首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When guanosine 5'-(3-O-[35S]thio)triphosphate (GTP gamma S)-binding activity was assayed in the particulate and cytosol fractions of human platelets, most activity was found in the particulate fraction. GTP-binding proteins (G proteins) were extracted from the particulate fraction by sodium cholate and purified by several column chromatographies. At least three G proteins with Mr values of about 21,000, 22,000, and 24,000 (21K G, 22K G, and 24K G, respectively) were separated in addition to the stimulatory (Gs) and inhibitory (Gi) regulatory GTP-binding proteins of adenylate cyclase. Among them, the amount of 22K G was more than 10-fold of those of other G proteins. 22K G was purified to near homogeneity and characterized. 22K G specifically bound GTP gamma S, GTP, and GDP, with a Kd value for GTP gamma S of about 50 nM. [35S]GTP gamma S binding to 22K G was inhibited by pretreatment with N-ethylmaleimide. 22K G hydrolyzed GTP to liberate Pi, with a turnover number of 0.01 min-1. 22K G was not copurified with the beta gamma subunits of Gs and Gi and was not recognized by the antibodies against the ADP-ribosylation factor for Gs and the ras protein. The peptide map of 22K G was different from those of the smg-25A and rho proteins, which we have purified from bovine brain membranes. 21K G was identified to be the c-ras protein, but 24K G was unidentified. These results indicate that there are multiple G proteins in platelet membranes and that a novel G protein (22K G) is a major G protein in platelets.  相似文献   

2.
GTP binding proteins: a key role in cellular communication   总被引:1,自引:0,他引:1  
J Bockaert  V Homburger  B Rouot 《Biochimie》1987,69(4):329-338
One of the major steps in the understanding of the hormonal and sensory transduction mechanisms in eukaryotic cells has been the discovery of a family of GTP binding proteins which couple receptors to specific cellular effectors. The absolute requirement of GTP for hormonal stimulation of adenylate cyclase was the initial observation which led to the purification of the protein involved: Gs. Gs couples stimulatory receptors to adenylate cyclase. It is a heterotrimer composed of an alpha chain (45 or 52 kDa), a beta chain (35-36 kDa) and a gamma chain (8 kDa). Several other G proteins of known functions have been purified: Gi, which couples inhibitory receptors to adenylate cyclase, and transducin which couples photoexcited rhodopsin to cyclic GMP phosphodiesterase. Some G proteins of uncertain function have also been purified: Go, a G protein mainly localized in nervous tissues and Gp, a G protein isolated from placenta and platelets. All these G proteins have a common design. Like Gs they all consist of 3 chains: alpha, beta and gamma. The beta chains are nearly identical, whereas the gamma chains are more variable. The alpha chains are different, but share common domains (especially at the level of the GTP binding site). These domains of homologies are also similar to those of other GTP binding proteins, such as the product of the ras gene (p21) and the initiation or elongation factors. alpha Chains are also ADP ribosylated by bacterial toxins. Gs and transducin are targets for cholera toxin, whereas Gi, Go and transducin are targets for pertussis toxin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Synthesis in Escherichia coli of GTPase-deficient mutants of Gs alpha   总被引:19,自引:0,他引:19  
We have reduced the GTPase activity of the alpha subunit of Gs, the guanine nucleotide-binding regulatory protein that stimulates adenylyl cyclase, by introduction of point mutations analogous to those described in p21ras. Mutants G49V and Q227L differ from the wild type protein in the substitution of Val for Gly49 and Leu for Gln227, respectively (analogous to positions 12 and 61 in p21ras). Wild type and mutant proteins were synthesized in Escherichia coli, purified, and characterized. The rate constants for dissociation of GDP from G49V recombinant Gs alpha (rGs alpha) (0.47/min) and Q227L rGs alpha (0.23/min) differ by no more than 2-fold from that observed for the wild type protein (0.5/min). In marked contrast, the rate constants for hydrolysis of GTP by G49V rGs alpha (0.78/min) and Q227L rGs alpha (0.03-0.06/min) are 4-fold and roughly 100-fold slower than that for wild type rGs alpha (3.5/min). These reductions in the rate of hydrolysis of GTP result in significant fractional occupancy of these proteins by GTP in the presence of the nucleotide, 0.37 for G49V rGs alpha and 0.78 for Q227L rGs alpha, compared to 0.05 for wild type rGs alpha. When reconstituted with cyc- (Gs alpha-deficient) S49 cell membranes or purified adenylyl cyclase, both mutant proteins stimulate adenylyl cyclase activity in the presence of GTP to a much greater extent than does wild type Gs alpha; their maximal ability to activate the enzyme is largely unaltered. The fractional ability of a given Gs alpha polypeptide to active adenylyl cyclase in the presence of GTP correlates well with the fractinal occupancy of the protein by the nucleotide. The mutant subunits appear to interact normally with G protein beta gamma subunits, and their ability to activate adenylyl cyclase is enhanced by interaction with beta-adrenergic receptors. These results indicate that the structural analogy that has been inferred between the guanine nucleotide-binding domains of G proteins and the p21ras family is at least generally correct. They also provide confirmation of the kinetic model of G protein function and document mutations that permit the expression in vivo of constitutively activated G protein alpha subunits.  相似文献   

