首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the epiphytic tillandsioids, Guzmania monostachia, Werauhia sanguinolenta, and Guzmania lingulata (Bromeliaceae), juvenile plants exhibit an atmospheric habit, whereas in adult plants the leaf bases overlap and form water-holding tanks. CO2 gas-exchange measurements of the whole, intact plants and δ13C values of mature leaves demonstrated that C3 photosynthesis was the principal pathway of CO2 assimilation in juveniles and adults of all three species. Nonetheless, irrespective of plant size, all three species were able to display features of facultative CAM when exposed to drought stress. The capacity for CAM was the greatest in G. monostachia, allowing drought-stressed juvenile and adult plants to exhibit net CO2 uptake at night. CAM expression was markedly lower in W. sanguinolenta, and minimal in G. lingulata. In both species, low-level CAM merely sufficed to reduce nocturnal respiratory net loss of CO2. δ13C values were generally less negative in juveniles than in adult plants, probably indicating increased diffusional limitation of CO2 uptake in juveniles.  相似文献   

2.
In order to better understand the role of herbivorous snails in freshwater ecosystems, we conducted experiments investigating food preference of the snail Radix swinhoei on leaves of the submerged plant Vallisneria spiralis with and without periphyton coverage. The effects of snail grazing on the growth of V. spiralis were assessed in a no-snail control and at three snail densities (80, 160, 240 individuals m?2). Results showed that the snails chose preferentially leaves covered by periphyton. Grazing activity at low snail density (80 individuals m?2) was found to stimulate V. spiralis growth, but at higher snail density (240 individuals m?2), plant growth was apparently suppressed. An increase observed in nutrient concentrations in water column with increasing snail density may be attributed to nutrient release by snails. This study suggests that the nature of the relationship between herbivorous snails and macrophytes in freshwater ecosystems depends on the abundance of the snails. At low snail density, the relationship may be a mutualistic one, but at high density snail herbivory may impact negatively on macrophyte biomass in lakes.  相似文献   

3.
Experimental infections of two different populations of Lymnaea fuscus in France and Sweden, with a Czech isolate of Fascioloides magna were carried out to determine if this lymnaeid species enables parasite larval development. Species identification of both snail populations was performed using the morphology of the copulatory organ, and also confirmed by sequencing of the internal transcribed spacer 2 (ITS2) region of the snail genomic rDNA. Only juvenile snails measuring less than 3 mm (1–3 weeks of age) were successfully infected (the viable cercariae were recorded) and infection prevalence decreased with age, as documented by increased shell height. In both French and Swedish L. fuscus populations, prevalence ranged between 1.1% and 58.8%. The mean number of metacercariae obtained from cercariae-shedding snails was 13.7 (±11.4), while the total cercarial production noted in snails dissected at day 85 post-exposure was 147.5 (±56.6). Compared to uninfected control snails, we observed reduced growth of infected snails. Despite age-related resistance of snail to the parasite, and limited cercarial production in these experimentally infected snails, F. magna was still able to complete larval development in L. fuscus.  相似文献   

4.
Global warming may affect snail–periphyton–macrophyte relationships in lakes with implications also for water clarity. We conducted a 40-day aquaria experiment to elucidate the response of submerged macrophytes and periphyton on real and artificial plants to elevated temperatures (3°C) under eutrophic conditions, with and without snails present. With snails, the biomass and length of Vallisneria spinulosa leaves increased more at the high temperature, and at both temperatures growth was higher than in absence of snails. The biomass of periphyton on V. spinulosa as well as on artificial plants was higher at the highest temperature in the absence but not in the presence of snails. The biomass of Potamogeton crispus (in a decaying state) declined in all treatments and was not affected by temperature or snails. While total snail biomass did not differ between temperatures, lower abundance of adults (size >1 cm) was observed at the high temperatures. We conclude that the effect of elevated temperature on the snail–periphyton–macrophyte relationship in summer differs among macrophyte species in active growth or senescent species in subtropical lakes and that snails, when abundant, improve the chances of maintaining actively growing macrophytes under eutrophic conditions, and more so in a warmer future with potentially denser growth of periphyton.  相似文献   

