basic amino acids which resemble classical nuclear localization sequences, including a conserved sequence near the N terminus comprised of four basic amino acids, which in a peptide can act to transport other proteins into the cell nucleus. Testing with a monoclonal antibody recognizing residues 2 to 13 of VP1 (anti-VP1-2-13) and with a rabbit polyclonal serum against the entire VP1 unique region showed that the VP1 unique region was not exposed on purified capsids but that it became exposed after treatment of the capsids with heat (55 to 75 degrees C), or urea (3 to 5 M). A high concentration of anti-VP1-2-13 neutralized canine parvovirus (CPV) when it was incubated with the virus prior to inoculation of cells. Both antibodies blocked infection when injected into cells prior to virus inoculation, but neither prevented infection by coinjected infectious plasmid DNA. The VP1 unique region could be detected 4 and 8 h after the virus capsids were injected into cells, and that sequence exposure appeared to be correlated with nuclear transport of the capsids. To examine the role of the VP1 N terminus in infection, we altered that sequence in CPV, and some of those changes made the capsids inefficient at cell infection.  相似文献   

7.
We studied the effect of apurinic sites on DNA replication in mouse and human cells, using parvoviruses MVM (minute virus of mice) and H-1 as probes. Although apurinic sites are efficient blocks to the replication of these single-stranded DNA viruses in vivo, depurinated parvoviruses can be reactivated if host cells have been preexposed to a subtoxic dose of UV light. The target of this conditional reactivation process is the conversion of depurinated input DNA into double-stranded replicative forms; the concomitant increase in viral mutagenesis strongly suggests that apurinic sites can be bypassed in mammalian cells.  相似文献   

8.
We have observed the binding of viral and cellular proteins to the Aleutian disease virus (ADV) 3' terminus of replicative-form DNA. Gel retardation assays showed specific band shifts produced by whole-cell extracts from either ADV-infected or uninfected cells, as well as band reduction produced by ADV capsids. In all cases, binding was confined to the turnaround, T-shaped terminal form; no binding to the extended conformation of replicative-form DNA was detected. This indicates the importance of the T-shaped secondary structure in protein recognition. We have previously reported the binding of a 3'-terminal ADV DNA restriction fragment to the ADV capsid protein VP1 (K. Willwand and O.-R. Kaaden, Virology 166:52-57, 1988). Here we show that the region between nucleotides 14 and 102 on the ADV genome is required for binding. It is suggested that the VP1-DNA interaction mediates the binding of ADV DNA to empty viral capsids and that this is followed by displacement synthesis and packaging of ADV progeny DNA. A scheme for the possible mechanism of this process is presented.  相似文献   

9.
The complex infection process of parvoviruses is not well understood so far. An important role has been attributed to a phospholipase A2 domain which is located within the unique N terminus of the capsid protein VP1. Based on the structural difference between adeno-associated virus type 2 wild-type capsids and capsids lacking VP1 or VP2, we show via electron cryomicroscopy that the N termini of VP1 and VP2 are involved in forming globules inside the capsids of empty and full particles. Upon limited heat shock, VP1 and possibly VP2 become exposed on the outsides of full but not empty capsids, which is correlated with the disappearance of the globules in the inner surfaces of the capsids. Using molecular modeling, we discuss the constraints on the release of the globularly organized VP1-unique N termini through the channels at the fivefold symmetry axes outside of the capsid.  相似文献   

10.
Empty parvovirus B19 capsids were isolated from insect cells infected with a recombinant baculovirus expressing parvovirus B19 VP2 alone and also with a double-recombinant baculovirus expressing both VP1 and VP2. That VP2 alone can assemble to form capsids is a phenomenon not previously observed in parvoviruses. The stoichiometry of the capsids containing both VP1 and VP2 was similar to that previously observed in parvovirus B19-infected cells. The capsids were similar to native capsids in size and appearance, and their antigenicity was demonstrated by immunoprecipitation and enzyme-linked immunosorbent assay with B19-specific antibodies.  相似文献   