4.
Detection of G Proteins in Purified Bovine Brain Myelin   总被引:5,自引:5,他引:0  
Following a previous report on detection of muscarinic receptors in myelin with the implied presence of G proteins, we now demonstrate by more direct means the presence of such proteins and their quantification. Using [35S]guanosine 5'-O-(3-thiotriphosphate) ([35S]GTP gamma S) as the binding ligand, purified myelin from bovine brain was found to contain approximately half the binding activity of whole white matter (138 +/- 9 vs. 271 +/- 18 pmol/mg of protein). Scatchard analysis of saturation binding data revealed two slopes, a result suggesting at least two binding populations. This binding was inhibited by GTP and its analog but not by 5'-adenylylimidodiphosphate [App(NH)p], GMP, or UTP. Following sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) of myelin proteins and blotting on nitrocellulose, [alpha-32P]GTP bound to three bands in the 21-27-kDa range in a manner inhibited by GTP and GTP gamma S but not App(NH)p. ADP-ribosylation of myelin with [32P]NAD+ and cholera toxin labeled a protein of 43 kDa, whereas reaction with pertussis toxin labeled two components of 40 kDa. Cholate extract of myelin subjected to chromatography on a column of phenyl-Sepharose gave at least three major peaks of [35S]GTP gamma S binding activity. SDS-PAGE and immunoblot analyses of peak I indicated the presence of Go alpha, Gi alpha, and Gs alpha. Further fractionation of peak II by diethyl-aminoethyl-Sephacel chromatography gave one [35S]GTP gamma S binding peak with the low-molecular-mass (21-27 kDa) proteins and a second showing two major protein bands of 36 and 40 kDa on SDS-PAGE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
At least two GTP-binding proteins (G proteins) with Mr values of about 20,000 were extracted from bovine aortic smooth muscle membranes by sodium cholate. The most abundant G protein (22K G) was purified to near homogeneity by successive column chromatographies of Ultrogel AcA-44, phenyl-Sepharose CL-4B, hydroxyapatite and Mono Q HR5/5. 22K G showed kinetic and physical properties very similar to those of smg p21, a G protein recently isolated from bovine brain and human platelet membranes, having the same effector domain as ras p21s. Moreover, 22K G was recognized specifically by the anti-smg p21 antibody. These results indicate that the major G protein in bovine aortic smooth muscle membranes is smg p21.  相似文献   

6.
Native membranes from human erythrocytes contain the following G proteins which are ADP-ribosylated by a number of bacterial toxins: Gi alpha and Go alpha (pertussis toxin), Gs alpha (cholera toxin), and three proteins of 27, 26 and 22 kDa (exoenzyme C3 from Clostridium botulinum). Three additional C3 substrates (18.5, 16.5 and 14.5 kDa) appeared in conditions of unrestrained proteolysis during hemolysis. SDS-PAGE separation of erythrocyte membrane proteins followed by electroblotting and incubation of nitrocellulose sheets with radiolabeled GTP revealed consistently four GTP-binding proteins with Mr values of 27, 26, 22 and 21 kDa. Although a 22 kDa protein was immunochemically identified as ras p21, the C3 substrate of 22 kDa is a different protein probably identifiable with a rho gene product. Accordingly, at least five distinct small molecular weight guanine nucleotide-binding proteins, whose functions are so far undetermined, are present in native human erythrocyte membranes.  相似文献   