5.
As CO2 levels increase in the atmosphere, so too do they in the sea. Although direct effects of moderately elevated CO2 in sea water may be of little consequence, indirect effects may be profound. For example, lowered pH and calcium carbonate saturation states may influence both deposition and dissolution rates of mineralized skeletons in many marine organisms. The relative impact of elevated CO2 on deposition and dissolution rates are not known for many large-bodied organisms. We therefore tested the effects of increased CO2 levels—those forecast to occur in roughly 100 and 200 years—on both shell deposition rate and shell dissolution rate in a rocky intertidal snail, Nucella lamellosa. Shell weight gain per day in live snails decreased linearly with increasing CO2 levels. However, this trend was paralleled by shell weight loss per day in empty shells, suggesting that these declines in shell weight gain observed in live snails were due to increased dissolution of existing shell material, rather than reduced production of new shell material. Ocean acidification may therefore have a greater effect on shell dissolution than on shell deposition, at least in temperate marine molluscs.  相似文献   

6.
There is growing concern that global environmental change might exacerbate the ecological impacts of invasive species by increasing their per capita effects on native species. However, the mechanisms underlying such shifts in interaction strength are poorly understood. Here, we test whether ocean acidification, driven by elevated seawater pCO2, increases the susceptibility of native Olympia oysters to predation by invasive snails. Oysters raised under elevated pCO2 experienced a 20% increase in drilling predation. When presented alongside control oysters in a choice experiment, 48% more high-CO2 oysters were consumed. The invasive snails were tolerant of elevated CO2 with no change in feeding behaviour. Oysters raised under acidified conditions did not have thinner shells, but were 29–40% smaller than control oysters, and these smaller individuals were consumed at disproportionately greater rates. Reduction in prey size is a common response to environmental stress that may drive increasing per capita effects of stress-tolerant invasive predators.  相似文献   

7.
Studies of plant invasions rarely address impacts on molluscs. By comparing pairs of invaded and corresponding uninvaded plots in 96 sites in floodplain forests, we examined effects of four invasive alien plants (Impatiens glandulifera, Fallopia japonica, F. sachalinensis, and F.×bohemica) in the Czech Republic on communities of land snails. The richness and abundance of living land snail species were recorded separately for all species, rare species listed on the national Red List, and small species with shell size below 5 mm. The significant impacts ranged from 16–48% reduction in snail species numbers, and 29–90% reduction in abundance. Small species were especially prone to reduction in species richness by all four invasive plant taxa. Rare snails were also negatively impacted by all plant invaders, both in terms of species richness or abundance. Overall, the impacts on snails were invader-specific, differing among plant taxa. The strong effect of I. glandulifera could be related to the post-invasion decrease in abundance of tall nitrophilous native plant species that are a nutrient-rich food source for snails in riparian habitats. Fallopia sachalinensis had the strongest negative impact of the three knotweeds, which reflects differences in their canopy structure, microhabitat humidity and litter decomposition. The ranking of Fallopia taxa according to the strength of impacts on snail communities differs from ranking by their invasiveness, known from previous studies. This indicates that invasiveness does not simply translate to impacts of invasion and needs to be borne in mind by conservation and management authorities.  相似文献   

