首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular mechanisms underlying the failure of steroids to stimulate glucose-6-Pase and arylhydrocarbonhydroxylase activities in the MC-29-virus-derived transplantable hepatoma (VTH) were investigated. Following cellular uptake of 3H-Cortisol, its subcellular distribution, binding to a specific cytoplasmic receptor and the interaction between steroid-bound receptor and DNA were compared in VTH and in normal chicken liver. No appreciable difference was observed either in 3H-Cortisol uptake or in binding to cytoplasmic receptors. However, compared with normal liver, only half as much hepatoma steroid receptor was able to interact with DNA at the protein/DNA ratio of 60. This reduced DNA binding of VTH 3H-Cortisol-receptor was irrespective of the source of DNA (VTH or liver). It is concluded that one of the causes for abnormal gene regulation in VTH may lie at the level of DNA-protein interaction.  相似文献   

2.
The effects of adrenalectomy on glucagon activation of liver glycogen phosphorylase and glycogenolysis were studied in isolated hepatocytes. Adrenalectomy resulted in reduced responsiveness of glycogenolysis and phosphorylase to glucagon activation. Stimulation of cAMP accumulation and cAMP-dependent protein kinase activity by glucagon was unaltered in cells from adrenalectomized rats. Adrenalectomy did not alter the proportion of type I and type II protein kinase isozymes in liver, whereas this was changed by fasting. Activation of phosphorylase kinase by glucagon was reduced in hepatocytes from adrenalectomized rats, although the half-maximal effective concentration of glucagon was unchanged. No difference in phosphorylase phosphatase activity between liver cells from control and adrenalectomized rats was detected. Glucagon-activated phosphorylase declined rapidly in hepatocytes from adrenalectomized rats, whereas the time course of cAMP increase in response to glucagon was normal. Addition of glucose (15 mM) rapidly inactivated glucagon-stimulated phosphorylase in both adrenalectomized and control rat hepatocytes. The inactivation by glucose was reversed by increasing glucagon concentration in cells from control rats, but was accelerated in cells from adrenalectomized rats. It is concluded that impaired activation of phosphorylase kinase contributes to the reduced glucagon stimulation of hepatic glycogenolysis in adrenalectomized rats. The possible role of changes in phosphorylase phosphatase is discussed.  相似文献   

3.
4.
Since many isoforms of adenylyl cyclase and adenosine 3', 5'-monophosphate (cAMP) phosphodiesterase have been cloned, it is likely that receptors of each hormone have a specific combination of these isoforms. Types I, III and VIII adenylyl cyclases are reported to be stimulated by Ca(2+)-calmodulin, type I phosphodiesterase by Ca(2+)-calmodulin, but types IV and VII (cAMP-specific) phosphodiesterases by Co2+. In the present study, we examined different effects of Ca2+ and Co2+ on hormone-induced cAMP response in the isolated perfused rat liver.The removal of Ca2+ from the perfusion medium (0 mM CaCl(2 ) + 0.5 mM EGTA) did not affect glucagon (0.1 nM)-responsive cAMP but reduced secretin (1 nM)-, vasoactive intestinal polypeptide (VIP, 1-10 nM)- and forskolin (1 microM)-responsive cAMP considerably. The addition of 1 mM CoCl2 reduced glucagon- and secretin-responsive cAMP considerably, forskolin-responsive cAMP partly, did not affect 1 nM VIP-responsive cAMP, but enhanced 10 nM VIP-responsive cAMP. Forskolin- and VIP-responsive cAMP was greater in the combination (0 mM CaCl(2) + 0.5 mM EGTA + 3 mM CoCl2) than in the Ca(2+)-free perfusion alone.These results suggest that secretin, VIP1 and VIP2 receptors are linked to Ca(2+)-calmodulin-sensitive adenylyl cyclase; glucagon receptor to Ca(2+)-calmodulin-insensitive adenylyl cyclase; VIP1 receptor to Ca(2+)-calmodulin-dependent phosphodiesterase; glucagon, secretin and VIP2 receptors to cAMP-specific phosphodiesterase, respectively, in the rat liver.  相似文献   

