首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
V gamma 9V delta 2 T cell response to colon carcinoma cells   总被引:7,自引:0,他引:7  
During analysis of CD8 T cells derived from ascites of a colon cancer patient, we isolated a Vgamma9Vdelta2 T cell clone showing strong reactivity against autologous tumor cell lines. This clone killed a large fraction of allogeneic colon carcinoma and melanoma cell lines, but did not affect a normal colon cell line, colon fibroblasts, or melanocytes. Tumor cell recognition was TCR and NKG2D dependent and induced TNF-alpha and IFN-gamma secretion by the clone; accordingly, tumor targets expressed several NKG2D ligands, such as MHC class I chain-related gene A and UL16-binding protein molecules. Colon tumor recognition by Vgamma9Vdelta2 T cells was highly dependent on isopentenyl pyrophosphate production and ICAM-1 expression by target cells. Finally, similar reactivity patterns against colon carcinoma cell lines were observed using polyclonal Vgamma9Vdelta2 T cells of various origins, and Vgamma9Vdelta2 lymphocytes were present in the majority of colon tumor samples studied. Together, these results suggest that Vgamma9Vdelta2 T cells contribute to the natural immune surveillance against colon cancers. Therefore, this study provides a strong rationale for the use of Vgamma9Vdelta2 T cell agonists in immunotherapies targeting colon tumors.  相似文献   

2.
The global immune response can be simplified into two components: the innate and the acquired systems. The innate immune response comprises primarily macrophages and NK cells, while B and T cells orchestrate the acquired response. Human Vgamma9Vdelta2 T cells represent a minor T cell subpopulation in blood (1-5%) that is activated via the TCR by small nonpeptidic molecules. Their percentage dramatically increases during the early phase of infection by intracellular pathogens, and they display many characteristics of NK cells, which places them at a unique position within the immune system. Our aim was to explore the behavior of these cells when they are activated by a receptor that is common to NK and alphabeta T cells, and to determine signaling pathways and biological responses induced in these cells through this receptor. Thus, we investigated whether Vgamma9Vdelta2 T cells behave as NK cells or as alphabeta T cells. We demonstrated that IL-2 activates not only STAT3, STAT5, the phosphatidylinositol 3-kinase pathway, and extracellular signal-regulated kinase-2 pathway, but also STAT4 as in NK cells, and the p38 mitogen-activated protein kinase pathway as in alphabeta T cells. Moreover, IL-2 induces the production of IFN-gamma in Vgamma9Vdelta2 T cells as observed in NK cells. Due to their double profiles, Vgamma9Vdelta2 T cells are at the interface of the innate and the acquired immune response and may therefore not only modulate the activity of innate cells, but also influence Th1/Th2 differentiation.  相似文献   

3.
Human lymphocytes expressing the gammadelta TCR represent a minor T cell subpopulation found in blood. The majority of these cells express Vgamma9Vdelta2 determinants and respond to nonpeptidic phosphoantigens. Several studies have shown that, in vivo, the percentage of Vgamma9Vdelta2 T cells dramatically increases during pathological infection, leading to the hypothesis that they play an important role in the defense against pathogens. However, the specific mechanisms involved in this response remain poorly understood. It has been established that Vgamma9Vdelta2 T cells display potent cytotoxic activity against virus-infected and tumor cells, thereby resembling NK cells. In this study, we show that, upon stimulation by nonpeptidic Ags, Vgamma9Vdelta2 T cells express FcgammaRIIIA (CD16), a receptor that is constitutively expressed on NK cells. CD16 appears to be an activation Ag for Vgamma9Vdelta2 T cells. Indeed, ligation of CD16 on Vgamma9Vdelta2 T cells leads to TNF-alpha production. This TNF-alpha production, which is dependent (like that induced via the TCR-CD3 complex) on the activation of the p38 and extracellular signal-regulated kinase-2 mitogen-activated protein kinases, can be modulated by CD94 NK receptors. Therefore, it appears that Vgamma9Vdelta2 T cells can be physiologically activated by two sequential steps via two different cell surface Ags: the TCR-CD3 complex and the FcgammaRIIIA receptor, which are specific cell surface Ags for T lymphocytes and NK cells, respectively. This strongly suggests that, in the general scheme of the immune response, Vgamma9Vdelta2 T cells represent an important subpopulation of cells that play a key role in the defense against invading pathogens.  相似文献   