8.
Ocean warming and acidification are serious threats to marine life; however, their individual and combined effects on large pelagic and predatory fishes are poorly understood. We determined the effects of projected future temperature and carbon dioxide (CO2) levels on survival, growth, morphological development and swimming performance on the early life stages of a large circumglobal pelagic fish, the yellowtail kingfish Seriola lalandi. Eggs, larvae and juveniles were reared in cross‐factored treatments of temperature (21 and 25°C) and pCO2 (500 and 985 μatm) from fertilisation to 25 days post hatching (dph). Temperature had the greatest effect on survival, growth and development. Survivorship was lower, but growth and morphological development were faster at 25°C, with surviving fish larger and more developed at 1, 11 and 21 dph. Elevated pCO2 affected size at 1 dph, but not at 11 or 21 dph, and did not affect survival or morphological development. Elevated temperature and pCO2 had opposing effects on swimming performance at 21 dph. Critical swimming speed (Ucrit) was increased by elevated temperature but reduced by elevated pCO2. Additionally, elevated temperature increased the proportion of individuals that responded to a startle stimulus, reduced latency to respond and increased maximum escape speed, potentially due to the more advanced developmental stage of juveniles at 25°C. By contrast, elevated pCO2 reduced the distance moved and average speed in response to a startle stimulus. Our results show that higher temperature is likely to be the primary driver of global change impacts on kingfish early life history; however, elevated pCO2 could affect critical aspects of swimming performance in this pelagic species. Our findings will help parameterise and structure fisheries population dynamics models and improve projections of impacts to large pelagic fishes under climate change scenarios to better inform adaptation and mitigation responses.  相似文献   

9.
The prevalence of parasitic infection by larval digenetic trematodes in natural populations of the mud snail, Cerithidea californica Haldeman, was found to increase with snail length; all snails ≥ 33 mm were infected. Distributions of infections by the seven most common larval trematodes were heterogeneous due to two species being more common than expected in the smaller size classes of snails, two being more common than expected in the larger size-classes of snails and three species being most prevalent in snails of intermediate length. The relative abundances of trematodes in different size-classes reflected these distributional patterns.A mark-recapture field study of snail growth rates failed to demonstrate that parasitic infection causes gigantism in Cerithidea. Parasitism tended to stunt the growth of juvenile snails and to a lesser degree, that of adult snails. The effects of trematodes on snail growth was shown to be species specific. This finding contrasts with those of earlier studies in which gigantic growth was observed in infected snails. This discrepancy is attributed to differences in the life histories of the host snails. It is predicted that gigantism will occur commonly in short-lived or semelparous species of snails but rarely, if ever, in long-lived iteroparous species which are predominately marine.  相似文献   

10.
1. Grazing by invasive species can affect many aspects of an aquatic system, but most studies have focused on the direct effects on plants. We conducted mesocosm and laboratory experiments to examine the impact of the invasive apple snail Pomacea canaliculata on macrophytes, filamentous algae, nutrients and phytoplankton. 2. In a freshwater pond, we confined 500 g of Myriophyllum aquaticum or Eichhornia crassipes with 0, 2, 4 or 8 apple snails in 1 m × 1 m × 1 m enclosures for approximately 1 month. Apple snails grazed heavily on both species of macrophytes, with higher overall weight losses at higher snail densities. The damage patterns differed between the two macrophytes. In M. aquaticum, both leaves and stems suffered from substantial herbivory, whereas in E. crassipes, only the roots suffered significant weight reduction. 3. In addition to grazing on macrophytes, apple snails appeared to have controlled the growth of filamentous algae, as these did not develop in the snail treatments. The ability of P. canaliculata to control filamentous algae was supported by a laboratory experiment where the consumption was as high as 0.25 g g−1 snail DW d−1. Because of a lack of native herbivorous snails in the pond, the growth of filamentous algae (mainly Spirogyra sp.) reached 80.3 g m−2, forming a spongy pond scum in the no‐apple snail control. Together with previous reports that apple snails could eat the juveniles and eggs of other freshwater snails, our results indicated that P. canaliculata could have out‐competed native herbivorous snails from the pond by predation on their juveniles or eggs. Alternatively, P. canaliculata might have out‐competed them by monopolisation of food resources. 4. Nitrogen and phosphorous concentrations remained low throughout both experiments and were not correlated with apple snail density. The treatment effects on chlorophyll a (Chl a) and phytoplankton composition varied in the two experiments. In the M. aquaticum experiment, with increasing snail density, Chl a increased, and the phytoplankton community became dominated by Cryptophyceae. In the E. crassipes experiment, Chl a level was independent of snail density, but with increasing snail density, the phytoplankton community became co‐dominated by Cryptophyceae, Chlorophyceae and Bacillariophyceae. 5. Given the multiple effects of P. canaliculata on wetland biodiversity and function, management strategies should be developed to prevent its further spread. In invaded wetlands, strategies should be developed to eradicate the apple snail and re‐introduce native snails which can control the development of filamentous algae.  相似文献   