5.
We have examined the influence of extracellular pH and calcium concentration on the action of glucagon on isolated rat hepatocytes, perfused liver or plasma membrane preparations. Incubation of rat hepatocytes with 10 nM glucagon at pH 7.4 caused an immediate increase in cAMP concentrations (8-fold), and this rise was almost 50% lower at acidic extracellular pH (6.9). This effect of pH could not be explained by an alteration of the hormone binding to its receptor for glucagon concentrations higher than 1 nM. The effect of acidosis on cAMP production was still present with non-hormonal effectors, such as 10 microM Gpp[NH]p, 30 microM forskolin or 10 mM NaF. This suggests a direct action of acidosis on the regulatory component Ns and/or on the catalytic subunit of adenylate cyclase. Acidic pH also depressed mitochondrial processes responsive to glucagon (NAD(P)H fluorescence, glutamine breakdown). Whatever the experimental model, calcium appeared to be required for maximal stimulation of cAMP production by glucagon. On perfused rat liver, glycogenolysis was depressed in the absence of extracellular calcium in the perfusate. In isolated hepatocytes, the stimulation of phosphorylase alpha activity by glucagon was modulated by extracellular calcium concentrations lower than 0.2 mM. This suggests that, although glucagon action is chiefly cAMP-mediated, its effect on calcium mobilization (affecting various cellular process, including cAMP production itself) should also be taken into account. This work also confirmed the importance of calcium in the stimulation of mitochondrial metabolism of glutamine by glucagon.  相似文献   

6.
The effects of glucagon on the concentration and output of cAMP were studied in liver slices and in perfused livers from female rats and from animals treated with ethynyl estradiol (15 μg/kg daily for 14 days). The basal content of cAMP in liver slices, or of cAMP released into the perfusion medium in the absence of glucagon, was unaffected by prior treatment of the animal with estrogen. When glucagon was added to the medium, the concentration of cAMP in liver slices was 2.29 ± 0.32 and 1.10 ± 0.11 pmol cAMP/mg wet weight from control and ethynyl estradiol treated rats, respectively. When glucagon was added, the output of cAMP by perfused livers was maximal at 20 minutes with livers from either control or ethynyl estradiol treated rats. Output of cAMP by the perfused liver, when glucagon was added to the medium, was 8.76 ± 0.69 and 1.84 ± 0.08 nmol/g by livers from control and ethynyl estradiol treated rats, respectively. This effect was the same whether animals had been fasted for 12 hours previously, or were allowed free access to food until sacrifice. Clearly, as measured by cAMP accumulation, prior treatment of the rat with ethynyl estradiol reduced the sensitivity of the hepatic cAMP response to glucagon.  相似文献   

7.
[1-N alpha-Trinitrophenylhistidine,12-homoarginine]glucagon (THG) is a potent antagonist of the effects of glucagon on liver membrane adenylate cyclase. In isolated hepatocytes, this glucagon analogue was an extremely weak partial agonist for cAMP accumulation, and it blocked the stimulation of cAMP accumulation produced by glucagon. However, THG was a full agonist for the stimulation of glycogenolysis, gluconeogenesis and urea synthesis in rat hepatocytes, and did not antagonize the metabolic effects of glucagon under most of the conditions examined. Forskolin potentiated the stimulation of cAMP accumulation produced by glucagon or THG, but did not potentiate their metabolic actions. A much larger increase in cAMP levels seemed to be required for the stimulation of hepatocyte metabolism by forskolin than by glucagon or THG. This may suggest the existence of a functional compartmentation of cAMP in rat hepatocytes. The possible existence of compartments in cAMP-mediated hormone actions and the involvement of factors, besides cAMP, in mediating the effects of THG and glucagon is suggested.  相似文献   