7.
We demonstrated recently that purified preparations of Gs, the stimulatory G protein of adenylyl cyclase, can stabilize Ca2+ channels in inside-out cardiac ventricle membrane patches stimulated prior to excision by the beta-adrenergic agonist isoprenaline or by the dihydropyridine agonist Bay K 8644 and that such preparations of Gs can restore activity to spontaneously inactivated cardiac Ca2+ channels incorporated into planar lipid bilayers (Yatani, A., Codina, J., Reeves, J.P., Birnbaumer, L., and Brown, A.M. (1987) Science 238, 1288-1292). To test whether these effects represented true stimulation and to further identify the G protein responsible, we incorporated skeletal muscle T-tubule membranes into lipid bilayers and studied the response of their Ca2+ channels to G proteins, specifically Gs, and manipulations known to be specific for Gs. In contrast to cardiac channels, incorporated T-tubule Ca2+ channels exhibit stable average activities over prolonged periods of time (up to 20 min at room temperature), allowing assessment of possible effects of G proteins under steady-state assay conditions. We report that exogenously added human erythrocyte GTP gamma S (guanosine 5'-O-(3-thiotriphosphate]-activated Gs (Gs) or its resolved GTP gamma S-activated alpha subunit (alpha s) stimulate T-tubule Ca2+ channels by factors of 2-3 in the presence of Bay K 8644, and of 10-20 in the absence of Bay K 8644 and that they do so in a manner that is independent of concurrent or previous phosphorylation by cAMP-dependent protein kinase. Activation of purified Gs by cholera toxin increases both its adenylyl cyclase stimulatory and its Ca2+ channel stimulatory effects. Ca2+ channels previously stimulated by the combined actions of Bay K 8644 and cAMP-dependent protein kinase still respond to Gs. We conclude that the responses seen are due to Gs rather than a contaminant, that the effect on Ca2+ channel activity is that of a true stimulation, akin to that on adenylyl cyclase, and show that a given G protein may regulate more than one effector system.  相似文献   

8.
The abilities of different GTP-binding proteins to serve as phosphosubstrates for the epidermal growth factor (EGF) receptor/tyrosine kinase have been examined in reconstituted phospholipid vesicle systems. During the course of these studies we discovered that a low molecular mass, high affinity GTP-binding protein from bovine brain (designated as the 22-kDa protein) served as an excellent phosphosubstrate for the tyrosine-agarose-purified human placental EGF receptor. The EGF-stimulated phosphorylation of the purified 22-kDa protein occurs on tyrosine residues, with stoichiometries approaching 2 mol of 32Pi incorporated/mol of [35S]guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)-binding sites. The EGF-stimulated phosphorylation of the brain 22-kDa protein requires its reconstitution into phospholipid vesicles. No phosphorylation of this GTP-binding protein is detected if it is simply mixed with the purified EGF receptor in detergent solution or if detergent is added back to lipid vesicles containing the EGF receptor and the 22-kDa protein. The EGF-stimulated phosphorylation of this GTP-binding protein is also markedly attenuated by guanine nucleotides, i.e. GTP, GTP gamma S, or GDP, suggesting that maximal phosphorylation occurs when the GTP-binding protein is in a guanine nucleotide-depleted state. Purified preparations of the 22-kDa phosphosubstrate do not cross-react with antibodies against the ras proteins. However, they do cross-react against two different peptide antibodies generated against specific sequences of the human platelet (and placental) GTP-binding protein originally designated Gp (Evans, T., Brown, M. L., Fraser, E. D., and Northrup, J. K. (1986) J. Biol. Chem. 261, 7052-7059) and more recently named G25K (Polakis, P. G., Synderman, R., and Evans, T. (1989) Biochem. Biophys. Res. Commun. 160, 25-32). When highly purified preparations of the human platelet Gp (G25K) protein are reconstituted with the purified EGF receptor into phospholipid vesicles, an EGF-stimulated phosphorylation of the platelet GTP-binding protein occurs with a stoichiometry approaching 2 mol of 32Pi incorporated/mol of [35S]GTP gamma S-binding sites. As is the case for the brain 22-kDa protein, the EGF-stimulated phosphorylation of the platelet GTP-binding protein is attenuated by guanine nucleotides. Overall, these results suggest that the brain 22-kDa phosphosubstrate for the EGF receptor is very similar, if not identical, to the Gp (G25K) protein. Although guanine nucleotide binding to the brain 22-kDa protein or to the platelet. GTP-binding protein inhibits phosphorylation, the phosphorylated GTP-binding proteins appear to bind [35S]GTP gamma S slightly better than their nonphosphorylated counterparts.  相似文献   

