首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was conducted to identify and characterize the thermophilic bacteria isolated from various hot springs in Turkey by using phenotypic and genotypic methods including fatty acid methyl ester and rep-PCR profilings, and 16S rRNA sequencing. The data of fatty acid analysis showed the presence of 17 different fatty acids in 15 bacterial strains examined in this study. Six fatty acids, 15:0 iso, 15:0 anteiso, 16:0, 16:0 iso, 17:0 iso, and 17:0 anteiso, were present in all strains. The bacterial strains were classified into three phenotypic groups based on fatty acid profiles which were confirmed by genotypic methods such as 16S rRNA sequence analysis and rep-PCR genomic fingerprint profiles. After evaluating several primer sets targeting the repetitive DNA elements of REP, ERIC, BOX and (GTG)5, the (GTG)5 and BOXA1R primers were found to be the most reliable technique for identification and taxonomic characterization of thermophilic bacteria in the genera of Geobacillus, Anoxybacillus and Bacillus spp. Therefore, rep-PCR fingerprinting using the (GTG)5 and BOXA1R primers can be considered as a promising genotypic tool for the identification and characterization of thermophilic bacteria from species to strain level.  相似文献   

2.
Anaerobic long-chain fatty acid (LCFA)-degrading bacteria were identified by combining selective enrichment studies with molecular approaches. Two distinct enrichment cultures growing on unsaturated and saturated LCFAs were obtained by successive transfers in medium containing oleate and palmitate, respectively, as the sole carbon and energy sources. Changes in the microbial composition during enrichment were analyzed by denaturing gradient gel electrophoresis (DGGE) profiling of PCR-amplified 16S rRNA gene fragments. Prominent DGGE bands of the enrichment cultures were identified by 16S rRNA gene sequencing. A significant part of the retrieved 16S rRNA gene sequences was most similar to those of uncultured bacteria. Bacteria corresponding to predominant DGGE bands in oleate and palmitate enrichment cultures clustered with fatty acid-oxidizing bacteria within Syntrophomonadaceae and Syntrophobacteraceae families. A low methane yield, corresponding to 9 to 18% of the theoretical value, was observed in the oleate enrichment, and acetate, produced according to the expected stoichiometry, was not further converted to methane. In the palmitate enrichment culture, the acetate produced was completely mineralized and a methane yield of 48 to 70% was achieved from palmitate degradation. Furthermore, the oleate enrichment culture was able to use palmitate without detectable changes in the DGGE profile. However, the palmitate-specialized consortia degraded oleate only after a lag phase of 3 months, after which the DGGE profile had changed. Two predominant bands appeared, and sequence analysis showed affiliation with the Syntrophomonas genus. These bands were also present in the oleate enrichment culture, suggesting that these bacteria are directly involved in oleate degradation, emphasizing possible differences between the degradation of unsaturated and saturated LCFAs.  相似文献   

3.
The aim of the present work was to compare the microbial communities of a mesophilic and a thermophilic pilot scale anaerobe sludge digester. For studying the communities cultivation independent chemotaxonomical methods (RQ and PLFA analyses) and T-RFLP were applied. Microbial communities of the mesophilic and thermophilic pilot digesters showed considerable differences, both concerning the species present, and their abundance. A Methanosarcina sp. dominated the thermophilic, while a Methanosaeta sp. the mesophilic digester among Archaea. Species diversity of Bacteria was reduced in the thermophilic digester. Based on the quinone patterns in both digesters the dominance of sulphate reducing respiratory bacteria could be detected. The PLFA profiles of the digester communities were similar though in minor components characteristic differences were shown. Level of branched chain fatty acids is slightly lower in the thermophilic digester that reports less Gram positive bacteria. The relative ratio of fatty acids characteristic to Enterobacteriaceae, Bacteroidetes and Clostridia shows differences between the two digesters: their importance generally decreased under thermophilic conditions. The sulphate reducer marker (15:1 and 17:1) fatty acids are present in low quantity in both digesters.  相似文献   

