首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Periodontal disease caused by the gram-negative oral anaerobic bacterium Porphyromonas gingivalis is thought to be initiated by the binding of P. gingivalis fimbrial protein to saliva-coated oral surfaces. To assess whether biologically active fimbrial antigen can be synthesized in edible plants, a cDNA fragment encoding the C-terminal binding portion of P. gingivalis fimbrial protein, fimA (amino acids 266–337), was cloned behind the mannopine synthase promoter in plant expression vector pPCV701. The plasmid was transferred into potato (Solanum tuberosum) leaf cells by Agrobacterium tumefaciens in vivo transformation methods. The fimA cDNA fragment was detected in transformed potato leaf genomic DNA by PCR amplification methods. Further, a novel immunoreactive protein band of ~6.5 kDa was detected in boiled transformed potato tuber extracts by acrylamide gel electrophoresis and immunoblot analysis methods using primary antibodies to fimbrillin, a monomeric P. gingivalis fimbrial subunit. Antibodies generated against native P. gingivalis fimbriae detected a dimeric form of bacterial-synthesized recombinant FimA(266–337) protein. Further, a protein band of ~160 kDa was recognized by anti-FimA antibodies in undenatured transformed tuber extracts, suggesting that oligomeric assembly of plant-synthesized FimA may occur in transformed plant cells. Based on immunoblot analysis, the maximum amount of FimA protein synthesized in transformed potato tuber tissues was approximately 0.03% of total soluble tuber protein. Biosynthesis of immunologically detectable FimA protein and assembly of fimbrial antigen subunits into oligomers in transformed potato tuber tissues demonstrate the feasibility of producing native FimA protein in edible plant cells for construction of plant-based oral subunit vaccines against periodontal disease caused by P. gingivalis.  相似文献   

3.
The acquisition of transition metal ions is essential for the viability and in some cases the expression of virulence genes in bacteria. The fimCBA operon of Streptococcus parasanguinis FW213 encodes a Mn2+/Fe2+-specific ATP-binding cassette transporter. FimA, a lipoprotein in the system, is essential for the development of endocarditis, presumably by binding to fibrin monolayers on the damaged heart tissue. Recent sequence analysis revealed that Spaf_0344 was homologous to Streptococcus gordonii scaR, encoding a metalloregulatory protein for the Sca Mn2+-specific transporter. Based on the homology, Spaf_0344 was designated fimR. By using various fim promoter (pfim) derivatives fused with a promoterless chloramphenicol acetyltransferase gene, the functions of the cis-elements of pfim were analyzed in the wild-type and fimR-deficient hosts. The result indicated that FimR represses the expression of pfim and the palindromic sequences 5′ to fimC are involved in repression of pfim. A direct interaction between FimR and the palindromic sequences was further confirmed by in vitro electrophoresis gel mobility shift assay and in vivo chromatin immunoprecipitation assay (ChIP)-quantitative real-time PCR (qPCR). The result of the ChIP-qPCR analysis also indicated that FimR is activated by Mn2+ and, to a lesser degree, Fe2+. Functional analysis indicated that the expression of FimA in S. parasanguinis was critical for wild-type levels of survival against oxidative stress and within phagocytes, but not for acid tolerance. Taken together, in addition to acting as an adhesin (FimA), the expression of the fim operon is critical for the pathogenic capacity of S. parasanguinis.  相似文献   

4.
5.
Porphyromonas gingivalis, one of the gram-negative organisms associated with periodontal disease, possesses potential virulence factors, including fimbriae, proteases, and major outer membrane proteins (OMPs). In this study, P. gingivalis ATCC 33277 was cultured in a chemostat under hemin excess and presumably peptide-limiting conditions to better understand the mechanisms of expression of the virulence factors upon environmental changes. At higher growth rates, the amounts of FimA and the 75-kDa protein, forming long and short fimbriae, respectively, increased significantly, whereas gingipains decreased in amount and activity. In a nutrient-limited medium, lesser amounts of the above two fimbrial proteins were observed, whereas clear differences were not found in the amounts of gingipains. In addition, two-dimensional electrophoresis revealed that proteins in cells were generally fewer in number during nutrient-limited growth. Under aeration, a considerable reduction in gingipain activity was found, whereas several proteins associated with intact cells significantly increased. However, the expression of major OMPs, such as RagA, RagB, and the OmpA-like proteins, was almost constant under all conditions tested. These results suggest that P. gingivalis may actively control expression of several virulence factors to survive in the widely fluctuating oral environment.  相似文献   

