首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To characterize genes whose expression is induced in carbon-stress conditions, 12,969 and 13,450 5'-end expressed sequence tags (ESTs) were generated from cells grown in low-CO2 and high-CO2 conditions of the unicellular green alga, Chlamydomonas reinhardtii. These ESTs were clustered into 4436 and 3566 non-redundant EST groups, respectively. Comparison of their sequences with those of 3433 non-redundant ESTs previously generated from the cells under the standard growth condition indicated that 2665 and 1879 EST groups occurred only in the low-CO2 and high-CO2 populations, respectively. It was also noted that 96.2% and 96.0% of the cDNA species respectively obtained from the low-CO2 and high-CO2 conditions had no similar EST sequence deposited in the public databases. The EST species identified only in the low-CO2 treated cells included genes previously reported to be expressed specifically in low-CO2 acclimatized cells, suggesting that the ESTs generated in this study will be a useful source for analysis of genes related to carbon-stress acclimatization. The sequence information and search results of each clone will appear at the web site: http://www.kazusa.or.jp/en/plant/chlamy/EST/.  相似文献   

2.
The unicellular green alga Chlamydomonas reinhardtii can acclimate to a wide range of CO(2) concentrations through the regulation of a CO(2)-concentrating mechanism (CCM). By proteomic analysis, here we identified the proteins which were specifically accumulated under high-CO(2) conditions in a cell wall-less strain of C. reinhardtii which release their extracellular matrix into the medium. When the CO(2) concentration was elevated from the ambient air level to 3% during culture, the algal growth rate increased 1.5-fold and the composition of extracellular proteins, but not intracellular soluble and insoluble proteins, clearly changed. Proteomic analysis data showed that the levels of 22 of 129 extracellular proteins increased for 1 and 3 d and such multiple high-CO(2)-inducible proteins include gametogenesis-related proteins and hydroxyproline-rich glycoproteins. However, we could not prove the induction of gametogenesis under high-CO(2) conditions, suggesting that the inductive signal might be incomplete, not strong enough or that only high-CO(2) conditions might be not sufficient for the cell stage to proceed to the formation of sexually active gametes. However, these gametogenesis-related proteins and/or hydroxyproline-rich glycoproteins may have novel roles outside the cell under high-CO(2) conditions.  相似文献   

3.
4.
We have used restriction fragment differential display for isolating genes of the unicellular green alga Chlamydomonas reinhardtii that exhibit elevated expression on exposure of cells to high light. Some of the high light-activated genes were also controlled by CO2 concentration. Genes requiring both elevated light and low CO2 levels for activation encoded both novel polypeptides and those that function in concentrating inorganic carbon (extracellular carbonic anhydrase, low CO2-induced protein, ABC transporter of the MRP subfamily). All the genes in this category were shown to be under the control of Cia5, a protein that regulates the responses of C. reinhardtii to low-CO2 conditions. Genes specifically activated by high light, even under high-CO2 conditions, encoded a 30 kDa chloroplast membrane protein, a serine hydroxymethyltransferase, a nuclease, and two proteins of unknown function. Experiments using DCMU, an inhibitor of photosynthetic electron transport, and mutants devoid of either photosystem I or photosystem II activity, showed aberrant expression of all the genes regulated by both CO2 and high light, suggesting that redox plays a role in controlling their expression. In contrast, there was little effect of DCMU or lesions that block photosynthetic electron transport on the activity of genes that were specifically controlled by high light.  相似文献   

5.
At low-CO2 (air) conditions, the unicellular green alga Chlamydomonas reinhardtii acquires the ability to raise its internal inorganic carbon concentration. To study this adaptation to low CO2, cDNA clones induced under low-CO2 growth conditions were selected through differential screening. One full-length clone is 2552 bp, with an open reading frame encoding 521 amino acids. The deduced amino acid sequence shows about 50% identity with alanine: alpha-ketogutarate aminotransferase (Ala AT, EC 2.6.1.2) from plants and animals, and the mRNA of this clone increased 4- to 5-fold 4 h after cells were switched from high-CO2 to low-CO2 growth conditions. The expression of the enzyme and its activity also increased accordingly at low-CO2 growth conditions. To study the physiological role of Ala AT, a pyridoxal phosphate inhibitor, aminooxyacetic acid, was added at 40 microM to the growth medium when cells were beginning to adapt to low CO2. This caused a 30% decrease in the maximum photosynthetic rate in air-adapting cells 8 h later. The addition of the inhibitor also caused the cells to excrete glycolate, a photorespiratory intermediate, but did not change the apparent affinity of the cell for external CO2. These physiological studies are consistent with the assumption that Ala AT is involved in the adaptation to low-CO2 conditions.  相似文献   