4.
Phenol is a man-made as well as a naturally occurring aromatic compound and an important intermediate in the biodegradation of natural and industrial aromatic compounds. Whereas many microorganisms that are capable of aerobic phenol degradation have been isolated, only a few phenol-degrading anaerobic organisms have been described to date. In this study, three novel nitrate-reducing microorganisms that are capable of using phenol as a sole source of carbon were isolated and characterized. Phenol-degrading denitrifying pure cultures were obtained by enrichment culture from anaerobic sediments obtained from three different geographic locations, the East River in New York, N.Y., a Florida orange grove, and a rain forest in Costa Rica. The three strains were shown to be different from each other based on physiologic and metabolic properties. Even though analysis of membrane fatty acids did not result in identification of the organisms, the fatty acid profiles were found to be similar to those of Azoarcus species. Sequence analysis of 16S ribosomal DNA also indicated that the phenol-degrading isolates were closely related to members of the genus Azoarcus. The results of this study add three new members to the genus Azoarcus, which previously comprised only nitrogen-fixing species associated with plant roots and denitrifying toluene degraders.  相似文献   

5.
The fatty acid pattern in hydrocarbon- and ketone-utilizing bacteria after growth on various substrates was examined. The fatty acid composition of one hydrocarbon-utilizing organism (Mycobacterium sp. strain OFS) was investigated in detail after growth on n-alkanes, 1-alkenes, ketones, and n-alcohols. n-Alkanes shorter than C13 or longer than C17 were not incorporated into cellular fatty acids without some degradation. Strain OFS incorporated C14 to C17 1-alkenes into cellular fatty acids as the ω-monoenoic fatty acid. Methyl ketones were incorporated into strain OFS after removal of one- or two-carbon fragments from the carbonyl end of the molecule. An organism isolated by enrichment on methyl ketones was incapable of n-alkane utilization but could grow on, although not incorporate, ketones or long chain n-alcohols into cellular fatty acids.  相似文献   

6.
Cold-loving microorganisms developed numerous adaptation mechanisms allowing them to survive in extremely cold habitats, such as adaptation of the cell membrane. The focus of this study was on the membrane fatty acids of Antarctic Flavobacterium spp., and their adaptation response to cold-stress. Fatty acids and cold-response of Antarctic flavobacteria was also compared to mesophilic and thermophilic members of the genus Flavobacterium. The results showed that the psychrophiles produced more types of major fatty acids than meso- and thermophilic members of this genus, namely C15:1 iso G, C15:0 iso, C15:0 anteiso, C15:1 ω6c, C15:0 iso 3OH, C17:1 ω6c, C16:0 iso 3OH and C17:0 iso 3OH, summed features 3 (C16:1 ω7cand/or C16:1 ω6c) and 9 (C16:0 10-methyl and/or C17:1 iso ω9c). It was shown that the cell membrane of psychrophiles was composed mainly of branched and unsaturated fatty acids. The results also implied that Antarctic flavobacteria mainly used two mechanisms of membrane fluidity alteration in their cold-adaptive response. The first mechanism was based on unsaturation of fatty acids, and the second mechanism on de novo synthesis of branched fatty acids. The alteration of the cell membrane was shown to be similar for all thermotypes of members of the genus Flavobacterium.  相似文献   

7.
Nine bacterial strains growing on inulin as the sole carbon and energy source were isolated from soil samples by enrichment culture on a mineral medium. Four of the strains were thermophilic and belong to the genus Bacillus. The thermophilic strains synthesized a β-fructosidase that was active on both inulin and sucrose. The presence of inulin in the culture medium is necessary for enzyme synthesis. Most of the activity on inulin was recovered in the culture medium, and the enzyme was synthesized during cell growth.  相似文献   