11.
The abundant herbivorous mud-snail Hydrobia ulvae is an ecosystem engineer in soft-bottom intertidal habitats due to its grazing and bioturbation activity. However, mud snails are commonly infected by trematodes that reduce their overall activity, which in turn may affect their impact on the surrounding benthic community. To test this hypothesis, we performed field experiments manipulating both the abundance of uninfected snails (0, 7500 and 15.000 ind. m- 2) and the level of snail parasitism (0, 33 and 100% trematode prevalence) on a Danish mud-flat. The results showed that increasing snail abundance and parasitism generally had opposite effects on the community of microphytobenthos and zoobenthos. Increasing snail density increased the chlorophyll-a concentration in the substrate (enhancement), whereas increasing parasitism decreased it. In accordance, the benthic primary producers were generally less nutrient limited at high snail density and mostly so at high levels of snail parasitism. Moreover, epipsammic diatoms were favoured over epipelic diatoms at increasing snail density, whereas the opposite was evident at increasing snail parasitism. At the community level, increasing snail density increased evenness among epipelic diatoms, whereas increasing snail parasitism decreased evenness and species diversity. Probably through the action of trophic cascades and varying levels of disturbance, the zoobenthic community was influenced by experimental treatments as well. The indirect effects of snail parasitism influenced significantly the abundance of more faunal species (seven) than did snail density (two). At the community level, increasing snail density decreased evenness and lowest species richness coincided with intermediate snail density. In contrast, increasing snail parasitism resulted in increasing evenness and peaking species richness at intermediate level of parasitism. Together, the results show that parasites solely through their impact on the behaviour of a single community member can be significant indirect determinants of community organisation and function.  相似文献   

12.

Background

Fish-borne zoonotic trematodes (FZT) are a food safety and health concern in Vietnam. Humans and other final hosts acquire these parasites from eating raw or under-cooked fish with FZT metacercariae. Fish raised in ponds are exposed to cercariae shed by snail hosts that are common in fish farm ponds. Previous risk assessment on FZT transmission in the Red River Delta of Vietnam identified carp nursery ponds as major sites of transmission. In this study, we analyzed the association between snail population density and heterophyid trematode infection in snails with the rate of FZT transmission to juvenile fish raised in carp nurseries.

Methodology/Principal Findings

Snail population density and prevalence of trematode (Heterophyidae) infections were determined in 48 carp nurseries producing Rohu juveniles, (Labeo rohita) in the Red River Delta area. Fish samples were examined at 3, 6 and 9 weeks after the juvenile fish were introduced into the ponds. There was a significant positive correlation between prevalence of FZT metacercariae in juvenile fish and density of infected snails. Thus, the odds of infection in juvenile fish were 4.36 and 11.32 times higher for ponds with medium and high density of snails, respectively, compared to ponds where no infected snails were found. Further, the intensity of fish FZT infections increased with the density of infected snails. Interestingly, however, some ponds with no or few infected snails were collected also had high prevalence and intensity of FZT in juvenile fish. This may be due to immigration of cercariae into the pond from external water sources.

