首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is unclear whether cleft palate formation is attributable to intrinsic biomolecular defects in the embryonic elevating palatal shelves or to an inability of the shelves to overcome a mechanical obstruction (such as the tongue in Pierre Robin sequence) to normal fusion. Regardless of the specific mechanism, presumably embryonic palatal shelves are ultimately unable to bridge a critical distance and remain unapproximated, resulting in a clefting defect at birth. We propose to use a palate organ culture system to determine the critical distance beyond which embryonic palatal shelves fail to fuse (i.e., the minimal critical intershelf distance). In doing so, we hope to establish an in vitro cleft palate model that could then be used to investigate the contributions of various signaling pathways to cleft formation and to study novel in utero treatment strategies.Palatal shelves from CD-1 mouse embryos were microdissected on day 13.5 of gestation (E13.5; term = 19.5 days), before fusion. Using a standardized microscope ocular grid, paired palatal shelves were placed on a filter insert at precisely graded distances ranging from 0 (in contact) to 1.9 mm (0, 0.095, 0.19, 0.26, 0.38, 0.48, 0.57, 0.76, 0.95, and 1.9 mm). A total of 68 paired palatal shelves were placed in serum-free organ culture for 96 hours (n = 68). Sample sizes of 10 were used for each intershelf distance up to and including 0.48 mm (n = 60). For intershelf distances of 0.57 mm and greater, two-paired palatal shelves were cultured (n = 8). All specimens were assessed grossly and histologically for palatal fusion.Palatal fusion occurred in our model only when intershelf distances were 0.38 mm or less. At 0.38 mm, eight of 10 palates appeared grossly adherent, whereas six of 10 demonstrated clear fusion histologically with resolution of the medial epithelial seam and continuity of the palatal mesenchyme. None of the 18 palates fused when placed at intershelf distances of 0.48 mm or greater.Using our selected intershelf distances as a guideline, we have established an approximate minimal critical intershelf distance (0.48 mm) at which we can reliably expect no palatal fusion. Culturing palatal shelves at intershelf distances of 0.48 mm or greater results in nonfusion or clefting in vitro. This model will allow us to study biomolecular characteristics of unfused or cleft palatal shelves in comparison with fused shelves. Furthermore, we plan to study the efficacy of grafting with exogenous embryonic mesenchyme or candidate factors to overcome clefting in vitro as a first step toward future in utero treatment strategies.  相似文献   

2.
The mechanisms whereby X irradiation induces palatal clefting were investigated in vivo and in an in vitro organ culture system. When pregnant mice at day 12.5 of gestation were exposed to a 4-Gy dose of whole-body X radiation, the incidence of palatal clefting in their offspring was 91%. The volume of the irradiated palatal shelves was too low for them to make contact with each other. On gestational day 13.5 after labeling, bromodeoxyuridine-positive cells were sparse and apoptotic cells were abundant in the irradiated shelves. To prevent secondary effects of irradiation from the injured maternal body, fetal palatal explants were immediately transferred to an organ culture system after X irradiation in utero. The incidence of palatal clefting was 24%, much lower than the incidence in vivo. The addition of 10(-4) M of dexamethasone to the culture medium increased the incidence of palatal clefting to 56%. These findings indicated that X irradiation inhibited cell proliferation and induced apoptosis, resulting in small-volume palatal shelves that could not fuse with each other. The organ culture data also indicated that 4 Gy of irradiation appears to produce its effects both by a direct action on the fetus and indirectly by affecting the metabolism of the pregnant dam.  相似文献   

3.
During palatogenesis, fusion of the palatine shelves is a crucial event, the failure of which results in the birth defect, cleft palate. The fate of the midline epithelial seam (MES), which develops transiently upon contact of the two palatine shelves, is still strongly debated. Three major mechanisms underlying the regression of the MES upon palatal fusion have been proposed: (1) apoptosis has been evidenced by morphological and molecular criteria; (2) epithelial-mesenchymal transformation has been suggested based on ultrastructural and lipophilic dye cell labeling observations; and (3) migration of MES cells toward the oral and nasal areas has been proposed following lipophilic dye cell labeling. To verify whether epithelial-mesenchymal transformation of MES cells takes place during murine palatal fusion, we used the Cre/lox system to genetically mark Sonic hedgehog- and Keratin-14-expressing palatal epithelial cells and to identify their fate in vivo. Our analyses provide conclusive evidence that rules out the occurrence of epithelial-mesenchymal transformation of MES cells.  相似文献   