9.
A regulatory protein for a liver GTP-binding protein (G protein) with a molecular weight value of 24,000 (24K G), which we have recently purified, was purified to near-homogeneity from rat liver cytosol and characterized. This regulatory protein, designated here as GDP dissociation inhibitor for 24K G (24K G GDI), inhibited the dissociation of GDP from and the subsequent binding of GTP to 24K G. 24K G GDI was inactive for other ras p21/ras p21-like small G proteins including c-Ha-ras p21, rhoB p20, smg p21B, and smg p25A. 24K G was, however, recognized by bovine brain smg p25A GDI which regulated the GDP/GTP exchange reaction of smg p25A. By analyses of sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE), immunoblotting with anti-smg p25A GDI antibody, two-dimensional PAGE, and C4 column chromatography, 24K G GDI showed physical properties very similar to those of smg p25A GDI. The peptide map and the partial amino acid sequences of 24K G GDI were not identical with those of smg p25A GDI. Among the 83 residues, 2 amino acids were different between rat liver 24K G GDI and bovine brain smg p25A GDI. These results indicate that there is a specific regulatory protein for 24K G, 24K G GDI, in rat liver cytosol and that 24K G GDI has close similarity to smg p25A GDI.  相似文献   

10.
We have constructed mutants of the alpha subunit of Gs in an attempt to identify sites in the protein that are important for its interaction with adenylylcyclase. Some residues specific for those G proteins that activate adenylylcyclase were replaced with residues characteristic of Gi alpha. Mutant proteins were expressed in Escherichia coli, and two of these were purified to homogeneity and characterized in detail. Mutation of trp263, leu268, or arg269 caused a significant loss of the capacity of Gs alpha to stimulate adenylylcyclase, and the triple mutant had less than 1% of the ability of wild type Gs alpha to activate the enzyme. Guanine nucleotide binding and GTP hydrolysis by the mutant proteins were unaltered, as was guanosine 5'-3-O-(thio)triphosphate-induced enhancement of intrinsic tryptophan fluorescence. Mutant proteins also appeared to have a reduced affinity for the G protein beta gamma subunit complex. Secondary structure analysis and comparison with the structure of p21ras suggests that the region of Gs alpha that we have identified is part of a loop that may be involved in interaction of the protein with adenylylcyclase. Although these residues are essential for activation of adenylylcyclase, they are not sufficient to do this when placed in the context of another G protein alpha subunit.  相似文献   

11.
We have examined the ability of the beta gamma subunits of guanine nucleotide binding regulatory proteins (G proteins) to support the pertussis toxin (PT) catalyzed ADP-ribosylation of G protein alpha subunits. Substoichiometric amounts of the beta gamma complex purified from either bovine brain G proteins or the bovine retinal G protein, Gt, are sufficient to support the ADP-ribosylation of the alpha subunits of Gi (the G protein that mediates inhibition of adenylyl cyclase) and Go (a G protein of unknown function) by PT. This observation indicates that ADP-ribosylated G protein oligomers can dissociate into their respective alpha and beta gamma subunits in the absence of activating regulatory ligands, i.e., nonhydrolyzable GTP analogues or fluoride. Additionally, the catalytic support of ADP-ribosylation by bovine brain beta gamma does not require Mg2+. Although the beta gamma subunit complexes purified from bovine brain G proteins and the beta gamma complex of Gt support equally the ADP-ribosylation of alpha subunits by PT, there is a marked difference in their abilities to interact with Gs alpha. The enhancement of deactivation of fluoride-activated Gs alpha requires 25-fold more beta gamma from Gt than from brain G proteins to produce a similar response. This difference in potency of beta gamma complexes from the two sources was also observed in the ability of beta gamma to produce an increase in the activity of recombinant Gs alpha produced in Escherichia coli.  相似文献   