Conclusions/Significance

The total number and density of potential host snails and density of host snails infected with heterophyid trematodes in the aquaculture pond is a useful predictor for infections in juvenile fish, although infection levels in juvenile fish can occur despite low density or absence infected snails. This suggests that intervention programs to control FZT infection of fish should include not only intra-pond snail control, but also include water sources of allochthonous cercariae, i.e. canals supplying water to ponds as well as snail habitats outside the pond such as rice fields and surrounding ponds.  相似文献   

13.
Most of the genetically selected juvenile Biomphalaria glabrata snails, normally strongly resistant to Schistosoma mansoni, lost their juvenile resistance to this parasite when other trematodes were concurrently present in the snail. Three echinostome species all were able to reduce this genetically controlled juvenile resistance: Echinostoma lindoense, E. paraensei, and e. liei. Subsequently, adult resistance to S. mansoni, clearly present in control snails of the same age and strain that were not doubly infected, failed to develop in most of the snails that also harbored echinostomes. Other snails, selected for resistance as adults to S. mansoni, also usually became susceptible to this parasite following infection with E. paraensei. The capacity of E. paraensei to interfere with the snails' resistance to S. mansoni was greater than that of E. lindoense. Destruction by predation of primary sporocysts of S. mansoni by echinostome rediae prevented completion of development of the S. mansoni infections. In a number of snails all primary S. mansoni sporocysts were consumed before secondary sporocysts could be formed. In most experimental snails, however, some of the schistosomes survived, often as a small number of degenerated secondary S. mansoni sporocysts. The capability of flukes to interfere with the natural defense of snails may be an important phenomenon whereby trematode species survive in their snail hosts.  相似文献   

14.
Identifying impacts of exotic species on native populations is central to ecology and conservation. Although the effects of exotic predators on native prey have received much attention, the role of exotic prey on native predators is poorly understood. Determining if native predators actively prefer invasive prey over native prey has implications for interpreting invasion impacts, identifying the presence of evolutionary traps, and predator persistence. One of the world’s most invasive species, Pomacea maculata, has recently established in portions of the endangered Everglade snail kite’s (Rostrhamus sociabilis plumbeus) geographic range. Although these exotic snails could provide additional prey resources, they are typically much larger than the native snail, which can lead to lower foraging success and the potential for diminished energetic benefits in comparison to native snails. Nonetheless, snail kites frequently forage on exotic snails. We used choice experiments to evaluate snail kite foraging preference in relation to exotic species and snail size. We found that snail kites do not show a preference for native or exotic snails. Rather, snail kites generally showed a preference for medium-sized snails, the sizes reflective of large native snails. These results suggest that while snail kites frequently forage on exotic snails in the wild, this behavior is likely driven simply by the abundance of exotic snails rather than snail kites preferring exotics. This lack of preference offers insights to hypotheses regarding effects of exotic species, guidance regarding habitat and invasive species management, and illustrates how native-exotic relationships can be misleading in the absence of experimental tests of such interactions.  相似文献   

15.
To examine density dependence in the survival, growth, and reproduction of Pomacea canaliculata, we conducted an experiment in which snail densities were manipulated in a paddy field. We released paint-marked snails of 15–20 mm shell height into 12 enclosures (pens) of 16 m2 at one of five densities – 8, 16, 32, 64, or 128 snails per pen. The survival rate of released snails was 95% and was independent of snail density. The snail density had a significant effect on the growth and egg production of individual snails. This density dependence may have been caused by reduced food availability. The females at high density deposited fewer and smaller egg masses than those at low density, and consequently produced fewer eggs. The females at densities 8 and 16 deposited more than 3000 eggs per female, while the females at density 128 oviposited only 414 eggs. The total egg production per pen was, however, higher at higher snail density. The survival rates of juvenile snails were 21%–37% and were independent of adult density. The juvenile density was positively correlated with the total egg production per pen and hence was higher at higher adult density. However, the density of juveniles larger than 5 mm in shell height, i.e., juveniles that can survive an overwintering period, was not significantly different among density treatments. These results suggest that snail density after the overwintering period is independent of the density in the previous year. Thus, density dependence in growth and reproduction might regulate the population of P. canaliculata in paddies. Received: October 23, 1998 / Accepted: July 16, 1999  相似文献   