6.
Bacterial fimbriae are an important pathogenic factor. It has been demonstrated that fimbrial protein encoded by fimA gene (FimA fimbriae) of Porphyromonas gingivalis not only contributes to the abilities of bacterial adhesion and invasion to host cells, but also strongly stimulates host innate immune responses. However, FimA fimbriae separated from P. gingivalis ATCC 33277 using a gentle procedure showed very weak proinflammatory activity compared with previous reports. Therefore, in the present study, biological characteristics of FimA fimbriae were further analyzed in terms of proinflammatory activity in macrophages. Macrophages differentiated from THP-1 cells were stimulated with native, heat-denatured, or either proteinase- or lipoprotein lipase-treated FimA fimbriae of P. gingivalis ATCC 33277. Stimulating activities of these FimA fimbriae were evaluated by TNF-α-inducing activity in the macrophages. To clarify the mode of action of FimA fimbriae, anti-Toll-like receptor (TLR) 2 blocking antibody was added prior to stimulation. Weak stimulatory activity of native FimA fimbriae was enhanced by heat treatment and low-dose proteinase K treatment. Higher dose of proteinase K treatment abrogated this up-regulation. The activity of treated FimA fimbriae was suppressed by anti-TLR2 antibody, and more substantially by lipoprotein lipase treatment. These results suggest that lipoproteins or lipopeptides associated with FimA fimbriae could at least in part account for signaling via TLR2 and subsequent TNF-α production in macrophages.  相似文献   

7.
Increasing evidence has shown periodontal pathogen Porphyromonas gingivalis (P.gingivalis) infection contributes to atherosclerosis (AS) progression. P.gingivalis fimbriae act as an important virulence factor in AS. Regulatory T cells (Tregs) may play a crucial role in autoimmune response during this process. However, whether P.gingivalis infection is associated with Tregs dysregulation during AS is still unknown and the prevalence of different P.gingivalis FimA genotypes during this process is unclear. Here we analyzed the distribution of Tregs and in P.gingivalis-infected atherosclerotic patients to reveal the relationship between P.gingivalis infection and Tregs reduction/dysfunction and to elucidate their role in periodontitis-AS interaction. FimA genotype was also examined to determine the prevalence of fimbriae. Our results showed that P.gingivalis infection reduced Tregs in atherosclerotic patients compared with non-atherosclerotic patients and health controls. Concentration of TGF-β1, which plays an important role in the development of Tregs, also decreased in P.gingivalis infected patients. Furthermore, type II FimA seems to show higher prevalence than the other five detected types. The population of Tregs further decreased in patients with type II FimA compared with the other types. P.gingivlias FimA genotype II was the dominant type associated with decreased Treg population. These results indicate that P.gingivalis infection may be associated with Tregs dysregulation in AS; type II FimA may be a predominant genotype in this process.  相似文献   

8.
9.
10.
Pili or fimbriae, which are filamentous structures present on the surface of bacteria, were purified from a periodontal pathogen, Porphyromonas gingivalis, in 1980s. The protein component of pili (stalk pilin), which is its major component, was named FimA; it has a molecular weight of approximately 41 kDa. Because the molecular weight of the pilin from P. gingivalis is twice that of pilins from other bacterial pili, the P. gingivalis Fim pili were suggested to be formed via a novel mechanism. In earlier studies, we reported that the FimA pilin is secreted on the cell surface as a lipoprotein precursor, and the subsequent N-terminal processing of the FimA precursor by arginine-specific proteases is necessary for Fim pili formation. The crystal structures of FimA and its related proteins were determined recently, which show that Fim pili are formed by a protease-mediated strand-exchange mechanism. The most recent study conducted by us, wherein we performed cryoelectron microscopy of the pilus structure, provided evidence in support of this mechanism. As the P. gingivalis Fim pili are formed through novel transport and assembly mechanisms, such pili are now designated as Type V pili. Surface lipoproteins, including the anchor pilin FimB of Fim pili that are present on the outer membrane, have been detected in certain Gram-negative bacteria. Here, we describe the assembly mechanisms of pili, including those of Type V and other pili, as well as the lipoprotein transport mechanisms.  相似文献   

11.
Signaling via pattern recognition receptors (PRRs) expressed on professional antigen presenting cells, such as dendritic cells (DCs), is crucial to the fate of engulfed microbes. Among the many PRRs expressed by DCs are Toll-like receptors (TLRs) and C-type lectins such as DC-SIGN. DC-SIGN is targeted by several major human pathogens for immune-evasion, although its role in intracellular routing of pathogens to autophagosomes is poorly understood. Here we examined the role of DC-SIGN and TLRs in evasion of autophagy and survival of Porphyromonas gingivalis in human monocyte-derived DCs (MoDCs). We employed a panel of P. gingivalis isogenic fimbriae deficient strains with defined defects in Mfa-1 fimbriae, a DC-SIGN ligand, and FimA fimbriae, a TLR2 agonist. Our results show that DC-SIGN dependent uptake of Mfa1+P. gingivalis strains by MoDCs resulted in lower intracellular killing and higher intracellular content of P. gingivalis. Moreover, Mfa1+P. gingivalis was mostly contained within single membrane vesicles, where it survived intracellularly. Survival was decreased by activation of TLR2 and/or autophagy. Mfa1+P. gingivalis strain did not induce significant levels of Rab5, LC3-II, and LAMP1. In contrast, P. gingivalis uptake through a DC-SIGN independent manner was associated with early endosomal routing through Rab5, increased LC3-II and LAMP-1, as well as the formation of double membrane intracellular phagophores, a characteristic feature of autophagy. These results suggest that selective engagement of DC-SIGN by Mfa-1+P. gingivalis promotes evasion of antibacterial autophagy and lysosome fusion, resulting in intracellular persistence in myeloid DCs; however TLR2 activation can overcome autophagy evasion and pathogen persistence in DCs.  相似文献   