8.
In normal Rat Liver Primary Culture (RL-PR-C) liver cells, cAMP was low prior to confluency, then rose continuously as cells became contact inhibited. In contrast, spontaneously transformed RL-PR-C cells did not become contact inhibited, and cAMP decreased steadily with increasing cell density. Normal cells released large amounts of cAMP into the extracellular fluid at all densities, while transformed cells did not do so at any density. Neither exogenous db-cAMP nor phosphodiesterase inhibitors reversed the uncontrolled growth of transformed cells, nor did conditioned media from contact-inhibited normal cells.While both normal and transformed RL-PR-C hepatocytes produced large amounts of cAMP in response to epinephrine and cholera toxin, transformed cells were much more sensitive to these agents; however, only normal cells responded to glucagon. Although the plasma membrane adenylate cyclase of transformed hepatocytes responded better than did that of normal cells to epinephrine, cholera toxin and fluoride, the basal cyclase activity of transformed cells was only about half that of normal cells. The adenylate cyclase of transformed cells did not respond to glucagon, although the number of glucagon receptors of such cells far exceeded that of normal cells. The Vmax of cyclic nucleotide phosphodiesterase of normal hepatocytes was five times that of transformed cells, although the Km was unchanged.The data indicate that spontaneous transformation of diploid differentiated RL-PR-C hepatocytes leads to cultural hormone receptor and cAMP changes similar to those seen in undifferentiated fibroblasts and other cells transformed by viruses and chemical carcinogens. Although there are significant changes in various parameters of cAMP metabolism upon transformation, decreased cAMP per se does not seem to be responsible for transformation. Furthermore, it is possible that following transformation, these hepatocytes lose some factor necessary for coupling of the glucagon receptor to adenylate cyclase.  相似文献   

9.
[1-Nα-Trinitrophenylhistidine,12-homoarginine]glucagon (THG) is a potent antagonist of the effects of glucagon on liver membrane adenylate cyclase. In isolated hepatocytes, this glucagon analogue was an extremely weak partial agonist for cAMP accumulation, and it blocked the stimulation of cAMP accumulation produced by glucagon. However, THG was a full agonist for the stimulation of glycogenolysis, gluconeogenesis and urea synthesis in rat hepatocytes, and did not antagonize the metabolic effects of glucagon under most of the conditions examined. Forskolin potentiated the stimulation of cAMP accumulation produced by glucagon or THG, but did not potentiate their metabolic actions. A much larger increase in cAMP levels seemed to be required for the stimulation of hepatocyte metabolism by forskolin than by glucagon or THG. This may suggest the existence of a functional compartmentation of cAMP in rat hepatocytes. The possible existence of compartments in cAMP-mediated hormone actions and the involvement of factors, besides cAMP, in mediating the effects of THG and glucagon is suggested.  相似文献   

10.
Catecholamines increased guanosine 3':5'-monophosphate (cyclic GMP) accumulation by isolated rat liver cells. The increases in cyclic GMP due to 1.5 muM epinephrine, isoproterenol, or phenylephrine were blocked by phenoxybenzamine but not by propranolol. The possibility that cyclic GMP is involved in the glycogenolytic action of catecholamines seems unlikely since cyclic GMP accumulation is also elevated by carbachol, insulin, A23187, and to a lesser extent by glucagon. Furthermore, carbachol had little effect on glycogenolysis while insulin actually inhibited hepatic glycogenolysis. The rise in cyclic GMP due to carbachol was abolished by atropine and that due to all agents was markedly reduced by the omission of extracellular calcium. However, the glycogenolytic action of glucagon and catecholamines was only slightly inhibited by the omission of calcium. The only agent which was unable to stimulate glycogenolysis in calcium-free buffer was the divalent cation ionophore A23187. There was a drop in ATP content of liver cells during incubation in calcium-free buffer which was accompanied by an inhibition of glucagon-activated adenosine 3':5'-monophosphate (cyclic AMP) accumulation. The presence of calcium inhibited the rise in adenylate cyclase activity of lysed rat liver cells due to glucagon or isoproterenol but not that due to fluoride. These results suggest that the stimulation by catecholamines and glucagon of glycogenolysis is not mediated through cyclic GMP nor does it depend on the presence of extracellular calcium. Cyclic GMP accumulation was increased in liver cells by agents which either inhibit, have little affect, or accelerate glycogenolysis. The significance of elevations of cyclic GMP in rat liver cells remains to be established.  相似文献   