16.
The golden apple snail (Pomacea canaliculata), a native of freshwater wetlands of South America, has invaded many Asian countries and grazed heavily in agricultural and wild areas. Common carp (Cyprinus carpio) has been proposed as a biological control agent against this snail, but little is known about its impact on non-target aquatic plants and animals. In a 8-week enclosure experiment, we quantified the impact of common carp on three species of aquatic macrophytes and nine species of snails, including the apple snail, in a shallow pond. The results showed that the apple snail or carp alone significantly reduced the plant biomass, although the apple snail had a stronger overall herbivorous effect than the carp. The carp completely removed juvenile apple snails, but had only a weak predatory effect on larger apple snails and no effect on the adults’ oviposition frequency. Furthermore, the carp significantly reduced the populations of most species of other snails that occurred naturally in the pond. Our results thus indicate that common carp can be an effective biological control agent against the invasive apple snail, but caution should be taken about its potential to reduce wetland floral and faunal diversity.  相似文献   

17.
Invasive species of the knotweed complex (Fallopia sp.) have repeatedly been shown to decrease diversity of native local biota. While effects on plant species richness are well established, effects on invertebrate and in particular gastropod species richness are less well understood. We recorded cover of plant species and diversity and abundance of gastropod species in four plots (1 m × 1 m) with Fallopia japonica and compared these to paired control plots without F. japonica at 15 sites along the river Birs (Switzerland) in early summer (June) and autumn (September). Knotweed and control plots did not differ in site characteristics and soil parameters.Average plant species richness in F. japonica plots was 50% lower compared to control plots. This reduction was significant for woody species as well as for herbaceous species. However, species richness of early flowering annuals did not differ significantly. Among the species most affected by knotweed were hop (Humulus lupulus) and European spindle tree (Euonymus europaeus) but also stand-forming species such as nettle (Urtica dioica) or ground elder (Aegopodium podagraria).Average snail species richness was significantly reduced in F. japonica plots. The reduction was pronounced in large (≥5 mm shell size) and long-lived (>2 years) snail species but not in slugs or small and short-lived snails. For example, large snails such as the Roman snail (Helix pomatia, ?85%) or the red-listed species Bradybaena fruticum (?93%), showed reduced abundances in F. japonica compared to control plots. In contrast, the red-listed but small Vertigo pusilla (+92%) had higher abundances in F. japoinca plots. Principal component analyses revealed little overlap in plant communities or community composition of large snail species between F. japonica and control plots. Taken together, knotweed invasion decreased the cover of most plant species and abundance of large and long-lived gastropods.  相似文献   

18.
The activity of polyphenol oxidase (PPO) and guaiacol peroxidase (POD) and the concentrations of chlorophylls, free polyamines and soluble proteins were determined from the leaves of six genotypes of silver birch (Betula pendula Roth) seedlings exposed to short-term elevated carbon dioxide (CO2), temperature (T), ultraviolet-B irradiation (UV-B, 280-315 nm) and their combinations. Results showed that the activity of PPO in the leaves was low but increased by elevated CO2 and elevated T. The POD activity varied between the genotypes due to an interactive effect of CO2 × UV-B. The soluble proteins were clearly decreased by elevated CO2, but the level of response varied among the genotypes. The concentrations of chl a and total chlorophylls were lower in the leaves treated with elevated CO2 than in leaves grown at ambient CO2. An interactive effect of CO2 × UV-B on the chl a/b ratio was found. Elevated T increased chl b concentration and decreased chl a/b ratio. Temperature treatments also caused variation in the concentrations of chl a, chl b and total chlorophylls among the genotypes. Polyamine analyses showed that the concentrations of putrescine were increased and spermine decreased in leaves treated with elevated T. However, the change in putrescine by elevated T was clearer at ambient CO2 than in eCO2 environment (significant effect of T × CO2). In conclusion, the defensive enzymes, photosynthetic pigments, soluble proteins and growth-regulating polyamines in silver birch leaves were not susceptible to enhanced UV-B radiation. In contrast, all the variables responded to elevated T and/or elevated CO2, reflecting the enhancive effects of climate change conditions not only on leaf productivity, but also on leaf turn-over rate. Most of these climate-driven changes were not regulated by UV-B radiation.  相似文献   