11.
Newly synthesized structural polypeptides of parvovirus LuIII, VP1 (62,000 daltons) and VP2 (74,000 daltons), were detected in nuclei of synchronized, infected HeLa cells at 11 to 12 h postinfection, i.e., after cells had passed through the S phase of the cell cycle. At this time, most of intranuclear viral polypeptides were associated with the chromatin acidic proteins. However, 13 to 14 h postinfection, about one-third of intranuclear VP1 and VP2 also could be extracted in the fraction containing nuclear sap proteins. According to pulse-chase experiments, VP1 and VP2 accumulated in the chromatin with a time lag of 20 to 30 min. About 90% of these chromatin-associated viral polypeptides represented empty viral capsids. In addition, chromatin prepared at 14 h postinfection contained 90 to 95% of the total intranuclear viral 16S replicative-form DNA. Since viral replicative-form DNA and empty viral capsids seem to be associated specifically with cellular chromatin, we assume that this subnuclear structure is the site of the synthesis of progeny viral DNA and the formation of complete virions.  相似文献   

12.
During the manufacture of biopharmaceuticals, numerous adventitious agents have been detected in Master Cell Banks, end-of-production cells as well as bulk harvest fluids. Recently, a number of large-scale production bioreactors have become infected with Minute Virus of Mice (MVM) during cGMP (current good manufacturing practices) operations, and this has resulted in both the loss of product and the need for major cleaning validation procedures to be put in place. We have developed a simple DNA extraction/PCR assay to detect the presence of MVM in cell culture supernatant (conditioned cell fluids). This highly specific assay can detect 10 or fewer genome equivalents (copies) of MVM following PCR and gel electrophoresis visualization. For routine high-throughput detection, 30–100 copies could be consistently detected. The extraction procedure was shown to reliably detect MVM at a concentration of 1 TCID50/ml. The combination of the extraction/PCR procedures establishes a powerful, sensitive, specific assay that can detect the presence of MVM sequences with a 1-day turnaround time.  相似文献   

13.
We previously reported that empty capsids of B19 parvovirus were formed by the major capsid protein (VP2) alone expressed in a baculovirus system, but the minor capsid protein (VP1), longer by 227 amino acids, alone did not form empty capsids. We report here further investigations of the constraints on capsid formation by truncated versions of VP1. Studies were performed with recombinant baculoviruses expressed in Sf9 cells. Severely shortened VP1, extended beyond the VP2 core sequence by about 70 amino acids of the unique region, formed capsids normal in appearance; longer versions of VP1 also formed capsids but did so progressively less efficiently and produced capsids of more markedly dysmorphic appearance as the VP1-unique region was lengthened.  相似文献   

14.
The connection between nuclear transport and morphogenesis of a large macromolecular entity has been investigated using the karyophylic capsid of the parvovirus minute virus of mice (MVM) as a model. The VP1 (82 kDa) and VP2 (63 kDa) proteins forming the T = 1 icosahedral MVM capsid at the respective 1:5 molar ratio of synthesis, could be covalently cross-linked with dimethyl suberimidate into two types of oligomeric assemblies, which were present at stoichiometric amounts in infected cell extracts and purified viral particles. The larger species contained VP1 and corresponded in size (200 kDa) to a heterotrimer of one VP1 and two VP2 subunits. The smaller species contained VP2 only and corresponded in size (180 kDa) to a homotrimer. The introduction of bulky residues or the truncation of side-chains involved in multiple interactions at the interfaces between trimers of VPs in the MVM capsid, produced the accumulation of trimeric intermediates that were competent in nuclear translocation but not in capsid assembly. These results indicate that MVM maturation proceeds by cytoplasmic oligomerization of the capsid subunits into two types of trimers, which are the assembly intermediates competent to translocate across the nuclear membrane. Consistent with this conclusion, mutations at basic residues that inactivate a previously identified beta-stranded nuclear localization motif, which notably are not involved in inter or intra-subunit contacts, led to cytoplasmic retention of the two types of trimers, with no evidence for other assembly intermediates. Although a fraction of the VP1-containing trimers were translocated into the nucleus driven by the conventional nuclear transport signal of VP1 N terminus, their further assembly in the absence of the VP2-only trimers yielded large molecular mass amorphous aggregates. Therefore, the nuclear transport stoichiometry of assembly intermediates may exert a morphogenetic quality control on macromolecular complexes like the MVM capsid.  相似文献   

