首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
DNA from porcine circovirus type 1 (PCV1) and 2 (PCV2) has recently been detected in two vaccines against rotaviral gastroenteritis from manufacturers A and B. We investigated if PCV1 sequences are present in other viral vaccines. We screened seeds, bulks and final vaccine preparations from ten manufacturers using qRT-PCR. We detected 3.8 × 103 to 1.9 × 107 PCV1 DNA copies/milliliter in live poliovirus seeds for inactivated polio vaccine (IPV) from manufacturer A, however, following inactivation and purification, the finished IPV was PCV1-negative. PCV1 DNA was not detectable in live polio preparations from other vaccine producers. There was no detectable PCV1 DNA in the measles, mumps, rubella and influenza vaccines analysed including material supplied by manufacturer A. We confirmed that the PCV1 genome in the rotavirus vaccine from manufacturer A is near full-length. It contains two mutations in the PCV cap gene, which may result from viral adaptation to Vero cells. Bulks of this vaccine contained 9.8 × 1010 to 1.8 × 1011 PCV1 DNA copies/millilitre and between 4.1 × 107 and 5.5 × 108 DNA copies were in the final doses. We found traces of PCV1 and PCV2 DNA in the rotavirus vaccine from manufacturer B. This highlights the issue of vaccine contamination and may impact on vaccine quality control.  相似文献   

2.
Cell culture-based production methods may assist in meeting increasing demand for seasonal influenza vaccines and developing production flexibility required for addressing influenza pandemics. MDCK-33016PF cells are used in propagation of a cell-based seasonal influenza vaccine (Optaflu®); but, like most continuous cell lines, can grow in immunocompromised mice to produce tumors. It is, therefore, essential that no residual cells remain within the vaccine, that cell lysates or DNA are not oncogenic, and that the cell substrate does not contain oncogenic viruses or oncogenic DNA. Multiple, redundant processes ensure the safety of influenza vaccines produced in MDCK-33016PF cells. The probability of a residual cell being present in a dose of vaccine is approximately 1 in 1034. Residual MDCK-DNA is ≤10 ng per dose and the ß-propiolactone used to inactivate influenza virus results in reduction of detectable DNA to less than 200 base pairs (bp). Degenerate PCR and specific PCR confirm exclusion of oncogenic viruses. The manufacturing process has been validated for its capacity to remove and inactivate viruses. We conclude that the theoretical risks arising from manufacturing seasonal influenza vaccine using MDCK-33016PF cells are reduced to levels that are effectively zero by the multiple, orthogonal processes used during production.  相似文献   

3.
The formation of reactive oxygen species by the cytochrome P450 monooxygenase system is thought to be due to autoxidation of NADPH-cytochrome P450 reductase and the nonproductive decay of oxygen-bound cytochrome P450 intermediates. To characterize this process in recombinant microsomal enzymes, we used a highly sensitive hydrogen peroxide assay based on Amplex red oxidation. This assay is 20 times more sensitive (LLD = 5.0 pmol/assay and LLQ = 30 pmol/assay) than the standard ferrous thiocyanate assay for detection of hydrogen peroxide. We found low, but detectable, spontaneous generation of hydrogen peroxide by recombinant human NADPH-cytochrome P450 reductase complexes (0.09 nmol hydrogen peroxide/min/100 Units of NADPH-cytochrome P450 reductase). Significantly higher rates of hydrogen peroxide production were observed when recombinant cytochrome P450 enzymes were coexpressed with NADPH-cytochrome P450 reductase (0.31 nmol of hydrogen peroxide/min/100 Units of NADPH-cytochrome P450 reductase). This was independent of the addition of any exogenous cytochrome P450 substrates. These data demonstrate that cytochrome P450s are a major source of hydrogen peroxide in the recombinant cytochrome P450 monooxygenase system. Moreover, substrate binding is not required for the cytochrome P450s to generate reactive oxygen species.  相似文献   