12.
We have previously reported the purification of two alpha subunits of G proteins, Gi2 and Gi3, from bovine spleen. However, it recently became clear that the preparation of Gi3 alpha contained a significant amount of Gi1 alpha by the immunoblot analysis using specific antibodies. In this study, we purified these G proteins as a trimer form from bovine spleen, and obtained following results. (1) Gi3 was separated from Gi1 using Mono Q column chromatography. Isoelectric focusing was employed to distinguish Gi3 from Gi1 in the column eluates. (2) Purified Gi2 and Gi3 retained much higher activities to bind GTP gamma S or to be ADP-ribosylated by pertussis toxin than the alpha subunits purified previously. (3) Using these spleen Gi2 and Gi3 and bovine brain Gi1, the parameter of GTP gamma S binding to the three types of Gi was compared. Three Gis showed different rates of GTP gamma S binding but showed the similar Kd values.  相似文献   

13.
Adenylylcyclase cannot be activated by hormones or guanine nucleotide analogs in membranes from cells that express the G226A mutant form Gs alpha instead of the wild-type protein. The mutant Gs alpha protein appears incapable of undergoing the conformational change necessary for guanine nucleotide-induced dissociation of the G protein alpha subunit from the beta gamma subunit complex (Miller, R.T., Masters, S.B., Sullivan, K.A., Beiderman, B., and Bourne, H.R. (1988) Nature 334, 712-715). G226A Gs alpha was synthesized in Escherichia coli, purified, and characterized. Examination of the kinetics of dissociation of guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) suggests that G226A Gs alpha is incapable of assuming the conformation necessary for high affinity binding of Mg2+ to the alpha subunit-GTP gamma S complex. Associated changes include the failure of Mg2+ and GTP gamma S to confer resistance to tryptic proteolysis upon the protein, to enhance intrinsic tryptophan fluorescence, or to cause dissociation of alpha from beta gamma. However, the GTPase activity of the mutant protein is near normal (at high Mg2+ concentrations), and the protein is capable of activating adenylylcyclase. A similar defect is present in G49V Gs alpha. Failure of G protein subunit dissociation appears to be the explanation for the phenotypic properties of cells that express G226A Gs alpha, and this mutation thus highlights the crucial nature of this reaction as a component of G protein action.  相似文献   

14.
Reconstitution of catecholamine-stimulated guanosinetriphosphatase activity   总被引:14,自引:0,他引:14  
beta-Adrenergic receptors were partially purified from turkey erythrocyte membranes by alprenolol-agarose chromatography to 0.25-2 nmol/mg of protein, and the stimulatory guanosine 5'-triphosphate (GTP) binding protein of adenylate cyclase (Gs) was purified from rabbit liver. These proteins were reconstituted into phospholipid vesicles by addition of phospholipids and removal of detergent by gel filtration. This preparation hydrolyzes GTP to guanosine 5'-diphosphate (GDP) plus inorganic phosphate (Pi) in response to beta-adrenergic agonists. The initial rate of isoproterenol-stimulated hydrolysis is approximately 1 mol of GTP hydrolyzed min-1 X mol-1 of Gs. This low rate may be limited by the hormone-stimulated binding of substrate, since it is roughly equal to the rate of binding of the GTP analogue guanosine 5'-O-(3-[35S] thiotriphosphate) [( 35S]GTP gamma S) to Gs in the vesicles. Activity in the absence of agonist, or in the presence of agonist plus a beta-adrenergic antagonist, is 8-25% of the hormone-stimulated activity. Guanosinetriphosphatase (GTPase) is not saturated at 10 microM GTP, and the response to GTP is formally consistent either with the existence of multiple Km's or of a separate stimulatory site for GTP. The GTPase activity of Gs in vesicles is also stimulated by 50 mM MgCl2 in the presence or absence of receptor. Significant GTPase activity is not observed with Lubrol-solubilized Gs, although [35S]-GTP gamma S binding is increased by Lubrol solubilization.  相似文献   

15.
Polyclonal antibodies to the alpha subunits of G0 type G proteins (G0 alpha) were coupled to agarose gel and used to isolate G0 alpha from solubilized membranes of various bovine tissues. The cholate extract of membranes was applied to the anti-G0 alpha-agarose gel column. The column was washed extensively, then bound proteins were eluted at a neutral pH using a commercial ActiSep Elution Medium. The proteins in the eluate displayed a single band of 39 kDa on SDS-polyacrylamide gel electrophoresis. They bound to GTP gamma S and were ADP-ribosylated by pertussis toxin. The yield of the immunoreactive G0 alpha from the extract was about 40%. Isoelectric focusing, immunoassay and peptide mapping analysis of the G0 alpha-like proteins purified from the heart and adrenal medulla indicated that these proteins were very similar to the alpha subunit of a minor subtype of G0 in the brain which was previously referred to as G0 * alpha.  相似文献   