11.
The ability of isoproterenol, glucagon, PGE1 and cholera toxin to stimulate the synthesis of cAMP and protein kinase activity in line of liver cells (BRL) and a line of rat hepatoma cells (H35) has been determined. The concentration of cAMP in BRL cells (approximately 10 pmoles/mg protein) is in the range reported for other cultured cell lines but H35 cells contain extraordinarily low amounts of this cyclic nucleotide (approximately 0.05 pmoles/mg protein). Isoproterenol and PGE1 caused an increase in cAMP content, and protein kinase activation in BRL cells, although glucagon was ineffective. H35 cells, in contrast, were completely insensitive to all hormonal agonists. Despite this fact, cholera toxin was able to produce a marked increase in cAMP content, adenylate cyclase activity and protein kinase activation in H35 cells. binding studies with [125 I]-iodohydroxybenzylpindolol, a specific beta-adrenergic receptor antagonist, revealed that each H35 cell possesses fewer than 10 beta-adrenergic receptors whereas BRL cells contain 2-5,000 receptors per cell. The low level of cAMP in H35 cells appears to result from a combination of totally unstimulated adenylate cyclase and apparently elevated phosphodiesterase activities.  相似文献   

12.
alpha-Adrenergic stimulation of hepatocytes prevented, in a dose-dependent manner, the stimulation of [U-14C]lactate conversion to [14C]glucose by glucagon and exogenously added cAMP and Bt2cAMP. The inhibition was referable to an interaction with adrenergic receptors which resulted in a small decrease in hepatic cAMP levels. Low concentrations of epinephrine (10 nM) were able to inhibit phosphorylase activation and glucose output elicited by low doses of glucagon (5 X 10(-11) M to 2 X 10(-10) M). The ability of epinephrine (acting via alpha 1-adrenergic receptors), vasopressin, and angiotensin II to elicit calcium efflux was inhibited by glucagon, suggesting that intracellular redistributions of Ca2+ are importantly involved in the gluconeogenic process. It is proposed that vasopressin, angiotensin II, and catecholamines, acting primarily via alpha 1-adrenergic receptors, are responsible for inhibition of glucagon mediated stimulation of gluconeogenesis by altering subcellular calcium redistribution and decreasing cAMP levels.  相似文献   

13.
Glucagon, secreted by the pancreatic alpha-cells, stimulates insulin secretion from neighboring beta-cells by cAMP- and protein kinase A (PKA)-dependent mechanisms, but it is not known whether glucagon also modulates its own secretion. We have addressed this issue by combining recordings of membrane capacitance (to monitor exocytosis) in individual alpha-cells with biochemical assays of glucagon secretion and cAMP content in intact pancreatic islets, as well as analyses of glucagon receptor expression in pure alpha-cell fractions by RT-PCR. Glucagon stimulated cAMP generation and exocytosis dose dependently with an EC50 of 1.6-1.7 nm. The stimulation of both parameters plateaued at concentrations beyond 10 nm of glucagon where a more than 3-fold enhancement was observed. The actions of glucagon were unaffected by the GLP-1 receptor antagonist exendin-(9-39) but abolished by des-His1-[Glu9]-glucagon-amide, a specific blocker of the glucagon receptor. The effects of glucagon on alpha-cell exocytosis were mimicked by forskolin and the stimulatory actions of glucagon and forskolin on exocytosis were both reproduced by intracellular application of 0.1 mm cAMP. cAMP-potentiated exocytosis involved both PKA-dependent and -independent (resistant to Rp-cAMPS, an Rp-isomer of cAMP) mechanisms. The presence of the cAMP-binding protein cAMP-guanidine nucleotide exchange factor II in alpha-cells was documented by a combination of immunocytochemistry and RT-PCR and 8-(4-chloro-phenylthio)-2'-O-methyl-cAMP, a cAMP-guanidine nucleotide exchange factor II-selective agonist, mimicked the effect of cAMP and augmented rapid exocytosis in a PKA-independent manner. We conclude that glucagon released from the alpha-cells, in addition to its well-documented systemic effects and paracrine actions within the islet, also represents an autocrine regulator of alpha-cell function.  相似文献   