8.
Four 16S rRNA-targeted oligonucleotide probes were designed for the detection of thermophilic members of the domain Bacteria known to thrive in marine hydrothermal systems. We developed and characterized probes encompassing most of the thermophilic members of the genus Bacillus, most species of the genus Thermus, the genera Thermotoga and Thermosipho, and the Aquificales order. The temperature of dissociation of each probe was determined. Probe specificities to the target groups were demonstrated by whole-cell and dot blot hybridization against a collection of target and nontarget rRNAs. Whole-cell hybridizations with the specific probes were performed on cells extracted from hydrothermal vent chimneys. One of the samples contained cells that hybridized to the probe specific to genera Thermotoga and Thermosipho. No positive signals could be detected in the samples tested with the probes whose specificities encompassed either the genus Thermus or the thermophilic members of the genus Bacillus. However, when simultaneous hybridizations with the probe specific to the order Aquificales and a probe specific to the domain Bacteria (R. I. Amann, B. Binder, R. J. Olson, S. W. Chisholm, R. Devereux, and D. A. Stahl, Appl. Environ. Microbiol. 56:1919-1925, 1990) were performed on cells extracted from the top and exterior subsamples of chimneys, positive signals were obtained from morphologically diverse bacteria representing about 40% of the bacterial population. Since specificity studies also revealed that the bacterial probe did not hybridize with the members of the order Aquificales, the detected cells may therefore correspond to a new type of bacteria. One of the observed morphotypes was similar to that of a strictly anaerobic autotrophic sulfur-reducing strain that we isolated from the chimney samples. This work demonstrates that application of whole-cell hybridization with probes specific for different phylogenetic levels is a useful tool for detailed studies of hydrothermal vent microbial ecology.  相似文献   

9.
10.
Approximately 30 years ago, it was discovered that free-living bacteria isolated from cold ocean depths could produce polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) (20:5n-3) or docosahexaenoic acid (DHA) (22:6n-3), two PUFA essential for human health. Numerous laboratories have also discovered that EPA- and/or DHA-producing bacteria, many of them members of the Shewanella genus, could be isolated from the intestinal tracts of omega-3 fatty acid-rich marine fish. If bacteria contribute omega-3 fatty acids to the host fish in general or if they assist some bacterial species in adaptation to cold, then cold freshwater fish or habitats should also harbor these producers. Thus, we undertook a study to see if these niches also contained omega-3 fatty acid producers. We were successful in isolating and characterizing unique EPA-producing strains of Shewanella from three strictly freshwater native fish species, i.e., lake whitefish (Coregonus clupeaformis), lean lake trout (Salvelinus namaycush), and walleye (Sander vitreus), and from two other freshwater nonnative fish, i.e., coho salmon (Oncorhynchus kisutch) and seeforellen brown trout (Salmo trutta). We were also able to isolate four unique free-living strains of EPA-producing Shewanella from freshwater habitats. Phylogenetic and phenotypic analyses suggest that one producer is clearly a member of the Shewanella morhuae species and another is sister to members of the marine PUFA-producing Shewanella baltica species. However, the remaining isolates have more ambiguous relationships, sharing a common ancestor with non-PUFA-producing Shewanella putrefaciens isolates rather than marine S. baltica isolates despite having a phenotype more consistent with S. baltica strains.  相似文献   

11.
Bacterial production of long chain polyunsaturated fatty acids (LC-PUFAs) is a promising biotechnological approach for the mass production of these valuable compounds, but extensive screening is currently needed to select a strain that meets industrial requirements.A method was developed for the rapid screening and isolation of eicosapentaenoic acid (EPA)-producing marine bacteria from mixed cultures using the dye 2,3,5-triphenyltetrazolium chloride (TTC). The method was first validated using two bacteria from the Shewanella genus, S. gelidimarina (known to contain EPA) and S. fidelis (known not to contain EPA), and subsequently applied to a range of bacterial samples collected from seven randomly selected New Zealand fish species.By incorporating TTC in both solid and liquid state fermentation treatments, a clear association between the reduction of TTC to the red-coloured triphenyl formazan (TF) and the presence of EPA within Gram-negative bacteria was confirmed. Incubation in 0.1% w/v TTC was optimal for colour response and cell growth in agar plates and liquid cultures. Bacteria that produce EPA reduced TTC to TF, but a number of non-EPA-producing bacteria also showed this capacity. By conducting a subsequent Gram staining, all EPA-producing strains were revealed to be G (−) rod bacteria while the non-producing ones were all G (+) cocci. The fatty acid methyl esters of the isolated bacteria that reduced TTC to TF were analysed using gas chromatography-mass spectrometry and the content of EPA was confirmed by gas chromatography.From a pool of 2.0 × 108 CFU/ml, this method allowed the rapid isolation of 16 bacteria capable of producing EPA. This new approach significantly reduces the number of samples submitted for GC analysis and therefore the time, effort and cost of screening and isolating strains of EPA-producing marine bacteria.  相似文献   