6.
7.
Nostoc flagelliforme is a terrestrial cyanobacterium with high economic value. Dissociated cells separated from a natural colony of N. flagelliforme were cultivated for 7 days under either phototrophic, mixotrophic or heterotrophic culture conditions. The highest biomass, 1.67 g L−1 cell concentration, was obtained under mixotrophic culture, representing 4.98 and 2.28 times the biomass obtained in phototrophic and heterotrophic cultures, respectively. The biomass in mixotrophic culture was not the sum as that in photoautotrophic and heterotrophic cultures. During the first 4 days of culture, the cell concentration in mixotrophic culture was lower than the sum of those in photoautotrophic and heterotrophic cultures. However, from the 5th day, the cell concentration in mixotrophic culture surpassed the sum of those obtained from the other two trophic modes. Although the inhibitor of photosynthetic electron transport DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] efficiently inhibited autotrophic growth of N. flagelliforme cells, under mixotrophic culture they could grow by using glucose. The addition of glucose changed the response of N.flagelliforme cells to light. The maximal photosynthetic rate, dark respiration rate and light compensation point in mixotrophic culture were higher than those in photoautotrophic cultures. These results suggest that photoautotrophic (photosynthesis) and heterotrophic (oxidative metabolism of glucose) growth interact in mixotrophic growth of N. flagelliforme cells.  相似文献   

8.
9.
Chlamydomonas reinhardtii, a unicellular green alga, grows photoautotrophically at very low concentrations of inorganic carbon due to the presence of an inducible CO2-concentrating mechanism. During the induction of the CO2-concentrating mechanism at low-CO2 growth conditions, at least five polypeptides that are either absent or present in low amounts in cells grown on high-CO2 concentrations are induced. One of these induced polypeptides with a molecular mass of 36 kD, LIP-36, has been localized to the chloroplast envelope. The protein was purified and the partial internal amino acid sequences were obtained through lys-C digestion. Two cDNAs encoding LIP-36 have been cloned using degenerate primers based on the amino acid sequences. The two genes encoding LIP-36 are highly homologous in the coding region but are completely different in the 5'-end and 3'-end untranslated regions. The deduced protein sequences show strong homology to the mitochondrial carrier protein superfamily, suggesting that LIP-36 is a chloroplast carrier protein. The regulation of the expression of these two genes at high- and low-CO2 growth conditions is also different. Both genes were highly expressed under low-CO2 growth conditions, with the steady-state level of LIP-36 G1 mRNA more abundant. However, neither gene was expressed at high-CO2 growth conditions. The gene products of both clones expressed in Escherichia coli were recognized by an antibody raised against LIP-36, confirming that the two cDNAs indeed encode the C. reinhardtii chloroplast envelope carrier protein LIP-36.  相似文献   

10.
11.
Photosynthetic acclimation to CO2-limiting stress is associated with control of genetic and physiological responses through a signal transduction pathway, followed by integrated monitoring of the environmental changes. Although several CO2-responsive genes have been previously isolated, genome-wide analysis has not been applied to the isolation of CO2-responsive genes that may function as part of a carbon-concentrating mechanism (CCM) in photosynthetic eukaryotes. By comparing expression profiles of cells grown under CO2-rich conditions with those of cells grown under CO2-limiting conditions using a cDNA membrane array containing 10,368 expressed sequence tags, 51 low-CO2 inducible genes and 32 genes repressed by low CO2 whose mRNA levels were changed more than 2.5-fold in Chlamydomonas reinhardtii Dangeard were detected. The fact that the induction of almost all low-CO2 inducible genes was impaired in the ccm1 mutant suggests that CCM1 is a master regulator of CCM through putative low-CO2 signal transduction pathways. Among low-CO2 inducible genes, two novel genes, LciA and LciB, were identified, which may be involved in inorganic carbon transport. Possible functions of low-CO2 inducible and/or CCM1-regulated genes are discussed in relation to the CCM.  相似文献   

12.
In Chlamydomonas reinhardtii cells, H2 photoproduction can be induced in conditions of sulfur deprivation in the presence of acetate. The decrease in photosystem II (PSII) activity induced by sulfur deprivation leads to anoxia, respiration becoming higher than photosynthesis, thereby allowing H2 production. Two different electron transfer pathways, one PSII dependent and the other PSII independent, have been proposed to account for H2 photoproduction. In this study, we investigated the contribution of both pathways as well as the acetate requirement for H2 production in conditions of sulfur deficiency. By using 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), a PSII inhibitor, which was added at different times after the beginning of sulfur deprivation, we show that PSII-independent H2 photoproduction depends on previously accumulated starch resulting from previous photosynthetic activity. Starch accumulation was observed in response to sulfur deprivation in mixotrophic conditions (presence of acetate) but also in photoautotrophic conditions. However, no H2 production was measured in photoautotrophy if PSII was not inhibited by DCMU, due to the fact that anoxia was not reached. When DCMU was added at optimal starch accumulation, significant H2 production was measured. H2 production was enhanced in autotrophic conditions by removing O2 using N2 bubbling, thereby showing that substantial H2 production can be achieved in the absence of acetate by using the PSII-independent pathway. Based on these data, we discuss the possibilities of designing autotrophic protocols for algal H2 photoproduction.  相似文献   