14.
The effects of the alpha-adrenergic agonist phenylephrine on the levels of adenosine 3':5'-monophosphate (cAMP) and the activity of the cAMP-dependent protein kinase in isolated rat liver parenchymal cells were studied. Cyclic AMP was very slightly (5 to 13%) increased in cells incubated with phenylephrine at a concentration (10(-5) M) which was maximally effective on glycogenolysis and gluconeogenesis. However, the increase was significant only at 5 min. Cyclic AMP levels with 10(-5) M phenylephrine measured at this time were reduced by the beta-adrenergic antagonist propranolol, but were unaffected by the alpha-blocker phenoxybenzamine, indicating that the elevation was due to weak beta activity of the agonist. When doses of glucagon, epinephrine, and phenylephrine which produced the same stimulation of glycogenolysis or gluconeogenesis were added to the same batches of cells, there were marked rises in cAMP with glucagon, minimal increases with epinephrine, and little or no changes with phenylephrine, indicating that the two catecholamine stimulated these processes largely by mechanisms not involving cAMP accumulation. DEAE-cellulose chromatography of homogenates of liver cells revealed two major peaks of cAMP-dependent protein kinase activity. These eluted at similar salt concentrations as the type I and II isozymes from rat heart. Optimal conditions for preservation of hormone effects on the activity of the enzyme in the cells were determined. High concentrations of phenylephrine (10(-5) M and 10(-4) M) produced a small increase (10 tp 16%) in the activity ratio (-cAMP/+cAMP) of the enzyme. This was abolished by propranolol, but not by phenoxybenzamine, indicating that it was due to weak beta activity of the agonist. The increase in the activity ratio of the kinase with 10(-5) M phenylephrine was much smaller than that produced by a glycogenolytically equivalent dose of glucagon. The changes in protein kinase induced by phenylephrine and the blockers and by glucagon were thus consistent with those in cAMP. Theophylline and 1-methyl-3-isobutylxanthine, which inhibit cAMP phosphodiesterase, potentiated the effects of phenylephrine on glycogenolysis and gluconeogenesis. The potentiations were blocked by phenoxybenzamine, but not by propranolol. Methylisobutylxanthine increased the levels of cAMP and enhanced the activation of protein kinase in cells incubated with phenylephrine. These effects were diminished or abolished by propanolol, but were unaffected by phenoxybenzamine. It is concluded from these data that alpha-adrenergic activation of glycogenolysis and gluconeogenesis in isolated rat liver parenchymal cells occurs by mechanisms not involving an increase in total cellular cAMP or activation of the cAMP-dependent protein kinase. The results also show that phosphodiesterase inhibitors potentiate alpha-adrenergic actions in hepatocytes mainly by a mechanism(s) not involving a rise in cAMP.  相似文献   

15.
In normal or thyroidectomized rat liver mitochondria, glucagon produced fast but transient stimulation of respiration rates in state 3 and state 4 whatever the substrates. Stimulation reached its maximum 20 to 30 minutes after glucagon injection. However, the effects of glucagon are less marked after removal of the thyroid gland, since the increases observed in the oxygen consumption and basal metabolic rates were only half those shown in normal rats. The activating effects of triiodothyronine and glucagon on the ADP phosphorylation rates were found to be additive. Pretreatment with cycloheximide blocked the activation induced by glucagon but not that induced by triiodothyronine. Both hormones therefore stimulate oxidative phosphorylation but by different mechanisms. Thyroidectomy did not alter the early rise in glycaemia observed in response to glucagon. It may therefore be assumed that the hypothyroid rat's sensitivity to glucagon is not directly connected with the change in cAMP metabolism.  相似文献   

16.
The Fischer 344 rat was found to be extremely sensitive to the diabetogenic effects of neonatally injected streptozotocin (STZ): injection of 40-100 mg/kg STZ at 1.5 days postnatal produced in the adult graded levels of hyperglycemia in males but not the females. The optimal dose in the 1.5 day old male was 80 mg/kg: it produced hyperglycemia without affecting growth or thyroid status in the adult. The neonatally STZ-injected adult rat displayed characteristics consistent with type II diabetes: mild hyperglycemia accentuated by fasting or consumption of a high fat diet; little change in insulin levels; slight elevation in glucagon levels; no alterations in ketones. Using radioligand binding techniques to isolated rat liver plasma membranes, compared to the control state, the type II diabetic state was found to have: no effect on either alpha(2)- or beta-adrenergic receptor binding; a decrease in the major dominant alpha(1)-adrenergic receptor, reflecting a decrease in receptor numbers but not their affinity; an increase in the plasma membrane calcium transport system, potentially depleting intracellular calcium stores essential for producing an alpha(1)-adrenergic receptor response. Since the alpha(1)-adrenergic receptor-calcium effector system is critical for the actions of catecholamines in the rat, these results suggest that the liver in the type II diabetic state may be refractory to the actions of catecholamines. We propose that the diabetes-evoked decrease in the dominant adrenergic receptor-effector system through which catecholamines act may be the cellular expression of defective glucocounterregulation in the diabetic state.  相似文献   