4.
During fusion of the mammalian secondary palate, it has been suggested that palatal medial edge epithelial (MEE) cells disappear by means of apoptosis, epithelial-mesenchymal transformation (EMT) and epithelial cell migration. However, it is widely believed that MEE cells never differentiate unless palatal shelves make contact and the midline epithelial seam is formed. In order to clarify the potential of MEE cells to differentiate, we cultured single (unpaired) palatal shelves of ICR mouse fetuses by using suspension and static culture methods with two kinds of gas-mixtures. We thereby found that MEE cells can disappear throughout the medial edge even without contact and adhesion to the opposing MEE in suspension culture with 95% O2/5% CO2. Careful examination of MEE cell behavior in the culture revealed that apoptosis, EMT, and epithelial cell migration all occurred at various stages of MEE cell disappearance, including the transient formation and disappearance of epithelial triangles and islets. In contrast, MEE cells showed poor differentiation in static culture in a CO2 incubator. Furthermore, mouse and human amniotic fluids were found to prevent MEE cell differentiation in the cultured single palatal shelf, although paired palatal shelves fused successfully even in the presence of amniotic fluid. We therefore conclude that terminal differentiation of MEE cells is not necessarily dependent on palatal shelf contact and midline epithelial seam formation, but such MEE cell differentiation appears to be prevented in utero by amniotic fluid unless palatal shelves make close contact and the midline epithelial seam is formed.  相似文献   

5.
The authors previously established an in vitro palate nonfusion model on the basis of a spatial separation between prefusion embryonic day 13.5 mouse palates (term gestation, 19.5 days). They found that an interpalatal separation distance of 0.48 mm or greater would consistently result in nonfusion after 4 days in organ culture. In the present study, they interposed embryonic palatal mesenchymal tissue between embryonic day 13.5 mouse palatal shelves with interpalatal separation distances greater than 0.48 mm in an attempt to "rescue" this in vitro palate nonfusion phenotype. Because no medial epithelial bilayer (i.e., medial epithelial seam) could potentially form, palatal fusion in vitro was defined as intershelf mesenchymal continuity with resolution of the medial edge epithelia bilaterally. Forty-two (n = 42) palatal shelf pairs from embryonic day 13.5 CD-1 mouse embryos were isolated and placed on cell culture inserts at precisely graded distances (0, 0.67, and 0.95 mm). Positive controls consisted of shelves placed in contact (n = 6). Negative controls consisted of shelves placed at interpalatal separation distances of 0.67 mm (n = 6) and 0.95 mm (n = 7) with no interposed mesenchyme. Experimental groups consisted of embryonic day 13.5 palatal shelves separated by 0.67 mm (n = 11) and 0.95 mm (n = 12) with interposed lateral palatal mesenchyme isolated at the time of palatal shelf harvest. Specimens were cultured for 4 days (n = 19) or 10 days (n = 23), harvested, and evaluated histologically. All positive controls at 4 and 10 days in culture showed complete histologic palatal fusion. All negative controls at 4 days and 10 days in culture remained unfused. Five of six palatal shelves separated at 0.67 mm interpalatal separation distance with interposed mesenchyme were fused at 4 days, and all five were fused at 10 days. At an interpalatal separation distance of 0.95 mm with interposed mesenchyme (n = 12), no palates (zero of four) were fused at 4 days, but seven of eight were fused at 10 days. These data suggest that nonfused palatal shelves can be "rescued" with an interposed graft of endogenous embryonic mesenchyme to induce fusion in vitro.  相似文献   