19.
In the global change scenario, increased CO2 may favour water use efficiency (WUE) by plants. By contrast, in arid and semiarid areas, salinity may reduce water uptake from soils. However, an elevated WUE does not ensure a reduced water uptake and upon salinity this fact may constitute an advantage for plant tolerance. In this work, we aimed to determine the combined effects of enhanced [CO2] and salinity on the plant water status, in relation to the regulation of PIP aquaporins, in the root and leaf tissues of broccoli plants (Brassica oleracea L. var Italica), under these two environmental factors. Thus, different salinity concentrations (0, 60 and 90 mM NaCl) were applied under ambient (380 ppm) and elevated (800 ppm) [CO2]. Under non-salinised conditions, stomatal conductance (Gs) and transpiration rate (E) decreased with rising [CO2] whereas water potential (Ψω) was maintained stable, which caused a reduction in the root hydraulic conductance (L0). In addition, PIP1 and PIP2 abundance in the roots was decreased compared to ambient [CO2]. Under salinity, the greater stomatal closure observed at elevated [CO2] – compared to that at ambient [CO2] – caused a greater reduction in Gs and E and allowed plants to maintain their water balance. In addition, a lower decrease in L0 under salt stress was observed at elevated [CO2], when comparing with the decrease at ambient [CO2]. Modifications in PIP1 and PIP2 abundance or their functionality in the roots is discussed. In fact, an improved water status of the broccoli plants treated with 90 mM NaCl and elevated [CO2], evidenced by a higher Ψω, was observed together with higher photosynthetic rate and water use efficiency. These factors conferred on the salinised broccoli plants greater leaf area and biomass at elevated [CO2], in comparison with ambient [CO2]. We can conclude that, under elevated [CO2] and salt stress, the water flow is influenced by the tight control of the aquaporins in the roots and leaves of broccoli plants and that increased PIP1 and PIP2 abundance in these organs provides a mechanism of tolerance that maintains the plant water status.  相似文献   

20.
An extensive body of work suggests that altered marine carbonate chemistry can negatively influence marine invertebrates, but few studies have examined how effects are moderated and persist in the natural environment. A particularly important question is whether impacts initiated in early life might be exacerbated or attenuated over time in the presence or absence of other stressors in the field. We reared Olympia oyster (Ostrea lurida) larvae in laboratory cultures under control and elevated seawater pCO2 concentrations, quantified settlement success and size at metamorphosis, then outplanted juveniles to Tomales Bay, California, in the mid intertidal zone where emersion and temperature stress were higher, and in the low intertidal zone where conditions were more benign. We tracked survival and growth of outplanted juveniles for 4 months, halfway to reproductive age. Survival to metamorphosis in the laboratory was strongly affected by larval exposure to elevated pCO2 conditions. Survival of juvenile outplants was reduced dramatically at mid shore compared to low shore levels regardless of the pCO2 level that oysters experienced as larvae. However, juveniles that were exposed to elevated pCO2 as larvae grew less than control individuals, representing a larval carry‐over effect. Although juveniles grew less at mid shore than low shore levels, there was no evidence of an interaction between the larval carry‐over effect and shore level, suggesting little modulation of acidification impacts by emersion or temperature stress. Importantly, the carry‐over effects of larval exposure to ocean acidification remained unabated 4 months later with no evidence of compensatory growth, even under benign conditions. This latter result points to the potential for extended consequences of brief exposures to altered seawater chemistry with potential consequences for population dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号