16.
Recombinant alpha i-3 subunit of G protein activates Gk-gated K+ channels   总被引:2,自引:0,他引:2  
G proteins, particularly those sensitive to pertussis toxin, are difficult to separate biochemically, creating uncertainty in functional assignments. For this reason the cDNAs encoding G alpha i-3 and two of the G alpha s splice variants were expressed as fusion proteins in Escherichia coli using a T7 promoter-based expression system. These proteins were denoted r alpha i-3 and r alpha s (short and long) and accumulated in bacteria to as much as 5-10% of total cellular protein, of which 5-10% was soluble in lysates. Soluble r alpha subunits were tested for stimulation of K+ channel activity in inside-out atrial membrane patches and for reconstitution of cyc- adenylyl cyclase activity. r alpha i-3, activated either by guanosine 5'-(3-thio)triphosphate (GTP gamma S) or AlF-4, stimulated in a concentration-dependent manner single channel K+ currents in isolated atrial membrane patches of three species: guinea pigs, neonatal rats, and embryonic chick. In contrast, GTP gamma S-activated r alpha s did not. In agreement with a similar study by Graziano et al. (Graziano, M. P., Casey, P. J. and Gilman, A. G. (1987) J. Biol. Chem. 262, 11375-11381), both r alpha s forms reconstituted GTP gamma S-stimulated cyc- adenylyl cyclase activity, albeit at concentrations 50-100 times higher than those needed with native Gs. The concentrations of r alpha i-3 needed to stimulate the K+ channels were also higher than needed with native human erythrocyte Gk, in this case 30-50 times. Single K+ channel currents stimulated by r alpha i-3 were indistinguishable from those stimulated by the natural effector acetylcholine. Thus, bacterial expression of G alpha subunits provided the means to demonstrate unequivocally that Gi-3 has intrinsic Gk activity.  相似文献   

17.
Hydrolysis of GTP by the alpha-chain of Gs and other GTP binding proteins   总被引:4,自引:0,他引:4  
The functions of G proteins--like those of bacterial elongation factor (EF) Tu and the 21 kDa ras proteins (p21ras)--depend upon their abilities to bind and hydrolyze GTP and to assume different conformations in GTP- and GDP-bound states. Similarities in function and amino acid sequence indicate that EF-Tu, p21ras, and G protein alpha-chains evolved from a primordial GTP-binding protein. Proteins in all three families appear to share common mechanisms for GTP-dependent conformational change and hydrolysis of bound GTP. Biochemical and molecular genetic studies of the alpha-chain of Gs (alpha s) point to key regions that are involved in GTP-dependent conformational change and in hydrolysis of GTP. Tumorigenic mutations of alpha s in human pituitary tumors inhibit the protein's GTPase activity and cause constitutive elevation of adenylyl cyclase activity. One such mutation replaces a Gln residue in alpha s that corresponds to Gln-61 of p21ras; mutational replacements of this residue in both proteins inhibit their GTPase activities. A second class of GTPase inhibiting mutations in alpha s occurs in the codon for an Arg residue whose covalent modification by cholera toxin also inhibits GTP hydrolysis by alpha s. This Arg residue is located in a domain of alpha s not represented in EF-Tu or p21ras. We propose that this domain constitutes an intrinsic activator of GTP hydrolysis, and that it performs a function analogous to that performed for EF-Tu by the programmed ribosome and for p21ras by the recently discovered GTPase-activating protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The direct binding protein(s) of ras p21 was (were) investigated in inside-out vesicles of human erythrocyte ghosts using the pure v-Kirsten (Ki)-ras p21 synthesized in E. coli. The bound ras p21 was detected immunochemically using an anti-v-Ki-ras p21 monoclonal antibody, ras p21 bound to vesicles. Prior digestion of the vesicles with trypsin reduced this binding significantly. When ras p21 was laid over vesicle proteins immobilized on a nitrocellulose sheet by transfer from the gel of SDS-polyacrylamide gel electrophoresis, ras p21 bound to bands 4.2 and 6. ras p21 binding to these proteins was reduced by prior incubation of ras p21 with the purified band 4.2 or 6 protein. These results indicate that v-Ki-ras p21 can bind directly to bands 4.2 and 6 of human erythrocyte membranes as far as tested in an in vitro cell-free system.  相似文献   