13.
When CO(2) supply is limited, aquatic photosynthetic organisms induce a CO(2)-concentrating mechanism (CCM) and acclimate to the CO(2)-limiting environment. Although the CCM is well studied in unicellular green algae such as Chlamydomonas reinhardtii, physiological aspects of the CCM and its associated genes in multicellular algae are poorly understood. In this study, by measuring photosynthetic affinity for CO(2), we present physiological data in support of a CCM in a multicellular green alga, Volvox carteri. The low-CO(2)-grown Volvox cells showed much higher affinity for inorganic carbon compared with high-CO(2)-grown cells. Addition of ethoxyzolamide, a membrane-permeable carbonic anhydrase inhibitor, to the culture remarkably reduced the photosynthetic affinity of low-CO(2) grown Volvox cells, indicating that an intracellular carbonic anhydrase contributed to the Volvox CCM. We also isolated a gene encoding a protein orthologous to CCM1/CIA5, a master regulator of the CCM in Chlamydomonas, from Volvox carteri. Volvox CCM1 encoded a protein with 701 amino acid residues showing 51.1% sequence identity with Chlamydomonas CCM1. Comparison of Volvox and Chlamydomonas CCM1 revealed a highly conserved N-terminal region containing zinc-binding amino acid residues, putative nuclear localization and export signals, and a C-terminal region containing a putative LXXLL protein-protein interaction motif. Based on these results, we discuss the physiological and genetic aspects of the CCM in Chlamydomonas and Volvox.  相似文献   

14.
Using a mass-spectrometric disequilibrium technique, net uptake of HCO(3)(-) and CO(2) during steady-state photosynthesis was studied in whole cells and chloroplasts from the green algae Tetraedron minimum and Chlamydomonas noctigama, grown in air enriched with 5% (v/v) CO(2) (high-CO(2) cells) or in air [0.035% (v/v) CO(2); low-CO(2) cells]. High- and low-CO(2) cells of both species were able to take up CO(2) and HCO(3)(-), with maximum rates being largely unaffected by the growth conditions. High- and low-CO(2) cells of T. minimum showed a pronounced preference for HCO(3)(-) while the rates of net HCO(3)(-) and CO(2) uptake were similar in C. noctigama. The most significant differences between high- and low-CO(2) cells of the two species were the 5- to 6-fold increase in the apparent affinities of net HCO(3)(-) uptake and CO(2) uptake after acclimation to air. The high-affinity uptake systems for inorganic carbon were almost completely induced within 4 h in both algae. Photosynthetically active chloroplasts isolated from both species were also able to take up CO(2) and HCO(3)(-). As in whole cells, HCO(3)(-) was the dominant carbon species taken up by chloroplasts from T. minimum while CO(2) and HCO(3)(-) were taken up at similar rates in plastids from C. noctigama. In addition, high-affinity uptake systems for CO(2) and HCO(3)(-) were detected in chloroplasts preparations after acclimation of the parent cells to air. Isolation of ribulose-1,5-bisphosphate carboxylase/oxygenase revealed K(m) values of 13 and 42 micro M CO(2) for the enzymes from T. minimum and C. noctigama, respectively. These results are consistent with the presence of inducible and energy-dependent high-affinity HCO(3)(-) and CO(2) uptake systems associated with chloroplasts, indicating that these organelles play an important role in the CO(2)-concentrating mechanism.  相似文献   

15.
Continuous photoproduction of H(2) by the green alga, Chlamydomonas reinhardtii, is observed after incubating the cultures for about a day in the absence of sulfate and in the presence of acetate. Sulfur deprivation causes the partial and reversible inactivation of photosynthetic O(2) evolution in algae, resulting in the light-induced establishment of anaerobic conditions in sealed photobioreactors, expression of two [FeFe]-hydrogenases in the cells, and H(2) photoproduction for several days. We have previously demonstrated that sulfur-deprived algal cultures can produce H(2) gas in the absence of acetate, when appropriate experimental protocols were used (Tsygankov, A.A., Kosourov, S.N., Tolstygina, I.V., Ghirardi, M.L., Seibert, M., 2006. Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. Int. J. Hydrogen Energy 31, 1574-1584). We now report the use of an automated photobioreactor system to compare the effects of photoautotrophic, photoheterotrophic and photomixotrophic growth conditions on the kinetic parameters associated with the adaptation of the algal cells to sulfur deprivation and H(2) photoproduction. This was done under the experimental conditions outlined in the above reference, including controlled pH. From this comparison we show that both acetate and CO(2) are required for the most rapid inactivation of photosystem II and the highest yield of H(2) gas production. Although, the presence of acetate in the system is not critical for the process, H(2) photoproduction under photoautotrophic conditions can be increased by optimizing the conditions for high starch accumulation. These results suggest ways of engineering algae to improve H(2) production, which in turn may have a positive impact on the economics of applied systems for H(2) production.  相似文献   