4.
Ly49 and CD94/NKG2 inhibitory receptors are predominantly expressed on murine NK cells, but they are also expressed on a subpopulation of peripheral CD8 memory TCR alphabeta lymphocytes. In this study we demonstrate that Ly49E and CD94/NKG2 receptors are expressed on mature TCR Vgamma3(+) cells in the fetal thymus. Expression correlated with a memory phenotype, such as expression of CD44, 2B4, and IL-2Rbeta (CD122), and absence of IL-2Ralpha (CD25) expression. No expression of Ly49A, C, D, G2, or I receptors was observed. This phenotype is similar to that of fetal thymic NK cells. Skin-located Vgamma3 T cells, the progeny of fetal thymic Vgamma3 cells, also expressed CD94/NKG2 and Ly49E but not the other members of the Ly49 family. The development and survival of Ly49E(+) or CD94/NKG2(+) Vgamma3 T lymphocytes was not dependent upon expression of MHC class I molecules. The cytotoxicity of TCR Vgamma3 cells was inhibited when Qdm, the ligand for CD94/NKG2, was presented by Qa1(b)-transfected target cells. Also, upon cross-linking of CD94/NKG2 with mAb 3S9, TCR Vgamma3 thymocytes were prevented from killing FcgammaR(+) P815 target cells. These effects were most pronounced in the CD94/NKG2(high) subpopulation as compared with the CD94/NKG2(low) subpopulation of Vgamma3 cells. Our data demonstrate that Vgamma3 T cells expressing inhibitory Ly49E and CD94/NKG2 receptors are mature and display a memory phenotype, and that CD94/NKG2 functions as an inhibitory receptor on these T lymphocytes.  相似文献   

5.
Tumor cells often escape immunosurveillance by down-regulating MHC class I molecule expression. For human Vgamma9Vdelta2 T cells, a major peripheral blood T cell subset with broad antitumor reactivity, this down-regulation can affect signals transmitted by both the inhibitory and the activating MHC class I and Ib-specific NK receptors (NKRs) that these lymphocytes frequently express. To assess the overall impact of MHC down-regulation on Vgamma9Vdelta2 T cell activation, we used stable beta(2)-microglobulin knockdown to generate tumor cells with a approximately 10-fold down-modulation of all MHC class I molecules. This down-modulation had little effect on T cell proliferation or cytokine production, but modified tumor cell killing efficiency. Ab-blocking studies identified ILT2 as an important inhibitor of tumor cell killing by Vgamma9Vdelta2 T cells. Down-modulation of MHC class I and Ib molecules severely reduced ILT2 inhibitory signaling, but still allowed signaling by activating CD94-based receptors. It also unveiled a frequent enhancing effect of NKG2D on tumor killing by Vgamma9Vdelta2 T cells. Current models suggest that activating NKRs have less affinity for their MHC ligands than homologous inhibitory NKRs. Our results show that, despite this, activating NKRs recognizing MHC class I molecules play an important role in the increased killing by Vgamma9Vdelta2 T cells of tumor cells with down-regulated MHC class I molecule expression, and suggest that these T cells will best lyse tumor cells combining MHC class I molecule expression down-regulation with up-regulated NKG2D ligand expression.  相似文献   