6.
The fate of the medial edge epithelial (MEE) cells during palatal fusion has been proposed to be either programmed cell death or epithelial-mesenchymal transformation. Vital cell labeling techniques were used to mark the MEE and observe their fate during palatal fusion in vitro. Fetal mouse palatal shelves were labeled with Dil and allowed to proceed through fusion while maintained in an organ culture system. The tissues were examined at several stages of palatal fusion for the distribution of Dil, presence of specific antigens and ultrastructural appearance of the cells. The MEE labeled with Dil occupied a midline position at all stages of palatal fusion. Initially the cells had keratin intermediate filaments and were separated from the underlying mesenchyme by an intact basement membrane. During the process of fusion the basement membrane was degraded and the Dil-labeled MEE were in contact with the mesenchymal-derived extracellular matrix. In the late stages of fusion the Dil-labeled MEE altered their cellular morphology, had vimentin intermediate filaments, and were not associated with an identifiable basement membrane. Dil-labeled cells, without an epithelial phenotype, remained present in the midline of the completely fused palate. The data indicate that the MEE did not die but underwent a phenotypic transformation to viable mesenchymal cell types, which were retained in the palatal mesenchyme.  相似文献   

7.
Wang Y  Dai Y  Li X  Chen CY  Li W  Yu Z 《Acta biologica Hungarica》2011,62(2):142-150
The effect of all-trans retinoic acid (atRA) on palatal fusion and the underlying mechanisms were investigated using organ culture. Compared with control group, the atRA-treated group (1 μM and 5 μM) had more medial edge epithelium (ME) remaining within the midline epithelial seam (MES). At 10 μM atRA, the opposing shelves were not in contact at the culture end (72 h). Cell death detection by TUNEL and laminin immunohistochemistry demonstrated that atRA (5 μM) induced apoptosis in mesenchyme and inhibited degradation of basal lamina within MES. Notably, migration and apoptosis of ME cells and degradation of basal lamina within MES markedly represented vehicle control palatal shelves in culture. Additionally, apoptosis was not detected in mesenchyme of control palatal shelves. Immunoblotting analysis revealed that Smad2 and Smad3 were endogenously activated and expression of Smad7 was inhibited during the fusion process. In contrast, atRA treatment abrogated phosphorylation of Smad2 and Smad3 and inducible expression of Smad7 in ME. From these data, it is assumed that inhibition of Smad pathway by atRA in ME may play a critical role in abrogation of the ME cell apoptosis and degradation of the basal laminin, which might contribute to failure of palatal fusion.  相似文献   

8.
Pathogenesis of cleft palate in TGF-beta3 knockout mice.   总被引:13,自引:0,他引:13  
We previously reported that mutation of the transforming growth factor-beta3 (TGF-beta3) gene caused cleft palate in homozygous null (-/-) mice. TGF-beta3 is normally expressed in the medial edge epithelial (MEE) cells of the palatal shelf. In the present study, we investigated the mechanisms by which TGF-beta3 deletions caused cleft palate in 129 x CF-1 mice. For organ culture, palatal shelves were dissected from embryonic day 13.5 (E13.5) mouse embryos. Palatal shelves were placed singly or in pairs on Millipore filters and cultured in DMEM/F12 medium. Shelves were placed in homologous (+/+ vs +/+, -/- vs -/-, +/- vs +/-) or heterologous (+/+ vs -/-, +/- vs -/-, +/+ vs +/-) paired combinations and examined by macroscopy and histology. Pairs of -/- and -/- shelves failed to fuse over 72 hours of culture whereas pairs of +/+ (wild-type) and +/+ or +/- (heterozygote) and +/-, as well as +/+ and -/- shelves, fused within the first 48 hour period. Histological examination of the fused +/+ and +/+ shelves showed complete disappearance of the midline epithelial seam whereas -/- and +/+ shelves still had some seam remnants. In order to investigate the ability of TGF-beta family members to rescue the fusion between -/- and -/- palatal shelves in vitro, either recombinant human (rh) TGF-beta1, porcine (p) TGF-beta2, rh TGF-beta3, rh activin, or p inhibin was added to the medium in different concentrations at specific times and for various periods during the culture. In untreated organ culture -/- palate pairs completely failed to fuse, treatment with TGF-beta3 induced complete palatal fusion, TGF-beta1 or TGF-beta2 near normal fusion, but activin and inhibin had no effect. We investigated ultrastructural features of the surface of the MEE cells using SEM to compare TGF-beta3-null embryos (E 12. 5-E 16.5) with +/+ and +/- embryos in vivo and in vitro. Up to E13.5 and after E15.5, structures resembling short rods were observed in both +/+ and -/- embryos. Just before fusion, at E14.5, a lot of filopodia-like structures appeared on the surface of the MEE cells in +/+ embryos, however, none were observed in -/- embryos, either in vivo or in vitro. With TEM these filopodia are coated with material resembling proteoglycan. Interestingly, addition of TGF-beta3 to the culture medium which caused fusion between the -/- palatal shelves also induced the appearance of these filopodia on their MEE surfaces. TGF-beta1 and TGF-beta2 also induced filopodia on the -/- MEE but to a lesser extent than TGF-beta3 and additionally induced lamellipodia on their cell surfaces. These results suggest that TGF-beta3 may regulate palatal fusion by inducing filopodia on the outer cell membrane of the palatal medial edge epithelia prior to shelf contact. Exogenous recombinant TGF-beta3 can rescue fusion in -/- palatal shelves by inducing such filopodia, illustrating that the effects of TGF-beta3 are transduced by cell surface receptors which raises interesting potential therapeutic strategies to prevent and treat embryonic cleft palate.  相似文献   