12.
13.
Eight strains of cellulolytic cocci were isolated from a 10-8 dilution of rumen ingesta and were presumptively identified as Ruminococcus flavefaciens. Four strains were isolated from a steer fed a purified diet which contained isolated soy protein, and four strains were isolated from a steer fed a purified diet which contained urea. Certain growth factor requirements of these bacteria were determined. All strains grew with clarified rumen fluid added to the medium. However, fatty acids could substitute for rumen fluid in four strains. Two strains isolated from each steer either required or their growth was stimulated by isobutyric and/or isovaleric and/or 2-methyl-butyric acid. These results indicate that, even when a diet was fed which contained no branched-chain amino acids, the carbon skeleton precursors of branched-chain fatty acids, the cattle were still able to maintain a large population of cellulolytic bacteria that require fatty acids for growth. Therefore, the fatty acids appear to be provided by other bacteria, by protozoa, or by the host animal.  相似文献   

14.
The thermophilic, anaerobic, propionate-oxidizing bacterial populations present in the methanogenic granular sludge in a thermophilic (55°C) upflow anaerobic sludge blanket reactor were studied by cultivation and in situ hybridization analysis. For isolation of propionate-degrading microbes, primary enrichment was made with propionate as the sole energy source at 55°C. After several attempts to purify the microbes, a thermophilic, syntrophic, propionate-oxidizing bacterium, designated strain SI, was isolated in both pure culture and coculture with Methanobacterium thermoautotrophicum. Under thermophilic (55°C) conditions, strain SI oxidized propionate, ethanol, and lactate in coculture with M. thermoautotrophicum. In pure culture, the isolate was found to ferment pyruvate. 16S ribosomal DNA sequence analysis revealed that the strain was relatively close to members of the genus Desulfotomaculum, but it was only distantly related to any known species. To elucidate the abundance and spatial distribution of organisms of the strain SI type within the sludge granules, a 16S rRNA-targeted oligonucleotide probe specific for strain SI was developed and applied to thin sections of the granules. Fluorescence in situ hybridization combined with confocal laser scanning microscopy revealed that a number of rod-shaped cells were present in the middle and inner layers of the thermophilic granule sections and that they formed close associations with hydrogenotrophic methanogens. They accounted for approximately 1.1% of the total cells in the sludge. These results demonstrated that strain SI was one of the significant populations in the granular sludge and that it was responsible for propionate oxidation in the methanogenic granular sludge in the reactor.  相似文献   

15.
《BBA》2014,1837(12):2004-2016
In sulfate-reducing and methanogenic environments complex biopolymers are hydrolyzed and degraded by fermentative micro-organisms that produce hydrogen, carbon dioxide and short chain fatty acids. Degradation of short chain fatty acids can be coupled to methanogenesis or to sulfate-reduction. Here we study from a genome perspective why some of these micro-organisms are able to grow in syntrophy with methanogens and others are not. Bacterial strains were selected based on genome availability and upon their ability to grow on short chain fatty acids alone or in syntrophic association with methanogens. Systematic functional domain profiling allowed us to shed light on this fundamental and ecologically important question. Extra-cytoplasmic formate dehydrogenases (InterPro domain number; IPR006443), including their maturation protein FdhE (IPR024064 and IPR006452) is a typical difference between syntrophic and non-syntrophic butyrate and propionate degraders. Furthermore, two domains with a currently unknown function seem to be associated with the ability of syntrophic growth. One is putatively involved in capsule or biofilm production (IPR019079) and a second in cell division, shape-determination or sporulation (IPR018365). The sulfate-reducing bacteria Desulfobacterium autotrophicum HRM2, Desulfomonile tiedjei and Desulfosporosinus meridiei were never tested for syntrophic growth, but all crucial domains were found in their genomes, which suggests their possible ability to grow in syntrophic association with methanogens. In addition, profiling domains involved in electron transfer mechanisms revealed the important role of the Rnf-complex and the formate transporter in syntrophy, and indicate that DUF224 may have a role in electron transfer in bacteria other than Syntrophomonas wolfei as well. This article is a part of a Special Issue entitled: 18th European Bioenergetics Conference (Biochim. Biophys. Acta, Volume 1837, Issue 7, July 2014).  相似文献   