6.
Human Vgamma9Vdelta2 T cells recognize nonpeptidic Ags generated by the 1-deoxy-d-xylulose 5-phosphate (many eubacteria, algae, plants, and Apicomplexa) and mevalonate (eukaryotes, archaebacteria, and certain eubacteria) pathways of isoprenoid synthesis. The potent Vgamma9Vdelta2 T cell reactivity 1) against certain cancer cells or 2) induced by infectious agents indicates that therapeutic augmentations of Vgamma9Vdelta2 T cell activities may be clinically beneficial. The functional characteristics of Vgamma9Vdelta2 T cells from Macaca fascicularis (cynomolgus monkey) are very similar to those from Homo sapiens. We have found that the i.v. administration of nitrogen-containing bisphosphonate or pyrophosphomonoester drugs into cynomolgus monkeys combined with s.c. low-dose (6 x 10(5) U/animal) IL-2 induces a large pool of CD27+ and CD27- effector/memory T cells in the peripheral blood of treated animals. The administration of these drugs in the absence of IL-2 is substantially less effective, indicating the importance of additional exogenous costimuli. Shortly after the costimulatory IL-2 treatment, only gammadelta (but not alphabeta) T cells expressed the CD69 activation marker, indicating that Vgamma9Vdelta2 T lymphocytes are more responsive to low-dose IL-2 than alphabeta T cells. Up to 100-fold increases in the numbers of peripheral blood Vgamma9Vdelta2 T cells were observed in animals receiving the gammadelta stimulatory drug plus IL-2. Moreover, the expanded Vgamma9Vdelta2 T cells were potent Th1 effectors capable of releasing large amounts of IFN-gamma. These results may be relevant for designing novel (or modifying current) immunotherapeutic trials with nitrogen-containing bisphosphonate or pyrophosphomonoester drugs.  相似文献   

7.
Metastatic renal cell carcinoma, inherently resistant to conventional treatments, is considered immunogenic. Indeed, partial responses are obtained after treatment with cytokines such as IL-2 or IFN-alpha, suggesting that the immune system may control the tumor growth. In this study, we have investigated the ability of the main subset of peripheral gammadelta lymphocytes, the Vgamma9Vdelta2-TCR T lymphocytes, to induce an effective cytotoxic response against autologous primary renal cell carcinoma lines. These gammadelta T cells were expanded ex vivo using a Vgamma9Vdelta2 agonist, a synthetic phosphoantigen called Phosphostim. From 11 of 15 patients, the peripheral Vgamma9Vdelta2 T cells were amplified in vitro by stimulating PBMCs with IL-2 and Phosphostim molecule. These expanded Vgamma9Vdelta2 T cells express activation markers and exhibit an effector/memory phenotype. They display a selective lytic potential toward autologous primary renal tumor cells and not against renal NC. The lytic activity involves the perforin-granzyme pathway and is mainly TCR and NKG2D receptor dependent. Furthermore, an increased expression of MHC class I-related molecule A or B proteins, known ligands of NKG2D, are detected on primary renal tumor cells. Interestingly, from 2 of the 11 positive cultures in response to Phosphostim, expanded-Vgamma9Vdelta2 T cells present an expression of killer cell Ig-like receptors, suggesting their prior recruitment in vivo. Unexpectedly, on serial frozen sections from three tumors, we observe a gammadelta lymphocyte infiltrate that was mainly composed of Vgamma9Vdelta2 T cells. These results outline that Vgamma9Vdelta2-TCR effectors may represent a promising approach for the treatment of metastatic renal cell carcinoma.  相似文献   

8.
Human Vgamma9Vdelta2 T cells are considered to play an important role in brucellosis, as this population is dramatically increased in peripheral blood of patients during the acute phase of the infection. This T lymphocyte population has been largely demonstrated to be activated by small m.w. nonpeptidic molecules from natural or synthetic origin. We recently identified a nonpeptidic fraction of Brucella suis that specifically activates human Vgamma9Vdelta2 T cells. Using a two-separate-chambers system, we showed that Brucella fraction, as well as isopentenyl pyrophosphate-activated Vgamma9Vdelta2 T cells, impaired the multiplication of B. suis in differentiated THP-1 cells through TNF-alpha and IFN-gamma release. In the present study, using circulating Vgamma9Vdelta2 T cells and autologous monocytes infected with B. suis, we provide evidence that 1) intramonocytic multiplication of B. suis is impaired by supernatants of activated Vgamma9Vdelta2 T cells in part via TNF-alpha and IFN-gamma, this impairment occurring without host cell lysis; 2) unstimulated Vgamma9Vdelta2 T cells can impair intracellular bacterial multiplication after their activation by soluble factors released by infected monocytes; and 3) activated Vgamma9Vdelta2 T cells lyse Brucella-infected monocytes in a contact-dependent manner. Taken together, these results provide evidence that Vgamma9Vdelta2 T cells, in addition to being directly activated by soluble nonpeptidic molecules, can be stimulated to become highly cytotoxic in the specific presence of infected monocytes; moreover, they suggest how Vgamma9Vdelta2 T cells could be triggered and respond as antibacterial effector cells in the early stages of Brucella infection.  相似文献   