17.
18.
The effect of glucagon on fasting gastrin levels was studied in normal subjects and in patients with advanced liver cirrhosis. Intravenous glucagon was given e.v. at a dose of 200 ng/kg/h and produced a significant decrease of serum gastrin levels at 50 min in controls while in cirrhotic patients there was no significant decrease. (p less than 0,01) Gastrin inhibition in normal subjects during glucagon infusion was significantly correlated to a simultaneous increase found in plasma cAMP and glucose levels. These findings suggest that hypergastrinemia in cirrhosis could be consequence of the failure of glucagon metabolic interactions.  相似文献   

19.
Rat liver regeneration is regulated by a humoral signal that includes insulin and a sustained elevation in glucagon. The intracellular response is characterized by a rise in cAMP as well as altered cGMP metabolism, i.e. increased particulate guanylate cyclase activity. To evaluate the role of hormones in the regulation of guanylate cyclase during liver regeneration, the enzyme activity of primary cultures of rat hepatocytes was examined. Hepatocytes were maintained for 22 h in medium containing various combinations of insulin, glucagon, and cAMP. The cells were then harvested and homogenized and the guanylate cyclase activity was assessed in vitro. Hepatocytes maintained in 100 nM insulin exhibited a 42% (p < 0.001) increase in guanylate cyclase activity when compared to cells cultured in medium alone. Incubation with glucagon (100 nM) produced a 52% (p < 0.01) rise. In the presence of insulin (100 nM), culturing with as little as 5 nM glucagon resulted in increased activity, and 100 nM glucagon produced a 161% (p < 0.001) rise above cultures maintained in insulin alone. Thus, the combination of the two hormones produced an effect that was significantly (p < 0.01) greater than additive. Dibutyryl cAMP and 8-bromoadenosine 3':5'-monophosphoric acid were at least as effective as glucagon; the enzyme activity of cells maintained in 5 microM N6,02'-dibutyryl adenosine 3':5'-monophosphoric acid and 100 nM insulin was 243% (p < 0.001) above those in insulin alone. The findings suggest that the activity of hepatocyte guanylate cyclase is regulated by a synergistic action of insulin and glucagon and that positive interactions between the two cyclic nucleotide second messenger systems exist.  相似文献   

20.
1. The administration of glucagon, cAMP [adenosine 3',5'-(cyclic)-monophosphate], BcAMP [6-N-2'-O-dibutyryladenosine 3',5'-(cyclic)-monophosphate] or adrenaline to foetal rats during the last 2 days of gestation evoked the appearance of tyrosine aminotransferase and enhanced the accumulation of glucose 6-phosphatase in the liver. In foetuses 1-2 days younger only BcAMP was effective. After birth liver glucose 6-phosphatase no longer responds to glucagon or BcAMP. Tyrosine aminotransferase is still inducible by these agents in 2-day-old rats, but not in 50-day-old rats. After adrenalectomy of adults glucagon or BcAMP can enhance the induction of the enzyme by hydrocortisone. The results indicate that the ability to synthesize tyrosine aminotransferase and glucose 6-phosphatase when exposed to cAMP develops sooner than the ability to respond to glucagon with an increase in the concentration of cAMP; the responsiveness of enzymes to different hormones changes with age. A scheme illustrating the sequential development of competence in regulating the level of an enzyme is presented. 2. Actinomycin inhibited the effects of glucagon and BcAMP on liver tyrosine aminotransferase and glucose 6-phosphatase in foetal rats. Growth hormone, insulin and hydrocortisone did not enhance the formation of these enzymes. 3. The time-course of accumulation of glucose 6-phosphatase in the kidney is different from that in the liver. Hormones that increase the accumulation in foetal liver do not do so in the kidney of the same foetus or in the livers of postnatal rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号