16.
17.
Different substrate conditions, such as varying CO(2) concentrations or the presence of acetate, strongly influence the efficiency of photosynthesis in Chlamydomonas reinhardtii. Altered photosynthetic efficiencies affect the susceptibility of algae to the deleterious effects of high light stress, such as the production of reactive oxygen species (ROS) and PSII photodamage. In this study, we investigated the effect of high light on C. reinhardtii grown under photomixotrophy, i.e. in the presence of acetate, as well as under photoautotrophic growth conditions with either low or high CO(2) concentrations. Different parameters such as growth rate, chlorophyll bleaching, singlet oxygen generation, PSII photodamage and the total genomic stress response were analyzed. Although showing a similar degree of PSII photodamage, a much stronger singlet oxygen-specific response and a broader general stress response was observed in acetate and high CO(2)-supplemented cells compared with CO(2)-limited cells. These different photooxidative stress responses were correlated with the individual cellular PSII content and probably directly influenced the ROS production during exposure to high light. In addition, growth of high CO(2)-supplemented cells was more susceptible to high light stress compared with cells grown under CO(2) limitation. The growth of acetate-supplemented cultures, on the other hand, was less affected by high light treatment than cultures grown under high CO(2) concentrations, despite the similar cellular stress. This suggests that the production of ATP by mitochondrial acetate respiration protects the cells from the deleterious effects of high light stress, presumably by providing energy for an effective defense.  相似文献   

18.
Summary In vitro plantlets of Phalaenopsis ‘Happy Valentine’, Neofinetia falcate Hu, Cymbidium kanran Makino, and Cymbidium goeringii Reichb. f. were grown under photoautotrophic [high photosynthetic photon flux (PPF), high CO2 concentration, and increased number of air exchanges] and heterotrophic (low PPF, low CO2 concentration, no air exchanges) culture conditions. After 40 d of culture, a significant difference in plantlet growth was observed between the two cultures. Total fresh and dry mass were on average 1.5 times greater in photoautotrophic culture than in heterotrophic culture. Higher net photosynthetic rates were also observed for Phalaenopsis in photoautotrophic culture. In photoautotrophic culture, little difference was observed in air temperature between the inside and outside of the culture vessel, whereas in heterotrophic culture, air temperature inside the culture vessel was 1–2°C higher than that outside the culture vessel. Relative humidity inside the culture vessel was remarkably different between the two cultures: 83–85% in photoautotrophic culture and 97–99% in heterotrophic culture. These results indicated that growth and net photosynthetic rate of in vitro orchid plantlets were susceptible to the culture environments such as PPF, CO2 concentration, relative humidity (RH), and the number of air exchanges, which would allow a more efficient micropropagation system for these orchid plants.  相似文献   

19.
20.
This report describes a Chlamydomonas reinhardtii mutant that lacks Rubisco activase (Rca). Using the BleR (bleomycin resistance) gene as a positive selectable marker for nuclear transformation, an insertional mutagenesis screen was performed to select for cells that required a high-CO2 atmosphere for optimal growth. The DNA flanking the BleR insert of one of the high-CO2-requiring strains was cloned using thermal asymmetric interlaced-polymerase chain reaction and inverse polymerase chain reaction and sequenced. The flanking sequence matched the C. reinhardtii Rca cDNA sequence previously deposited in the National Center for Biotechnology Information database. The loss of a functional Rca in the strain was confirmed by the absence of Rca mRNA and protein. The open reading frame for Rca was cloned and expressed in pSL18, a C. reinhardtii expression vector conferring paromomycin resistance. This construct partially complemented the mutant phenotype, supporting the hypothesis that the loss of Rca was the reason the mutant grew poorly in a low-CO2 atmosphere. Sequencing of the C. reinhardtii Rca gene revealed that it contains 10 exons ranging in size from 18 to 470 bp. Low-CO2-grown rca1 cultures had a growth rate and maximum rate of photosynthesis 60% of wild-type cells. Results obtained from experiments on a cia5 rca1 double mutant also suggest that the CO2-concentrating mechanism partially compensates for the absence of an active Rca in the green alga C. reinhardtii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号