4.
This study presents the chromosomal assignment of a multiple pregnancy-associated glycoprotein (PAG) gene family in the domestic pig (pPAG). The pPAG locus was identified by physical mapping (fluorescent in situ hybridisation—FISH; with various probes), and additionally confirmed by Southern hybridisation of pPAG amplicons using laser microdissected Sus scrofa chromosome 1 (SSC1), as genomic templates. Various pPAG probes were produced with the use of diverse identified templates: pPAG1-6, -8, -10 cDNAs (GenBank: L34360–1, AF315377, AF272734, AY188554, AF272735, AY373029 and AY775784, respectively), or genomic DNA (gDNA) probes of pPAG2 gene and its promoter (GenBank: U39198–9, U39762–3, U41421–4). All probes, including long gDNA probes (~9.2 kbp GpPAG2 gene; ~2.8 kbp GpPAG2 promoter), a shorter cDNA probe (PlpPAG4, 1385 bp) and amplified pPAG2-like probes (ApPAG2L) specific for cDNA inserts of pPAG2-like gene subfamily (pPAG2, -4, -6, -8 and -10; 1283–1385 bp) were produced by random priming using biotin-labelled deoxynucleotides (16-dUTP). Numerous FISH mappings with various pPAG probes revealed the chromosomal assignment of the pPAG gene family to the long arm of porcine chromosome 1 (SSC1q16–q24 region). This cytogenetic assignment was confirmed by Southern hybridisation (with 32P-labelled pPAG10 probe) of multiple distinct pPAG amplicons (603–3943 bp) produced with the use of 25 laser microdissected SSC1, as gDNA templates. This is the first study identifying the chromosomal locus of the pPAG gene family in the pig.  相似文献   

5.
Incorporation of the parasite's subcellular fractions in subunit vaccines can be a possible approach for formulation of vaccine against malaria. In this study, the immunogenicity and protective efficacy of 10,000 g fraction of blood stage Plasmodium berghei was evaluated in mouse model. This fraction induced higher levels of anti-parasite antibodies and provided complete and long lasting protection as compared to whole parasite antigens. Antiserum raised against it was immunoadsorbed on CNBr activated sepharose-4B to elute antigens from this fraction. Eluted antigens were characterized electrophoretically, and after lyophilization these were designated as ML-I (having 55, 64, 66, and 74 kDa proteins), ML-II (having 51, 64, 66, and 72 kDa proteins) and ML-III (having only 47 kDa protein) sub-fractions. Mice were immunized with these sub-fractions and immune responses induced by various immunization regimens were evaluated and compared with that of 10,000 g fraction. These sub-fractions imparted partial protection except ML-III, which was non-protective. 10,000 g fraction as a whole provided complete protection and generated significantly higher level of IL-2 and IFN-γ in immune mice. ML-I produced significant amount of IL-1 and IL-4 as compared to ML-II. Enhanced level of malaria-specific IgG1 was produced by ML-II, but IgG2a was significantly higher in ML-I immunized mice. Conclusively, this study identifies 10,000 g fraction as a promising blood stage vaccine candidate and suggests that a vaccine based upon multiple antigens may be more efficacious as compared to single antigen based formulations.  相似文献   

6.
In this study, methylene chloride, which is a residual solvent in final purified homoharringtonine, was removed effectively through pre-treatment with ethanol. When the final HPLC-purified sample was concentrated using a rotary evaporator, the residual methanol easily met the ICH-specified value (3000 ppm), but methylene chloride did not meet the ICH-specified value (600 ppm). However, when the sample (methylene chloride: 10,000 ppm, methanol: 500 ppm) was concentrated through pre-treatment with 95% ethanol using a rotary evaporator, the residual methylene chloride easily met the ICH-specified value. Also, the residual ethanol (concentration > 10,000 ppm) was removed effectively below the ICH-specified value (5000 ppm) through microwave-assisted drying (microwave power: 400 W).  相似文献   

7.
The expression of viral antigens in baculovirus-infected insect cells is often ineffective. As an alternative approach, therefore, we developed the recombinant polyhedra technology, which is an efficient strategy for the production of viral subunit vaccine. Here, we report a strategy for the large-scale production of a pseudorabies virus (PRV) gB or gC in the larvae of a baculovirus-infected silkworm, Bombyx mori. We constructed a recombinant B. mori nucleopolyhedrovirus (BmNPV) that expressed recombinant polyhedra together with the epitope regions of PRV gB or heparin-binding domains of PRV gC. Recombinant BmNPV-PRV-gB or BmNPV-PRV-gC-infected silkworm larvae expressed native polyhedrin and fusion protein that was detected using both anti-polyhedrin and anti-PRV gB or anti-PRV-gC antibodies. Electron and confocal microscopy demonstrated that the recombinant polyhedra contained both the fusion protein and native polyhedrin with a normal morphology and that the recombinant polyhedra contained PRV gB or gC. The yield of gB or gC antigen produced in BmNPV-PRV-gB or BmNPV-PRV-gC-infected silkworm larvae reached 0.69 or 0.46 mg per larva, respectively, at 6 days post-infection. These results demonstrate that the recombinant polyhedra strategy can be used for the large-scale production of PRV gB or gC antigen.  相似文献   