9.
To explain the disappearance of medial edge epithelial (MEE) cells during palatal fusion, programmed cell death, epithelial-mesenchymal transformation, and migration of these cells to the oral and nasal epithelia have been proposed. However, MEE cell death has not always been accepted as a mechanism involved in midline epithelial seam disappearance. Similarly, labeling of MEE cells with vital lipophilic markers has not led to a clear conclusion as to whether MEE cells migrate, transform into mesenchyme, or both. To clarify these controversies, we first utilized TUNEL techniques to detect apoptosis in mouse palates at the fusion stage and concomitantly analyzed the presence of macrophages by immunochemistry and confocal microscopy. Second, we in vitro infected the MEE with the replication-defective helper-free retroviral vector CXL, which carries the Escherichia coli lacZ gene, and analyzed beta-galactosidase activity in cells after fusion to follow their fate. Our results demonstrate that MEE cells die and transform into mesenchyme during palatal fusion and that dead cells are phagocytosed by macrophages. In addition, we have investigated the effects of the absence of transforming growth factor beta(3) (TGF-beta(3)) during palatal fusion. Using environmental scanning electron microscopy and TUNEL labeling we compared the MEE of the clefted TGF-beta(3) null and wild-type mice. We show that MEE cell death in TGF-beta(3) null palates is greatly reduced at the time of fusion, revealing that TGF-beta(3) has an important role as an inducer of apoptosis during palatal fusion. Likewise, the bulging cells observed on the MEE surface of wild-type mice prior to palatal shelf contact are very rare in the TGF-beta(3) null mutants. We hypothesize that these protruding cells are critical for palatal adhesion, being morphological evidence of increased cell motility/migration.  相似文献   

10.
The short stature homeobox gene SHOX is associated with idiopathic short stature in humans, as seen in Turner syndrome and Leri-Weill dyschondrosteosis, while little is known about its close relative SHOX2. We report the restricted expression of Shox2 in the anterior domain of the secondary palate in mice and humans. Shox2-/- mice develop an incomplete cleft that is confined to the anterior region of the palate, an extremely rare type of clefting in humans. The Shox2-/- palatal shelves initiate, grow and elevate normally, but the anterior region fails to contact and fuse at the midline, owing to altered cell proliferation and apoptosis, leading to incomplete clefting within the presumptive hard palate. Accompanied with these cellular alterations is an ectopic expression of Fgf10 and Fgfr2c in the anterior palatal mesenchyme of the mutants. Tissue recombination and bead implantation experiments revealed that signals from the anterior palatal epithelium are responsible for the restricted mesenchymal Shox2 expression. BMP activity is necessary but not sufficient for the induction of palatal Shox2 expression. Our results demonstrate an intrinsic requirement for Shox2 in palatogenesis, and support the idea that palatogenesis is differentially regulated along the anteroposterior axis. Furthermore, our results demonstrate that fusion of the posterior palate can occur independently of fusion in the anterior palate.  相似文献   

11.
Vital cell labeling techniques were used to trace the fate of the medial edge epithelial (MEE) cells during palatal fusion in vivo. Mouse palatal tissues were labeled in utero with DiI. The fetuses continued to develop in utero and tissues of the secondary palate were examined at several later stages of palatal ontogeny. The presence and distribution of DiI was correlated with the presence of cell phenotype-specific markers. During the initial stages of palatal fusion the DiI-labeled MEE were present in the midline position. These cells were attached to an intact laminin-containing basement membrane and contained keratin intermediate filaments. At later stages of palatogenesis the DiI-labeled MEE were not separated from the mesenchyme by an intact basement membrane and did not contain keratin. In late fetal development, DiI-labeled cells without an epithelial morphology were present in the mesenchyme. The transition of the DiI-labeled cells from an epithelial phenotype to a mesenchymal phenotype is consistent with a fate of epithelial-mesenchymal transformation rather than programmed cell death.  相似文献   