15.
The sequence of molecular clones of the genome of MVM(i), a lymphotropic variant of minute virus of mice, was determined and compared with that of MVM(p), the fibrotropic prototype strain. At the nucleotide level there are 163 base changes: 129 transitions and 34 transversions. Most nucleotide changes are silent, with only 27 amino acids changes predicted, of which 22 are conservative. Notable differences between the MVM(i) and MVM(p) genomes which may account for the cell specificities of these viruses occur within the 3' nontranslated regions. The differences discussed include the absence of a 65-base-pair direct in MVM(i), the presence of only two polyadenylation sites in MVM(i) compared with four in MVM(p), and sequences that bear a resemblance to enhancer sequences. Also included in this paper is an important correction to the MVM(p) sequence (C.R. Astell, M. Thomson, M. Merchlinsky, and D. C. Ward, Nucleic Acids Res. 11:999-1018, 1983).  相似文献   

16.
Adeno-associated virus type 2 (AAV2) capsid assembly requires the expression of a virally encoded assembly-activating protein (AAP). By providing AAP together with the capsid protein VP3, capsids are formed that are composed of VP3 only. Electron cryomicroscopy analysis of assembled VP3-only capsids revealed all characteristics of the wild-type AAV2 capsids. However, in contrast to capsids assembled from VP1, VP2, and VP3, the pores of VP3-only capsids were more restricted at the inside of the 5-fold symmetry axes, and globules could not be detected below the 2-fold symmetry axes. By comparing the capsid assembly of several AAV serotypes with AAP protein from AAV2 (AAP-2), we show that AAP-2 is able to efficiently stimulate capsid formation of VP3 derived from several serotypes, as demonstrated for AAV1, AAV2, AAV8, and AAV9. Capsid formation, by coexpressing AAV1-, AAV2-, or AAV5-VP3 with AAP-1, AAP-2, or AAP-5 revealed the ability of AAP-1 and AAP-2 to complement each other in AAV1 and AAV2 assembly, whereas for AAV5 assembly more specific conditions are required. Sequence alignment of predicted AAP proteins from the known AAV serotypes indicates a high degree of homology of all serotypes to AAP-2 with some divergence for AAP-4, AAP-5, AAP-11, and AAP-12. Immunolocalization of assembled capsids from different serotypes confirmed the preferred nucleolar localization of capsids, as observed for AAV2; however, AAV8 and AAV9 capsids could also be detected throughout the nucleus. Taken together, the data show that AAV capsid assembly of different AAV serotypes also requires the assistance of AAP proteins.  相似文献   