8.
African animal trypanosomosis (nagana) is arguably the most important parasitic disease affecting livestock in sub-Saharan Africa. Since none of the existing control measures are entirely satisfactory, vaccine development is being actively pursued. However, due to antigenic variation, the quest for a conventional vaccine has proven elusive. As a result, we have sought an alternative ‘anti-disease vaccine approach’, based on congopain, a cysteine protease of Trypanosoma congolense, which was shown to have pathogenic effects in vivo. Congopain was initially expressed as a recombinant protein in bacterial and baculovirus expression systems, but both the folding and yield obtained proved inadequate. Hence alternative expression systems were investigated, amongst which Pichia pastoris proved to be the most suitable. We report here the expression of full length, and C-terminal domain-truncated congopain in the methylotrophic yeast P. pastoris. Differences in yield were observed between full length and truncated proteins, the full length producing 2–4 mg of protein per litre of culture, while the truncated form produced 20–30 mg/l. The protease was produced as a proenzyme, but underwent spontaneous activation when acidified (pH <5). To investigate whether this activation was due to autolysis, we produced an inactive mutant (active site Cys  Ala) by site-directed mutagenesis. The mutant form was produced at a much higher rate, up to 100 mg/l culture, as a proenzyme. It did not undergo spontaneous cleavage of the propeptide when subjected to acidic pH suggesting an autocatalytic process of activation for congopain. These recombinant proteins displayed a very unusual feature for cathepsin L-like proteinases, i.e. complete dimerisation at pH >6, and by reversibly monomerising at acidic pH <5. This attribute is of utmost importance in the context of an anti-disease vaccine, given that the epitopes recognised by the sera of trypanosome-infected trypanotolerant cattle appear dimer-specific.  相似文献   

9.
A series of twenty eight molecules of ethyl 5-(piperazin-1-yl)benzofuran-2-carboxylate and 3-(piperazin-1-yl)benzo[d]isothiazole were designed by molecular hybridization of thiazole aminopiperidine core and carbamide side chain in eight steps and were screened for their in vitro Mycobacterium smegmatis (MS) GyrB ATPase assay, Mycobacterium tuberculosis (MTB) DNA gyrase super coiling assay, antitubercular activity, cytotoxicity and protein–inhibitor interaction assay through differential scanning fluorimetry. Also the orientation and the ligand–protein interactions of the top hit molecules with MS DNA gyrase B subunit active site were investigated applying extra precision mode (XP) of Glide. Among the compounds studied, 4-(benzo[d]isothiazol-3-yl)-N-(4-chlorophenyl)piperazine-1-carboxamide (26) was found to be the most promising inhibitor with an MS GyrB IC50 of 1.77 ± 0.23 μM, 0.42 ± 0.23 against MTB DNA gyrase, MTB MIC of 3.64 μM, and was not cytotoxic in eukaryotic cells at 100 μM. Moreover the interaction of protein–ligand complex was stable and showed a positive shift of 3.5 °C in differential scanning fluorimetric evaluations.  相似文献   