12.
Runx1 is expressed in medial edge epithelial (MEE) cells of the palatal shelf. Conditionally rescued Runx1−/− mice showed limited clefting in the anterior junction between the primary and the secondary palatal shelves, but not in the junction between the secondary palates. In wild type mice, the fusing epithelial surface exhibited a rounded cobblestone-like appearance, while such cellular prominence was less evident in the Runx1 mutants. We also found that Fgf18 was expressed in the mesenchyme underlying the MEE and that locally applied FGF18 induced ectopic Runx1 expression in the epithelium of the palatal explants, indicating that Runx1 was induced by mesenchymal Fgf18 signaling. On the other hand, unpaired palatal explant cultures revealed the presence of anterior-posterior (A-P) differences in the MEE fates and fusion mechanism. Interestingly, the location of anterior clefting in Runx1 mutants corresponded to the region with different MEE behavior. These data showed a novel function of Runx1 in morphological changes in the MEE cells in palatal fusion, which is, at least in part, regulated by the mesenchymal Fgf signaling via an epithelial-mesenchymal interaction.  相似文献   

13.
Cleft lip and palate syndromes are among the most common congenital malformations in humans. Mammalian palatogenesis is a complex process involving highly regulated interactions between epithelial and mesenchymal cells of the palate to permit correct positioning of the palatal shelves, the remodeling of the extracellular matrix (ECM), and subsequent fusion of the palatal shelves. Here we show that several matrix metalloproteinases (MMPs), including a cell membrane-associated MMP (MT1-MMP) and tissue inhibitor of metalloproteinase-2 (TIMP-2) were highly expressed by the medial edge epithelium (MEE). MMP-13 was expressed both in MEE and in adjacent mesenchyme, whereas gelatinase A (MMP-2) was expressed by mesenchymal cells neighboring the MEE. Transforming growth factor (TGF)-beta3-deficient mice, which suffer from clefting of the secondary palate, showed complete absence of TIMP-2 in the midline and expressed significantly lower levels of MMP-13 and slightly reduced levels of MMP-2. In concordance with these findings, MMP-13 expression was strongly induced by TGF-beta3 in palatal fibroblasts. Finally, palatal shelves from prefusion wild-type mouse embryos cultured in the presence of a synthetic inhibitor of MMPs or excess of TIMP-2 failed to fuse and MEE cells did not transdifferentiate, phenocopying the defect of the TGF-beta3-deficient mice. Our observations indicate for the first time that the proteolytic degradation of the ECM by MMPs is a necessary step for palatal fusion.  相似文献   

14.
Embryonic palatal responses to teratogens in serum-free organ culture.   总被引:2,自引:0,他引:2  
This study examines development of rat, mouse, and human embryonic palates in submerged, serum-free organ culture. The concentration-response profiles for retinoic acid (RA), triamcinolone (TRI), hydrocortisone (HC), dexamethasone (DEX), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were examined and the mechanisms of clefting in vitro were compared to observed in vivo responses. Craniofacial regions were dissected on gestational day (GD) 12 for mice and GD 14 for rat, and cultured for 3-4 days in Bigger's BGJb medium in flasks flushed with 50% O2, 45% N2, 5% CO2. Growth and fusion of secondary palates were scored under a dissecting microscope. In serum-free control medium, mouse and rat palatal fusion occurred within the 4-day culture period. Supplementing with fetal bovine serum (FBS) in excess of 1% interfered with growth and fusion in control medium. RA significantly inhibited fusion of mouse and rat palates at 5 x 10(-9) and 1 x 10(-10) M, respectively, with RA-induced clefting related to abnormal proliferation and differentiation of medial epithelia. In contrast, glucocorticoid-induced clefting was due to concentration-dependent inhibition of shelf growth. TRI significantly inhibited fusion at 4 x 10(-5) M, and 1 x 10(-4) M DEX or HC, inhibited fusion of 19 and 42% of shelves, respectively. The response rate for DEX in the presence of 1% FBS was increased (42% unfused). TCDD clefting was due to altered medial epithelial differentiation and 1 x 10(-8) M TCDD affected 36% of CD-1 mouse, 23% of C57BL/6N mouse, and 47% of F344 rat palates. When the medium was supplemented with 1% FBS, selenium, transferrin, and additional glutamine, the response of C57BL/6N embryos increased to 75%. This rate is similar to that reported for Trowell's-type cultures with IMEM:F12 medium and 1% FBS. The increased responsiveness to DEX or TCDD in the presence of serum suggests that an unknown factor in serum may be required for full activity. Three human embryonic palatal explants (GD 52 or 53) were cultured for 3-6 days and fused during culture. The present study demonstrates that serum-free organ culture supports development of mouse, rat, and human palatal explants. The present study demonstrates the capacity of this organ culture system to model palatogenesis for several species, and to distinguish between various mechanisms of clefting as presented through selected model compounds. This model should be useful for exploring mechanisms of activity at a cellular and molecular level.  相似文献   