9.
Vgamma9Vdelta2 T cells, a major gammadelta PBL subset in human adults, have been previously implicated in dendritic cell (DC) licensing, owing to their high frequency in peripheral tissues and their ability to produce inflammatory cytokines upon recognition of a broad array of conserved Ags. Although these observations implied efficient recognition of Ag-expressing immature DC (iDC) by Vgamma9Vdelta2 T cells, the role played by DC subsets in activation of these lymphocytes has not been carefully studied so far. We show that iDC, and to a lesser extent mature DC, potentiated Th1 and Th2 cytokine, but not cytolytic or proliferative responses, of established Vgamma9Vdelta2 T cell clones and ex vivo memory Vgamma9Vdelta2 PBL stimulated by synthetic agonists. The ability of iDC to potentiate Vgamma9Vdelta2 production of inflammatory cytokines required for their own maturation suggested that Vgamma9Vdelta2 T cells, despite their strong lytic activity, could promote efficient iDC licensing without killing at suboptimal Ag doses. Accordingly Vgamma9Vdelta2 cells induced accelerated maturation of Ag-expressing iDC but not "bystander" DC, even within mixed cell populations comprising both Ag-expressing and nonexpressing iDC. Furthermore Vgamma9Vdelta2 cells induced full differentiation into IL-12-producing cells of iDC infected by Vgamma9Vdelta2-stimulating mycobacteria that were otherwise unable to induce complete DC maturation. In conclusion the ability of iDC to selectively potentiate cytokine response of memory Vgamma9Vdelta2 T cells could underlie the adjuvant effect of these lymphocytes, and possibly other natural memory T cells, on conventional T cell responses.  相似文献   

10.
Although phosphoantigen-specific Vgamma2Vdelta2 T cells appear to play a role in antimicrobial and anticancer immunity, mucosal immune responses and effector functions of these gammadelta T cells during infection or phospholigand treatment remain poorly characterized. In this study, we demonstrate that the microbial phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) plus IL-2 treatment of macaques induced a prolonged major expansion of circulating Vgamma2Vdelta2 T cells that expressed CD8 and produced cytotoxic perforin during their peak expansion. Interestingly, HMBPP-activated Vgamma2Vdelta2 T cells underwent an extraordinary pulmonary accumulation, which lasted for 3-4 mo, although circulating Vgamma2Vdelta2 T cells had returned to baseline levels weeks prior. The Vgamma2Vdelta2 T cells that accumulated in the lung following HMBPP/IL-2 cotreatment displayed an effector memory phenotype, as follows: CCR5+CCR7-CD45RA-CD27+ and were able to re-recognize phosphoantigen and produce copious amounts of IFN-gamma up to 15 wk after treatment. Furthermore, the capacity of massively expanded Vgamma2Vdelta2 T cells to produce cytokines in vivo coincided with an increase in numbers of CD4+ and CD8+ alphabeta T cells after HMBPP/IL-2 cotreatment as well as substantial perforin expression by CD3+Vgamma2- T cells. Thus, the prolonged HMBPP-driven antimicrobial and cytotoxic responses of pulmonary and systemic Vgamma2Vdelta2 T cells may confer immunotherapeutics against infectious diseases and cancers.  相似文献   