10.
Harmful algal blooms (HABs) caused by microscopic algae present a threat to human health, ecosystem, fishery, tourism, and aquaculture worldwide. HAB warning and monitoring projects require a simple and rapid method for accurate parallel identification of causative algae. This study presents a useful method for simultaneous detection of harmful algae by multiple PCR coupled with reverse dot blot hybridization (MPCRDBH). A variety of probes, including positive, negative, and specific, were first developed by sequencing and consequent sequence analysis of large subunit rDNA D1–D2 from target species and used for specificity test by blot hybridization. The MPCRDBH assay mainly included five steps: (1) microalgal DNA isolation; (2) amplification and labeling of target DNA by multiple PCR; (3) probe tailing and fixation onto positively charged nylon membrane; (4) reverse dot blot hybridization; and (5) hybridization signal recognition by naked eyes. The reverse dot blot hybridization conditions were optimized, and the appropriate parameters were as follows: ultraviolet cross-linking time, 0.5 min; probe density, 2 μM; Dig-labeled PCR product density, 200 ng; hybridization time and temperature, 2 h and 42 °C; and washing time and temperature, 2 × 5 min and 47 °C. Sensitivity tests showed that MPCRDBH demonstrated a detection limit of 0.6 cell. MPCRDBH recovered all target species and was not affected by background DNA. MPCRDBH also demonstrated a stable detection performance for fixative (acidic Lugol's solution)-preserved samples over 30 d using simulated field samples. MPCRDBH applicability was assessed and proven effective for parallel detection of target microalgae in the field samples. The developed MPCRDBH exhibited a simple membrane-based DNA array preparation and hybridization signal recognition compared with other current DNA arrays. The assay presented in this study is specific and sensitive for parallel detection of microalgae, with stable performance. Therefore, this assay is promising for field monitoring of natural samples.  相似文献   

11.
A human interleukin-17A (IL-17A) variant was overexpressed in Escherichia coli BL21 (DE3) under the control of a T7 promoter. The resulting insoluble inclusion bodies were isolated and solubilized by homogenization with 6 M guanidine HCl. The denatured recombinant human IL-17A variant was refolded in 20 mM Tris–HCl, pH 9.0, 500 mM arginine, 500 mM guanidine HCl, 15% glycerol, 1 mM cystamine, and 5 mM cysteine at 2–8 °C for 40 h. The refolded IL-17A variant was subsequently purified using a combination of cation-exchange, reversed-phase and fluoroapatite chromatography. The final purified product was a monodisperse and crystallizable homodimer with a molecular weight of 30,348.3 Da. The protein was active in both receptor binding competition assay and IL-17A-dependent biological activity assay using human dermal fibroblasts.  相似文献   

12.
A nitrile hydratase (NHase) gene from Aurantimonas manganoxydans was cloned and expressed in Escherichia coli BL21 (DE3). A downstream gene adjacent to the β-subunit was necessary for the functional expression of the recombinant NHase. The structural gene order of the Co-type NHase was α-subunit beyond β-subunit, different from the order typically reported for Co-type NHase genes. The NHase exhibited adequate thermal stability, with a half-life of 1.5 h at 50 °C. The NHase efficiently hydrated 3-cyanopyridine to produce nicotinamide. In a 1-L reaction mixture, 3.6 mol of 3-cyanopyridine was completely converted to nicotinamide in four feedings, exhibiting a productivity of 187 g nicotinamide/g dry cell weight/h. An industrial auto-induction medium was applied to produce the recombinant NHase in 10-L fermenter. A glycerol-limited feeding method was performed, and a final activity of 2170 U/mL culture was achieved. These results suggested that the recombinant NHase was efficiently cloned and produced in E. coli.  相似文献   

13.
Several peroxidovanadium(V) complexes have been shown as a potent anticancer agents. The aim of this study was to investigate the interaction of monoperoxidovanadium(V) complex Pr4N[VO(O2)(ox)(phen)], (Vphen), [phen = 1,10-phenantroline, ox = oxalate(2?) and Pr4N = tetra(n-propyl)ammonium(1+)] with DNA. UV–Vis spectrophotometry and the alkaline single-cell gel electrophoresis (SCGE, the comet assay) were used to examine the possibility of the vanadium(V) complex to induce changes in DNA. The interaction of Vphen with calf thymus DNA resulted in absorption hyperchromicity in DNA spectrum and shift of the absorption band of DNA to longer wavelengths for the [complex]/[DNA] concentration ratio equals to 4 and after 60 min of incubation. The rise in DNA absorption (by 34%) and bathochromic shift (Δλmax = 6 nm) are indicative of the interaction between DNA and the complex molecules. DNA strand breaks in cellular DNA were investigated using the comet assay. The human lymphocytes were exposed to various concentrations of Vphen for 30 min. The results revealed that Vphen contributed to the DNA damage expressed as DNA strand breaks in concentration dependent manner. The used concentrations of Vphen (ranging from 0.1 to 100 μmol/L) caused higher DNA damage in lymphocytes compared to untreated cells (from 1.2 times for 0.1 μmol/L to 1.8 times for 100 μmol/L). Vphen was screened for its potential antitumor activity towards murine leukemia cell line L1210. Vphen exhibited significant antiproliferative activity depending on its concentration and time of exposure. The IC50 values were 0.247 μg/mL (0.45 μmol/L) for 24 h, 0.671 μg/mL (1.21 μmol/L) for 48 h and 0.627 μg/mL (1.13 μmol/L) for 72 h.  相似文献   