15.
Palate development after fetal tongue removal in cortisone-treated mice   总被引:1,自引:0,他引:1  
Morphological studies of cortisone-induced cleft palate have shown retardation in the rotation of palatine shelves from a sagittal to a transverse plane. Cortisone also reduces fetal muscular movements, which may explain why displacement of the tongue from between the palatine shelves is delayed. Previous work with extrauterine development of control fetuses demonstrated that fetal membranes and tongue were major obstacles to shelf rotation. Thus, removal of these obstacles might permit rotation and fusion of palatine shelves in cortisone-treated fetuses. In the present experiment, fetuses from cortisone-treated strain CD-1 mice were released from uterus and membranes and allowed to develop for eight hours in a fluid medium with the umbilical cord left intact. Compared to 4% fusion in utero, there was palatal fusion in 20% of fetuses released from membranes. When the fetal tongue was removed during extrauterine development, the frequency of fusions increased to 61%. Fusion appeared normal by the criteria applicable through light microscopy. Thus, cortisone induces cleft palate primarily through interference with shelf rotation. The palatine shelves of treated fetuses retain their ability to fuse when they can come in contact during the normal time for palate closure.  相似文献   

16.
The avian secondary palate exhibits the unique feature of a midline cleft. Cryostat sections indicated that although extensive contact between homologous shelves was present, chick palatal medial edge epithelium (MEE) failed to fuse. The failure of fusion and subsequent clefting of the avian palate were correlated with continued proliferation of the avian MEE, a failure of selective MEE cell death, and an absence of elevated levels of intracellular cAMP. Moreover, immunohistochemical staining for cAMP and microspectrophotometric quantitation of staining intensity indicated that staining of chick MEE was significantly (p less than .01) less than murine MEE at comparable gestational ages. These data indicate that differentiation of the avian secondary palate is fundamentally different than reported for the mammalian palate in that many developmental events known to be associated with normal mammalian palate formation (cessation of MEE proliferation, MEE cell death, elevated levels of MEE cAMP) fail to occur in the chick. The developing avian secondary palate, with its midline cleft, thus provides an interesting and useful model system with which to compare mammalian palate formation where the palate is normally fused in the midline.  相似文献   