12.
Porphyromonas gingivalis, a gram-negative anaerobic oral bacterium, causes periodontal disease by binding to saliva-coated oral surfaces. The FimA protein from P. gingivalis is a crucial pathogenic component of the bacterium and a target for vaccine development against periodontal disease. Complementary DNAs encoding the heavy and light chains of two monoclonal antibodies that bind specifically to the FimA protein were cloned into a plant expression vector under the control of the duplicated Cauliflower Mosaic Virus 35S promoter, and agroinfiltration was used to allow the vectors to infiltrate tobacco plants. The expressions of the heavy and light chains in the leaf tissue were detected using antibodies specific to each antibody chain. Western blot analysis showed the specific binding of the plant-derived monoclonal antibodies to the native FimA protein purified from P. gingivalis. Our finding that plant-derived monoclonal antibodies bound specifically to the native FimA protein indicates that plantderived monoclonal antibodies can protect against P. gingivalis invasion.  相似文献   

13.
Porphyromonas gingivalis is strongly implicated in adult periodontitis. This oral pathogen expresses adhesive filamentous appendages, known as fimbriae, which constitute one of its major virulence factors. Fimbriae are composed of polymerized fimbrillin (FimA) subunits and play an indispensable role in the ability of P. gingivalis to colonize and invade periodontal tissue and to induce alveolar bone loss. The virulence potential of fimbriae is attributable to their capacity to interact with various dental or epithelial substrates, extracellular matrix proteins, other bacteria, and host immune cells. It has been puzzling whether the multifunctional adhesive ability of fimbriae results from multiple adhesion epitopes specific for each receptor, or whether fimbriae contain versatile structural motifs that are recognizable by multiple receptors. This review summarizes peptide mapping studies that have defined functional epitopes of P. gingivalis fimbriae. Available evidence suggests that the binding of fimbriae to various receptors generally involves specific amino acid sequences of the FimA subunit, although the same FimA peptide may occasionally recognize different receptors. Moreover, in cases where distinct FimA peptides interact with the same receptor, the peptides involved share common sequences. It therefore appears that the promiscuous binding reactivity of P. gingivalis fimbriae is attributable to a multitude of adhesion epitopes which however share minimal binding elements, although the overall hydrophobicity and polymeric nature of fimbriae may significantly enhance the avidity of binding interactions. Peptide mapping of fimbriae is significant also for translational purposes, such as for development of subunit vaccines that contain defined immunogenic and functionally important epitopes and for identification of peptides that can competitively inhibit virulence activities of P. gingivalis fimbriae. Studies performed in the author’s lab and cited in this review were supported by U.S. Public Health Service Grant DE015254 from the NIDCR, National Institutes of Health.  相似文献   

14.
15.
16.
S fimbrial adhesins I and II (SfaI and II), produced by extraintestinal Escherichia coli pathogens that cause urinary tract infections (UTI) and newborn meningitis (NBM), respectively, mediate bacterial adherence to sialic acid-containing glycoprotein receptors present on host epithelial cells and extracellular matrix. The S fimbrial adhesin complexes consist of four proteins: SfaI-A, the major subunit protein and the minor subunit proteins SfaI-G, SfaI-S and SfaI-H. Sialic acid-specific binding is mediated by the minor subunit protein SfaI-S. In order to determine whether the minor subunit proteins SfaI-G, -S and -H play a role in the modulation of adherence and the degree of fimbriation, a trans-complementation system was developed. A non-adhesive E. coli K-12 derivative, harbouring the sfaI-A gene but lacking sfaI-G, -S and -H, was transformed with sfaI-G, -S or -H. Only SfaI-S was able to increase the degree of fimbriation and to confer adhesion properties on the recombinant E. coli K-12 strains. Amino acid residues in SfaI-S that are involved in modulation of fimbriation as well as in receptor recognition were localized by random and site-directed mutagenesis.  相似文献   