19.
In the present studies, we attempted to purify the native molecular forms of the c-ras proteins (c-ras p21s) from bovine brain crude membranes and separated at least three GTP-binding proteins (G proteins) cross-reactive with the antibody recognizing all of Ha-, Ki-, and N-ras p21s. Among them, one G protein with a Mr of about 21,000 was highly purified and characterized. The Mr 21,000 G protein bound maximally about 0.6 mol of [35S]guanosine 5'-(3-O-thio)triphosphate (GTP gamma S)/mol of protein with a Kd value of about 30 nM. [35S]GTP gamma S-binding to Mr 21,000 G protein was inhibited by GTP and GDP, but not by other nucleotides such as ATP, UTP, and CTP. [35S]GTP gamma S-binding to Mr 21,000 G protein was inhibited by pretreatment with N-ethylmaleimide. Mr 21,000 G protein hydrolyzed GTP to liberate Pi with a turnover number of about 0.01 min-1. Mr 21,000 G protein was not copurified with the beta gamma subunits of the G proteins regulatory for adenylate cyclase. Mr 21,000 G protein was not recognized by the antibody against the ADP-ribosylation factor for Gs. The peptide map of Mr 21,000 G protein was different from those of the G proteins with Mr values of 25,000 and 20,000, designated as smg p25A and rho p20, respectively, which we have recently purified from bovine brain crude membranes. The partial amino acid sequence of Mr 21,000 G protein was identical with that of human c-Ki-ras 2B p21. These results indicate that Mr 21,000 G protein is bovine brain c-Ki-ras 2B p21 and that c-Ki-ras 2B p21 is present in bovine brain membranes.  相似文献   

20.
Two GTP-binding proteins which can be ADP-ribosylated by islet-activating protein, pertussis toxin, were purified from the cholate extract of bovine lung membranes. Both proteins had the same heterotrimeric structure (alpha beta gamma), but the alpha subunits were dissociated from the beta gamma when they were purified in the presence of AlCl3, MgCl2 and NaF. The molecular mass of the alpha subunit of the major protein (designated GLu, with beta gamma) was 40 kDa and that of the minor one was 41 kDa. The results of peptide mapping analysis of alpha subunits with a limited proteolysis indicated that GLu alpha was entirely different from the alpha of brain Gi or Go, while the 41-kDa polypeptide was identical with the alpha of bovine brain Gi. The kinetics of guanosine 5'-[3-O-thio]triphosphate (GTP[gamma S]) binding to GLu was similar to that to lung Gi but quite different from that to brain Go. On the other hand, incubation of GLu alpha at 30 degrees C caused a rapid decrease of GTP[gamma S] binding, the inactivation curve being similar to that of Go alpha but different from that of Gi alpha. The alpha subunits of lung Gi and GLu did not react with the antibodies against the alpha subunit of bovine brain Go. The antibodies were raised in rabbits against GLu alpha and were purified with a GLu alpha-Sepharose column. The purified antibodies reacted not only with GLu alpha but also with the 41-kDa protein and purified brain Gi alpha. However, the antibodies adsorbed with brain Gi alpha reacted only with GLu alpha, indicating antisera raised with GLu alpha contained antibodies that recognize both Gi alpha and GLu alpha, and those specific to GLu alpha. These results further indicate that GLu is different from Gi or Go. Anti-GLu alpha antibodies reacted with the 40-kDa proteins in the membranes of bovine brain and human leukemic (HL-60) cells. The beta gamma subunits were also purified from bovine lung. The beta subunit was the doublet of 36-kDa and 35-kDa polypeptides. The lung beta gamma could elicit the ADP-ribosylation of GLu alpha by islet-activating protein, increase the GTP[gamma S] binding to GLu and protect the thermal denaturation of GLu alpha. The antibodies raised against brain beta gamma cross-reacted with lung beta but not with lung gamma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号