17.
TGF‐β3, TβR‐I, and TGF‐β‐activated Smad2 has been suggested to be a series of signaling molecules for secondary palate fusion. In this article, we show that a gene induced by TGF‐β, βig‐h3, is coincidentally expressed with TGF‐β3 in medial edge epithelial (MEE) cells undergoing apoptosis during normal palatal fusion. βig‐h3 was also highly expressed in the areas of post‐weaning mammary gland cells and developing phalangeal joints in which TGF‐β3 or BMP‐4‐induced apoptosis occurs, respectively. Blocking of βig‐h3 expression in E12.5 embryos with antisense oligodeoxynucleotides (ODN) resulted in cleft of the secondary palate in 84% of the treated mice that were born. Moreover, the antisense ODN treatment resulted in a failure of apoptosis in the MEE between palatal shelves in physical contact in organ culture. We conclude that βig‐h3 expression in the MEE is stimulated by TGF‐β3, causes cell death, and consequently results in complete fusion of the apposed palatal shelves. J. Cell. Biochem. 107: 818–825, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Retinoic acid alters epithelial differentiation during palatogenesis.   总被引:1,自引:0,他引:1  
Retinoids are teratogenic in humans and animals, producing a syndrome of craniofacial malformations that includes cleft palate. This study investigates the mechanism through which retinoic acid induces cleft palate. Murine palatogenesis after exposure to retinoic acid in utero is compared to normal development and to alterations observed after exposure in organ culture to retinoic acid or epidermal growth factor (EGF). Human embryonic palatal shelves were placed in the organ culture system and the responses to retinoic acid and EGF were compared to those of the murine palatal shelves. Growth factors play a role in normal development and are found in the embryonic palate. In other cell culture systems, retinoids alter the expression of EGF receptors. Our results suggest that in the medial epithelial cells of the palate, retinoic acid sustains the expression of the EGF receptor and the binding of EGF at a time when the expression in control medial cells has declined, and these control cells subsequently undergo programmed cell death. The continued DNA synthesis, proliferation, survival, and shift in phenotype of the medial cells is believed to interfere with the adhesion and fusion of opposing palatal shelves, resulting in cleft palate.  相似文献   

19.
During the fusion of rodent embryo palatal shelves, the cells of the outer epithelial layer slough off, allowing the cells of the medial edge basal layer to form a midline seam that undergoes epithelial-mesenchymal transformation, as judged by electron microscopy and immunohistochemistry. In this study, we analyze the fate of the transformed cells using a lipid soluble dye to label the medial edge epithelium in situ. Prefusion E14 mouse palates were exposed in vitro or in vivo to a fluoresceinated lipid soluble marker, carboxydichlorofluorescein diacetate succinimidyl ester (CCFSE), which localizes in epithelia as a lipid insoluble compound that does not pass into the connective tissue compartment. The midline seam that formed after 24 hours contained labelled epithelial cells that were replaced by individually labelled mesenchymal cells where the seam transformed. By light microscopy, the labelled cells were seen to contain intensely fluorescent bodies that do not react for acid phosphatase. We were able for the first time to identify these structures by electron microscopy as CCFSE isolation bodies. The cells with isolation bodies are clearly healthy and able to participate in subsequent development of the palate. At 4 days after labelling, individual CCFSE containing cells present in the palate mesenchyme occupy both midline and lateral areas and can clearly be classified as fibroblasts by electron microscopy. CCFSE is a far more useful marker than another lipid soluble marker, DiI, for following cells, because the cells can be fixed and identified both at the light and electron microscope levels. Interestingly, if labelled palatal shelves are not allowed to fuse in vitro, the basal epithelial cells do not form mesenchyme after sloughing, indicating that formation of the epithelial midline seam is necessary to trigger its epithelial-mesenchymal transformation.  相似文献   

20.
Malformations in secondary palate fusion will lead to cleft palate, a common human birth defect. Palate fusion involves the formation and subsequent degeneration of the medial edge epithelial seam. The cellular mechanisms underlying seam degeneration have been a major focus in the study of palatogenesis. Three mechanisms have been proposed for seam degeneration: lateral migration of medial edge epithelial cells; epithelial-mesenchymal trans-differentiation; and apoptosis of medial edge epithelial cells. However, there is still a great deal of controversy over these proposed mechanisms. In this study, we established a [Rosa26<-->C57BL/6] chimeric culture system, in which a Rosa26-originated ;blue' palatal shelf was paired with a C57BL/6-derived ;white' palatal shelf. Using this organ culture system, we observed the migration of medial edge epithelial cells to the nasal side, but not to the oral side. We also observed an anteroposterior migration of medial edge epithelial cells, which may play an important role in posterior palate fusion. To examine epithelial-mesenchymal transdifferentiation during palate fusion, we bred a cytokeratin 14-Cre transgenic line into the R26R background. In situ hybridization showed that the Cre transgene is expressed exclusively in the epithelium. However, beta-galactosidase staining gave extensive signals in the palatal mesenchymal region during and after palate fusion, demonstrating the occurrence of an epithelial-mesenchymal transdifferentiation mechanism during palate fusion. Finally, we showed that Apaf1 mutant mouse embryos are able to complete palate fusion without DNA fragmentation-mediated programmed cell death, indicating that this is not essential for palate fusion in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号