17.
The gene fimU, located on a recombinant plasmid carrying the Salmonella typhimurium type 1 fimbrial gene cluster is closely related to the Escherichia coli tRNA gene argU. The fimU gene complements an E. coli argU mutant that is a P2 lysogen, thereby allowing the phage P4 to grow in this strain but preventing the growth of phage lambda. In addition, fimU was shown to be involved in fimbrial expression since transformants of the E. coli argU mutant could produce fimbriae only in the presence of fimU but not in its absence, whereas in an E. coli argU + strain fimbriation did not require the fimU gene.  相似文献   

18.
The 987P fimbrial gene cluster has recently been shown to contain eight genes (fasA to fasH) clustered on large plasmids of enterotoxigenic Escherichia coli and adjacent to a Tn1681-like transposon encoding the heat-stable enterotoxin STIa. Different genetic approaches were used to study the relationship between 987P fimbriation and adhesion. TnphoA mutagenesis, complementation assays, and T7 RNA polymerase-promoted gene expression indicated that all of the fas genes were involved in fimbrial expression and adhesion. In contrast to other fimbrial systems, the lack of expression of any single fas gene never resulted in the dissociation of fimbriation and adhesion, indicating that the adhesin is required for fimbrial expression and suggesting that FasA, the fimbrial structural subunit itself, is the adhesin. In addition, fimbrial length was shown to be modulated by the levels of expression of different fas genes.  相似文献   

19.
The periodontal pathogen Porphyromonas gingivalis colonizes largely through FimA fimbriae, composed of polymerized FimA encoded by fimA. fimA exists as a single copy within the fim gene cluster (fim cluster), which consists of seven genes: fimX, pgmA and fimA-E. Using an expression vector, fimA alone was inserted into a mutant from which the whole fim cluster was deleted, and the resultant complement exhibited a fimbrial structure. Thus, the genes of the fim cluster other than fimA were not essential for the assembly of FimA fimbriae, although they were reported to influence FimA protein expression. It is known that there are various genotypes for fimA, and it was indicated that the genotype was related to the morphological features of FimA fimbriae, especially the length, and to the pathogenicity of the bacterium. We next complemented the fim cluster-deletion mutant with fimA genes cloned from P. gingivalis strains including genotypes I to V. All genotypes showed a long fimbrial structure, indicating that FimA itself had nothing to do with regulation of the fimbrial length. In FimA fimbriae purified from the complemented strains, types I, II, and III showed slightly higher thermostability than types IV and V. Antisera of mice immunized with each purified fimbria principally recognized the polymeric, structural conformation of the fimbriae, and showed low cross-reactivity among genotypes, indicating that FimA fimbriae of each genotype were antigenically different. Additionally, the activity of a macrophage cell line stimulated with the purified fimbriae was much lower than that induced by Escherichia coli lipopolysaccharide.  相似文献   

20.
The gram-negative anaerobic oral bacterium Porphyromonas gingivalis initiates periodontal disease through fimbrial attachment to saliva-coated oral surfaces. To study the effects of immunomodulation on enhancement of subunit vaccination, the expression in E. coli and immunogenicity of P. gingivalis fimbrial protein (FimA) linked to the C-terminus of the cholera toxin B subunit (CTB) were investigated. Complementary DNAs encoding the P. gingivalis 381 fimbrillin protein sequence FimA1 (amino acid residues 1-200) and FimA2 (amino acid residues 201-337) were cloned into an E. coli expression vector downstream of a cDNA fragment encoding the immunostimulatory CTB. CTB-FimA1 and CTB-FimA2 fusion proteins synthesized in E. coli BL21 (DE3) cells were purified under denaturing conditions by Ni2+-NTA affinity column chromatography. Renaturation of the CTB-FimA1 and CTB-FimA2 fusion proteins, permitted identification of CTB-FimA pentamers and restored CTB binding activity to GM1-ganglioside to provide a biologically active CTB-FimA fusion protein. Mice orally inoculated with purified CTB-FimA1 or CTB-FimA2 fusion proteins generated measurable FimA1 and FimA2 IgG antibody titers, while no serum fimbrial IgG antibodies were detected when mice were inoculated with FimA1 or FimA2 proteins alone. Immunoblot analysis confirmed that sera from mice immunized with CTB linked to FimA1 or FimA2 contained antibodies specific for P. gingivalis fimbrial proteins. In addition, mice immunized with FimA2 or CTB-FimA2 generated measurable intestinal IgA titers indicating the presence of fimbrial antibody class switching. Further, mice orally immunized with CTB-FimA1 generated higher IgA antibody titers than mice inoculated with FimA1 alone. The experimental data show that the immunostimulatory molecule CTB enhances B cell-mediated immunity against linked P. gingivalis FimA fusion proteins, in comparison to immunization with FimA protein alone. Thus, linkage of CTB to P. gingivalis fimbrial antigens can increase subunit vaccine immunogenicity to provide enhanced protection against periodontal disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号