14.
A xylanase produced by Thermomyces lanuginosus 195 by solid state fermentation (SSF) was purified 9.3-fold from a crude koji extract, with a 7.6% final yield. The purified xylanase (with an estimated mass of 22 kDa by SDS-PAGE) retained 18% relative activity when treated for 10 min at 100 °C and approximately 90% relative activity when incubated at pH values ranging from 6 to 10. Xylanase activity in the purified preparation was significantly enhanced following treatment with manganese and potassium chlorides (p < 0.05) but significantly reduced by calcium, cobalt and iron (p < 0.05). The purified enzyme was also shown to be exclusively xylanolytic. The gene encoding xylanase activity from T. lanuginosus 195 was functionally expressed by Pichia pastoris. MALDI-ToF mass spectrometry and zymography were employed to confirm functional recombinant expression. Maximum xylanase titres were achieved following 120 h induction of the recombinant culture, yielding 26.8 U/mL. Achieving functional protein expression facilitates future efforts to optimise the cultivation conditions for heterologous xylanase production.  相似文献   

15.
《Process Biochemistry》2007,42(1):112-117
A simple fed-batch process was developed using a modified variable specific growth rate feeding strategy for high cell density cultivation of Escherichia coli BL21 (DE3) expressing human interferon-gamma (hIFN-γ). The feeding rate was adjusted to achieve the maximum attainable specific growth rate during fed-batch cultivation. In this method, specific growth rate was changed from a maximum value of 0.55 h−1 at the beginning of feeding and then it was reduced to 0.4 h−1 at induction time.The final concentration of biomass and IFN-γ was reached to ∼115 g l−1 (DCW) and 42.5 g(hIFN-γ) l−1 after 16.5 h, also the final specific yield and overall productivity of recombinant hIFN-γ (rhIFN-γ) were obtained 0.37 g(hIFN-γ) g−1 DCW and 2.57 g(hIFN-γ) l−1 h−1, respectively. According to available data this is the highest specific yield and productivity that has been reported for recombinant proteins production yet.  相似文献   

16.
In the present in vitro study, a comet assay was used to determine whether 1.8-GHz radiofrequency radiation (RFR, SAR of 2 W/kg) can influence DNA repair in human B-cell lymphoblastoid cells exposed to doxorubicin (DOX) at the doses of 0 μg/ml, 0.05 μg/ml, 0.075 μg/ml, 0.10 μg/ml, 0.15 μg/ml and 0.20 μg/ml. The combinative exposures to RFR with DOX were divided into five categories. DNA damage was detected at 0 h, 6 h, 12 h, 18 h and 24 h after exposure to DOX via the comet assay, and the percent of DNA in the tail (% tail DNA) served as the indicator of DNA damage. The results demonstrated that (1) RFR could not directly induce DNA damage of human B-cell lymphoblastoid cells; (2) DOX could significantly induce DNA damage of human B-cell lymphoblastoid cells with the dose–effect relationship, and there were special repair characteristics of DNA damage induced by DOX; (3) E–E–E type (exposure to RFR for 2 h, then simultaneous exposure to RFR and DOX, and exposure to RFR for 6 h, 12 h, 18 h and 24 h after exposure to DOX) combinative exposure could obviously influence DNA repair at 6 h and 12 h after exposure to DOX for four DOX doses (0.075 μg/ml, 0.10 μg/ml, 0.15 μg/ml and 0.20 μg/ml) in human B-cell lymphoblastoid cells.  相似文献   