11.
There is growing interest in the use of innate immune reactions in the therapy and prophylaxis of various diseases. Natural T (NT) lymphocytes that recognize infected cells or microbial compounds without the classical genetic restriction by polymorphic MHC molecules are crucial components of innate immunity. NT cells bearing the Vgamma9Vdelta2 T-cell receptor (TCR) are broadly reactive against intracellular pathogens, can lyse human immunodeficiency virus (HIV) infected cells, and release cytokines capable of regulating HIV replication. The potent antiviral activities of Vgamma9Vdelta2 T cells may help to contain viral spread during acute HIV infection and/or to prevent the establishment of viral persistence. Substantial changes in the composition and function of circulating gammadelta T-cell pools occur in HIV-infected patients. These changes a) may contribute to the etiopathogenesis of opportunistic infections and neoplasms, and b) are partly reversed by highly active anti-retroviral therapy (HAART). In addition to direct antiviral activities, activated gammadelta T cells influence dendritic cell maturation and the adaptive alphabeta T-cell response. Vgamma9Vdelta2 T cells can be stimulated in vivo and in vitro by various nonpeptidic antigens (NpAgs) and recent animal experimental data suggest that activated Vgamma9Vdelta2 T cells may help to control SIV replication. Currently, NpAgs are being assessed as potential therapeutic agents in AIDS, tuberculosis and certain cancers susceptible to Vgamma9Vdelta2 T-cell effector mechanisms.  相似文献   

12.
CD8+ T cells require a signal through a costimulatory receptor in addition to TCR engagement to become activated. The role of CD28 in costimulating T cell activation is well established. NKG2D, a receptor found on NK cells, CD8+ alphabeta-TCR+ T cells, and gammadelta-TCR+ T cells, has also been implicated in T cell costimulation. In this study we have evaluated the role of NKG2D in costimulating mouse and human naive and effector CD8+ T cells. Unexpectedly, in contrast to CD28, NKG2D engagement by ligand or mAb is not sufficient to costimulate naive or effector CD8+ T cell responses in conventional T cell populations. While NKG2D did not costimulate CD8+ T cells on its own, it was able to modify CD28-mediated costimulation of human CD8+ T cells under certain contitions. It is, therefore, likely that NKG2D acts as a costimulatory molecule only under restricted conditions or requires additional cofactors.  相似文献   

13.
Nielsen N  Ødum N  Ursø B  Lanier LL  Spee P 《PloS one》2012,7(2):e31959
In mouse models of chronic inflammatory diseases, Natural Killer (NK) cells can play an immunoregulatory role by eliminating chronically activated leukocytes. Indirect evidence suggests that NK cells may also be immunoregulatory in humans. Two subsets of human NK cells can be phenotypically distinguished as CD16(+)CD56(dim) and CD16(dim/-)CD56(bright). An expansion in the CD56(bright) NK cell subset has been associated with clinical responses to therapy in various autoimmune diseases, suggesting an immunoregulatory role for this subset in vivo. Here we compared the regulation of activated human CD4(+) T cells by CD56(dim) and CD56(bright) autologous NK cells in vitro. Both subsets efficiently killed activated, but not resting, CD4(+) T cells. The activating receptor NKG2D, as well as the integrin LFA-1 and the TRAIL pathway, played important roles in this process. Degranulation by NK cells towards activated CD4(+) T cells was enhanced by IL-2, IL-15, IL-12+IL-18 and IFN-α. Interestingly, IL-7 and IL-21 stimulated degranulation by CD56(bright) NK cells but not by CD56(dim) NK cells. NK cell killing of activated CD4(+) T cells was suppressed by HLA-E on CD4(+) T cells, as blocking the interaction between HLA-E and the inhibitory CD94/NKG2A NK cell receptor enhanced NK cell degranulation. This study provides new insight into CD56(dim) and CD56(bright) NK cell-mediated elimination of activated autologous CD4(+) T cells, which potentially may provide an opportunity for therapeutic treatment of chronic inflammation.  相似文献   