16.
Thermophilic sulfate-reducing bacteria were enriched from samples obtained from a geothermal underground mine in Japan. The enrichment cultures contained bacteria affiliated with the genera Desulfotomaculum, Thermanaeromonas, Thermincola, Thermovenabulum, Moorella, “Natronoanaerobium,” and Clostridium. Two novel thermophilic sulfate-reducing strains, RL50JIII and RL80JIV, affiliated with the genera Desulfotomaculum and Thermanaeromonas, respectively, were isolated.  相似文献   

17.
Thermophilic green sulfur bacteria of the genus Chlorobium were isolated from certain acidic high sulfide New Zealand hot springs. Cells were Gram-negative nonmotile rods of variable length and contained bacteriochlorophyll c and chlorosomes. Cultures of thermophilic chlorobia grew only under anaerobic, phototrophic conditions, either photoautotrophically or photoheterotrophically. The optimum growth temperature for the strains of thermophilic green sulfur bacteria isolated was 47–48°C with generation times of about 2 h being observed. The upper temperature limit for growth was about 52°C. Thiosulfate was a major electron donor for photoautotrophic growth while sulfide alone was only poorly used. N2 fixation was observed at 48°C and cell suspensions readily reduced acetylene to ethylene. The G+C content of DNA from strains of thermophilic chlorobia was 56.5–58.2 mol% and the organisms positioned phylogenetically within the green sulfur bacterial branch of the domain Bacteria. The new phototrophs are described as a new species of the genus Chlorobium, Chlorobium tepidum.This paper is dedicated to Professor Norbert Pfennig on the occasion of his 65th birthday  相似文献   

18.
Bacteria with limited genomic cross-hybridization were isolated from soil contaminated with C5+, a mixture of hydrocarbons, and identified by partial 16S rRNA sequencing. Filters containing denatured genomic DNAs were used in a reverse sample genome probe (RSGP) procedure for analysis of the effect of an easily degradable compound (toluene) and a highly recalcitrant compound (dicyclopentadiene [DCPD]) on community composition. Hybridization with labeled total-community DNA isolated from soil exposed to toluene indicated enrichment of several Pseudomonas spp., which were subsequently found to be capable of toluene mineralization. Hybridization with labeled total-community DNA isolated from soil exposed to DCPD indicated enrichment of a Pseudomonas sp. or a Sphingomonas sp. These two bacteria appeared capable of producing oxygenated DCPD derivatives in the soil environment, but mineralization could not be shown. These results demonstrate that bacteria, which metabolize degradable or recalcitrant hydrocarbons, can be identified by the RSGP procedure.  相似文献   

19.
A new thermophilic sulfate-reducing bacterium, strain TSB, that was spore-forming, rod-shaped, slightly motile and gram-positive, was isolated from a butyrate-containing enrichment culture inoculated with sludge of a thermophilic methane fermentation reactor. This isolate could oxidize benzoate completely. Strain TSB also oxidized some fatty acids and alcohols. SO inf4 sup2- , SO inf3 sup2- , S2O inf3 sup2- and NO inf3 sup- were utilized as electron acceptors. With pyruvate or lactate the isolate grew without an external electron acceptor and produced acetate. The optimum temperature for growth was 62°C. The G+C content of DNA was 52.8 mol%. This isolate is described as a new species, Desulfotomaculum thermobenzoicum.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号