17.
Ferulic acid esterases (FAE) were produced by Aspergillus terreus CECT 2808 from vine trimming shoots (VTS) and corn cob. Later, the fungal extracts thus obtained were used to enzymatically release ferulic acid (FA) from both substrates. Our findings showed a higher FAE activity in the enzymatic extracts produced on corn cob (0.070 ± 0.004 U/mL). Nevertheless, the enzymatic extracts produced on VTS demonstrated a better performance for FA release from both corn cob (2.05 ± 0.01 mg/g) and VTS (0.19 ± 0.003 mg/g). This result was probably because of the higher xylanase/FAE ratio determined in VTS extract. Therefore, an additional assay was carried out by supplementing corn cob extract with a commercial xylanase to test the influence of FAE/xylanase ratio in FA release. The results revealed the relevance of the FAE/xylanase ratio for an optimal FA release.  相似文献   

18.
In this study, the residual solvent in final purified paclitaxel was effectively removed using microwave-assisted drying. When the sample final purified by silica-HPLC was concentrated using a rotary evaporator, the residual methanol easily met the ICH-specified value (3000 ppm), but methylene chloride did not meet the ICH-specified value (600 ppm). Thus, the efficiency of microwave-assisted drying according to microwave power (100, 200, and 300 W) and drying time was investigated using the sample (methylene chloride conc.: 26,000 ppm, methanol conc.: 50 ppm) concentrated by rotary evaporation. A higher microwave power was effective in removing methylene chloride, and the ICH requirements were met by drying at 300 W for 21 h. In addition, when the sample concentrated by rotary evaporation was vacuum dried (35 °C, 24 h), the concentration of methylene chloride could be reduced to 8500 ppm. When the vacuum-dried sample was subjected to microwave-assisted drying, the ICH requirements could be met by drying for 10 h at 200 W and 8 h at 300 W. The lower the initial concentration of the solvent and the higher the microwave power, the greater the improvement in the efficiency of microwave-assisted drying.  相似文献   

19.
《Inorganica chimica acta》2006,359(5):1524-1530
A novel copper complex of [Cu(bpy)(pba)2 · H2O] · 0.5H2O (bpy = 2,2′-bipyridine, pba = p-methylbenzoate) was synthesized. The interaction of the complex to native fish sperm DNA was investigated through electrochemistry, electronic absorption spectroscopy and viscosity experiments. In the X-ray crystallography structure, the copper (II) ion is coordinated by two oxygen atoms of two p-methylbenzoate groups, two nitrogen atoms of 2,2′-bipyridine and one water molecule. The observed changes in the physicochemical features of the copper (II) complex on binding to DNA suggested that the complex bind to DNA with intercalation mode via 2,2′-bipyridine ring into DNA base pairs. Electrochemical studies revealed that the complex prefer to bind to DNA in Cu(I) form rather than Cu(II) oxidation state form. Additionally, the nuclease activity of the title complex was assessed by gel electrophoresis assay and the results shown that the copper complex can cleave pBR322 DNA effectively in the presence of ascorbic acid.  相似文献   

20.
Early, accurate and effective diagnosis of toxoplasmosis can make an important contribution to the prevention and control of disease, especially in people who are at risk. In this study, two commonly used genomic repeats of Toxoplasma gondii, RE (GenBank accession number AF146527) and B1, were compared to each other in nested-PCR assay. Five hundred and thirty-five blood samples from children with leukemia were tested for the presence of T. gondii antibodies using enzyme immunoassays. One hundred and ten DNA samples of these patients (50 IgM +, IgG +, 10 IgM −, IgG +, and 50 IgM −, IgG −) were analyzed by nested-PCR. The specificity of two nested PCR assays was determined using the DNA samples of other parasites and human chromosomal DNA. As a result, 82% (41/50) and 68% (34/50) of the IgM +, IgG + samples were positive on duplicate RE and B1-nested PCR analyses, respectively. None of the 10 IgM −, IgG + seropositive samples was detected positive after testing RE and B1-nested PCR assays in duplicate. One (2%) of the 50 seronegative samples was positive by duplicate RE-nested PCR but none of them were positive by duplicate B1-nested PCR. The detection limit of the RE-nested PCR assay was 640 fg of T. gondii DNA whereas this rate for B1-nested PCR was 5.12 pg of the DNA template. No cross-reactivity with the DNA of other parasites and human chromosomal DNA was found. The results indicate that an RE-based nested PCR assay is more sensitive than B1 genomic target, of those tested, for detection of T. gondii. It is noteworthy that in comparison with B1-nested PCR, RE-nested PCR could detect the T. gondii DNA in seronegative samples too.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号