14.
In humans, the circulating pool of mycobacteria-reactive Vgamma9Vdelta2+ T cells is expanded with age and may contribute to Mycobacterium tuberculosis immunosurveillance. We observed that two subsets of Vgamma9Vdelta2+ T cells could be identified on the basis of CD27 expression in immunocompetent adults, showing that functionally differentiated gammadelta T cells have lost CD27 expression. In contrast, the CD27-CD45RA-Vgamma9Vdelta2+ T cell subset of effector cells was absent in cord blood cells from healthy newborns and lacking in the peripheral blood from HIV-infected patients. Moreover, circulating Vgamma9Vdelta2+ T cell effectors were significantly reduced in patients with acute pulmonary tuberculosis, resulting in a reduced frequency of IFN-gamma-producing cells after stimulation with nonpeptidic mycobacterial ligands. These observations indicate that monitoring and boosting gammadelta T cell effectors could be clinically relevant both in immunocompromised hosts and during active tuberculosis disease.  相似文献   

15.
16.
NKG2D is an activation receptor on NK cells and has been demonstrated as a primary cytotoxicity receptor for mouse NK cells. Primary rejection of class I-deficient RMA-S lymphoma cells expressing the NKG2D ligand, retinoic acid early inducible-1beta, was critically dependent upon NK cell perforin and occurred independently of T cells. NKG2D-triggered NK cell rejection of RMA-S-retinoic acid early inducible-1beta tumor primed a secondary tumor-specific T cell response mediated by both CD4+ and CD8+ T cells in the effector phase. Surprisingly, during the priming phase, CD4+ T cells, but not CD8+ T cells, were also required to generate this secondary T cell immunity; however, T cell priming was independent of Th1 cytokines, such as IFN-gamma and IL-12. These data imply a novel pathway for priming T cell immunity, that is, stimulated upon NK cell-mediated cytotoxicity of NKG2D ligand-expressing tumor cells, dependent upon CD4+ T cells in the primary phase, and independent of conventional Th1-type immunity.  相似文献   

17.
BACKGROUND: Non-Hodgkin's B lymphomas (NHL) are often resistant to conventional treatments and, until now, immunotherapeutic approaches against NHL only aimed at inducing anti-tumor effectors. Nevertheless, human blood Vgamma9Vdelta2 T lymphocytes represent an abundant pool of cytotoxic tumor-reactive cells. Vgamma9Vdelta2 T cells are strongly activated by natural compounds, from which powerful synthetic ligands have been derived. These synthetic antigens induce efficient Vgamma9Vdelta2 T cell responses in vitro. MATERIALS AND METHODS: We set up a series of Vgamma9Vdelta2 T cell-activation experiments, including cytotoxic activity and amplification from whole blood cells. Several types of Vgamma9Vdelta2 effectors were challenged against a panel of 16 B lymphoma cell lines. These tests have been performed in the absence and presence of -specific synthetic ligands to evaluate the effect of such molecules on anti-tumor activity. RESULTS: We report here that Vgamma9Vdelta2 T cells recognize B lymphomas. This recognition is associated with the cytotoxic activity against B-lymphoma cells and/or proliferative responses, and appears to be T-cell antigen receptor (TCR)-dependent. Because few B lymphoma induce a complete set of Vgamma9Vdelta2 cell responses, a chemical ligand of Vgamma9Vdelta2 T cells was used to enhance both proliferation and cytotoxic activity of anti-B lymphoma effectors. We show that such synthetic compound improves Vgamma9Vdelta2 CTL numbers and lysis of B lymphoma lines, especially when the targets are already spontaneously recognized by these effectors. CONCLUSIONS: We report here that human Vgamma9Vdelta2 T cells anti-B lymphoma response can be improved by use of specific synthetic ligands, which enhance their cytotoxic activity and allows their rapid expansion ex vivo.  相似文献   

18.
Human CD8+ T cells activated and expanded by TCR cross-linking and high-dose IL-2 acquire potent cytolytic ability against tumors and are a promising approach for immunotherapy of malignant diseases. We have recently reported that in vitro killing by these activated cells, which share phenotypic and functional characteristics with NK cells, is mediated principally by NKG2D. NKG2D is a surface receptor that is expressed by all NK cells and transmits an activating signal via the DAP10 adaptor molecule. Using stable RNA interference induced by lentiviral transduction, we show that NKG2D is required for cytolysis of tumor cells, including autologous tumor cells from patients with ovarian cancer. We also demonstrated that NKG2D is required for in vivo antitumor activity. Furthermore, both activated and expanded CD8+ T cells and NK cells use DAP10. In addition, direct killing was partially dependent on the DAP12 signaling pathway. This requirement by activated and expanded CD8+ T cells for DAP12, and hence stimulus from a putative DAP12-partnered activating surface receptor, persisted when assayed by anti-NKG2D Ab-mediated redirected cytolysis. These studies demonstrated the importance of NKG2D, DAP10, and DAP12 in human effector cell function.  相似文献   