17.
This report describes the distribution of conventional nuclear localization sequences (NLS) and of a beta-stranded so-called nuclear localization motif (NLM) in the two proteins (VP1, 82 kDa; VP2, 63 kDa) forming the T=1 icosahedral capsid of the parvovirus minute virus of mice (MVM) and their functions in viral biogenesis and the onset of infection. The approximately 10 VP1 molecules assembled in the MVM particle harbor in its 142-amino-acid (aa) N-terminal-specific region four clusters of basic amino acids, here called BC1 (aa 6 to 10), BC2 (aa 87 to 90), BC3 (aa 109 to 115), and BC4 (aa 126 to 130), that fit consensus NLS and an NLM placed toward the opposite end of the polypeptide (aa 670 to 680) found to be necessary for VP2 nuclear uptake. Deletions and site-directed mutations constructed in an infectious MVM plasmid showed that BC1, BC2, and NLM are cooperative nuclear transport sequences in singly expressed VP1 subunits and that they conferred nuclear targeting competence on the VP1/VP2 oligomers arising in normal infection, while BC3 and BC4 did not display nuclear transport activity. Notably, VP1 proteins mutated at BC1 and -2, and particularly with BC1 to -4 sequences deleted, induced nuclear and cytoplasmic foci of colocalizing conjugated ubiquitin that could be rescued from the ubiquitin-proteasome degradation pathway by the coexpression of VP2 and NS2 isoforms. These results suggest a role for VP2 in viral morphogenesis by assisting cytoplasmic folding of VP1/VP2 subviral complexes, which is further supported by the capacity of NLM-bearing transport-competent VP2 subunits to recruit VP1 into the nuclear capsid assembly pathway regardless of the BC composition. Instead, all four BC sequences, which are located in the interior of the capsid, were absolutely required by the incoming infectious MVM particle for the onset of infection, suggesting either an important conformational change or a disassembly of the coat for nuclear entry of a VP1-associated viral genome. Therefore, the evolutionarily conserved BC sequences and NLM domains provide complementary nuclear transport functions to distinct supramolecular complexes of capsid proteins during the autonomous parvovirus life cycle.  相似文献   

18.
19.
Herpesvirus capsids are regular icosahedrons with a diameter of a 125 nm and are made up of 162 capsomeres arranged on a T = 16 lattice. The capsomeres (VP5) interact with the triplex structure, which is a unique structural feature of herpesvirus capsid shells. The triplex is a heterotrimeric complex; one molecule of VP19C and two of VP23 form a three-pronged structure that acts to stabilize the capsid shell through interactions with adjacent capsomeres. VP19C interacts with VP23 and with the major capsid protein VP5 and is required for the nuclear localization of VP23. Mutation of VP19C results in the abrogation of capsid shell synthesis. Analysis of the sequence of VP19C showed the N-terminus of VP19C is very basic and glycine rich. It was hypothesized that this domain could potentially bind to DNA. In this study an electrophoretic mobility shift assay (EMSA) and a DNA condensation assay were performed to demonstrate that VP19C can bind DNA. Purified VP19C was able to bind to both a DNA fragment of HSV-1 origin as well as a bacterial plasmid sequence indicating that this activity is non-specific. Ultra-structural imaging of the nucleo-protein complexes revealed that VP19C condensed the DNA and forms toroidal DNA structures. Both the DNA binding and condensing properties of VP19C were mapped to the N-terminal 72 amino acids of the protein. Mutational studies revealed that the positively charged arginine residues in this N-terminal domain are required for this binding. This DNA binding activity, which resides in a non-conserved region of the protein could be required for stabilization of HSV-1 DNA association in the capsid shell.  相似文献   

20.
A purified preparation of MVM(i), a murine parvovirus closely related to minute virus of mice (MVM), was found to inhibit various functions mediated by murine T cells in vitro. Addition of MVM(i) virus to secondary allogeneic mixed leukocyte cultures resulted in the inhibition of both lymphocyte proliferation (3H-thymidine incorporation) and the generation of cytolytic T lymphocyte activity but not interferon production. MVM(i) virus also inhibited the growth and cytolytic activity of several cloned, long-term Lyt-2+ cytolytic T cell lines. Furthermore, the antigen-induced proliferative responses of parasite- (Leishmania) specific Lyt-1+ T cells in vitro was abrogated by the addition of MVM(i) virus to the culture. Finally, the suppression of an in vitro antibody response to SRBC by MVM(i) virus was the result of the inhibition of T helper cells required for the B cell response. These suppressive effects were specific for MVM(i); parallel studies in which the prototype MVM parvovirus was used showed no significant inhibition in the various systems tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号