19.
The immune system may mediate anti-tumor responses in chronic lymphocytic leukemia (CLL) which may affect disease progression and survival. In this study, we analyzed the immune characteristics of 99 consecutive previously diagnosed CLL patients and 50 healthy controls. The distribution of lymphocyte subsets at diagnosis was retrospectively analyzed. Compared with controls, leukemia patients showed an expansion of NK and CD8 T cells at diagnosis. The relative number of CD8 T cells at diagnosis was associated with time to treatment, suggesting that CD8 T cells may modify disease progression. The distribution of lymphocyte subsets was analyzed again when patients were enrolled in this study. The median time since these patients were diagnosed was 277 weeks. Compared with diagnosis, the absolute number of CD8 T cells significantly decreased in these patients, reaching similar values to healthy controls; however NK cells kept significantly elevated overtime. Nevertheless, NK cells showed an impaired expression of NKG2D receptor and a defective cytotoxic activity. This down-regulation of NKG2D expression was further enhanced in patients with advanced and progressive disease. Additionally, membrane NKG2D levels significantly decreased on CD8 T cells, but a significant increase of NKG2D+CD4+ T cells was observed in CLL patients. The cytotoxic activity of NK cells was diminished in CLL patients; however the treatments with IL-2, IL-15, IL-21 and lenalidomide were able to restore their activity. The effect of IL-2 and IL-15 was associated with the increase of NKG2D expression on immune cells, but the effect of IL-21 and lenalidomide was not due to NKG2D up-regulation. The expansion of NK cells and the reversibility of NK cell defects provide new opportunities for the immunotherapeutic intervention in CLL.  相似文献   

20.
Adaptive immune responses of gammadelta T cells during active mycobacterial coinfection of human immunodeficiency virus-infected humans have not been studied. Macaques infected with the simian immunodeficiency virus (SIV) SIVmac were employed to determine the extent to which a coincident AIDS virus infection might compromise immune responses of mycobacterium-specific Vgamma2Vdelta2(+) T cells during active mycobacterial infection. Control SIVmac-negative macaques developed primary and recall expansions of phosphoantigen-specific Vgamma2Vdelta2(+) T cells after Mycobacterium bovis BCG infection and BCG reinfection, respectively. In contrast, SIVmac-infected macaques did not exhibit sound primary and recall expansions of Vgamma2Vdelta2(+) T cells in the blood and pulmonary alveoli following BCG infection and reinfection. The absence of adaptive Vgamma2Vdelta2(+) T-cell responses was associated with profound CD4(+) T-cell deficiency and subsequent development of SIVmac-related tuberculosis-like disease in the coinfected monkeys. Consistently, Vgamma2Vdelta2(+) T cells from coinfected monkeys displayed a reduced capacity to expand in vitro following stimulation with phosphoantigen. The reduced ability of Vgamma2Vdelta2(+) peripheral blood lymphocytes (PBL) to expand could be restored to some extent by coculture of these cells with CD4(+) T cells purified from PBL of SIV-negative monkeys. Furthermore, na?ve monkeys inoculated simultaneously with SIVmac and BCG were unable to sustain expansion of Vgamma2Vdelta2(+) T cells at the time that the coinfected monkeys developed lymphoid depletion and a fatal tuberculosis-like disease. Nevertheless, no deletion in Vdelta2 T-cell receptor repertoire was identified in SIVmac-BCG-coinfected macaques, implicating an SIVmac-induced down-regulation rather than a clonal exhaustion of these cells. Thus, an SIVmac-induced compromise of the adaptive Vgamma2Vdelta2(+) T-cell responses may contribute to the immunopathogenesis of the SIV-related tuberculosis-like disease in macaques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号