首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 481 毫秒
1.
植物细胞中间纤维角蛋白性质的分析   总被引:2,自引:0,他引:2  
罗正  杨澄 《实验生物学报》1996,29(3):297-304
角蛋白是植物细胞中间纤维的主要。应用选择性抽提和生物化学技术,分离纯化了豌豆根尖细胞58、52kD、白菜叶52kD和胡萝卜悬浮细胞64KD角蛋白,测定了它们的氨基酸组成,结果表明上述角蛋白与动物细胞中间纤维角蛋白 氨基酸组成有较大的相似性。比较了动、植物细胞角蛋白肽谱、结果显示它们之间存在较大的差异,但是植物细胞嶂角蛋白肽谱比较一致,这提示它们属于同一蛋白家族,为植物中间纤维及其蛋白 存在提供了新  相似文献   

2.
角蛋白是植物细胞中间纤维的主要成分。应用选择性抽提和生物化学技术,分离纯化了豌豆根尖细胞58-、52 kD、白菜子叶52kD和胡萝卜悬浮细胞64kD角蛋白,测定了它们的氨基酸组成,结果表明上述角蛋白与动物细胞中间纤维角蛋白的氨基酸组成有较大的相似性。比较了动、植物细胞角蛋白的肽谱,结果显示它们之间存在较大的差异,但是植物细胞间角蛋白的肽谱比较一致,这提示它们属于同一蛋白家族,为植物中间纤维及其角蛋白的存在提供了新的论据。  相似文献   

3.
根据中间纤维对去圬剂和高盐溶液的抗性,用类似动物细胞中间纤维抽提的方法,对玉米和烟草的叶肉细胞进行选择性抽提处理,提取中间纤维的蛋白成份。蛋白经SDS聚丙烯酰胺凝胶电泳后,用动物细胞角蛋白的单克隆抗体进行免疫印迹反应,主要显示了分子量为52kD和64kD两种多肽成份。同时,提取玉米和烟草的DNA与α-~(32)P标记的兔K_3cDNA片段RB_3进行点杂交,均呈现较强的阳性反应,说明它们的基因组DNA中存在角蛋白基因的同源序列。  相似文献   

4.
程序性细胞死亡是由基因调控的贯穿于真核细胞生理和发育过程的细胞自杀行为。动物细胞的程序性死亡分成3类凋亡、自噬和坏死;线粒体和溶酶体分别在前两个过程中起关键作用。关于植物细胞程序性死亡的分类还存在很多争议,焦点是植物是否有细胞凋亡这种形式,核心问题是植物细胞的线粒体外膜上没有Bcl-2家族的膜通透性调控蛋白。近年,程序性细胞死亡也在细菌中发现,LrgAB家族的膜通透性调控蛋白起着重要作用。最近的研究表明,植物叶绿体外被膜上也有LrgAB家族的同源蛋白,它们在控制叶绿体发育和程序性细胞死亡方面起重要作用。因此,叶绿体在植物细胞死亡调控中的作用应该更加受到关注。  相似文献   

5.
植物微管     
自从在植物细胞中确定微管存在20多年来,与动物细胞微管研究相比,植物微管研究的进展比较缓慢。本文试从植物细胞微管的结构单位——管蛋白开始,简要介绍微管的结构组份、微管在植物细胞中的功能,着重介绍植物细胞周质微管。  相似文献   

6.
问 :液泡是植物细胞的特有结构吗 ?答 :液泡不是植物细胞的特有结构 ,只不过是植物细胞的液泡较大、液泡之间差别也较大 ;而动物细胞的液泡较小、液泡之间差别也不显著 ;或有的动物细胞的液泡不明显。因而课本里的动物细胞亚显微结构模式图上不画上液泡。但不能说动物细胞没有液泡 ,更不能说液泡是植物细胞的特有结构。早在 30年代已提出了液泡系的概念 ,它包括高尔基液泡、溶酶体、圆球体、微体、自体吞噬泡、残质体、胞饮泡、吞噬泡、糊粉泡、中央泡、收缩泡等。现在认为凡是由膜包围的小泡或液泡都可算做液泡系内 ,它们是动植物细胞的组…  相似文献   

7.
在植物细胞全能性研究的基础上引出动物细胞全能性这一热点研究课题.介绍了动物细胞全能性的表现,分析了细胞全能性表现程度差异的原因,最后对动物细胞全能性的广泛应用及存在的问题进行探讨,并对细胞命运及其调控进行了展望.  相似文献   

8.
衣藻(Chlamydomonas sp)是属于绿藻门的最低等单细胞植物,为典型的真核生物。迄今以衣藻为材料所作的有关细胞骨架方面的研究多集中在微管蛋白(tubulin)。C.J.Miller等曾以衣藻(Chlamydomonas reinhardtii)全蛋白与几种中间纤维抗体进行免疫印迹实验有阳性反应,但是衣藻中是否存在中间纤维与核纤层是不清楚的问题。衣藻中间纤维与核纤层的形态研究更未见报道。目前认为中间纤维-核纤  相似文献   

9.
细胞骨架--肌动蛋白纤维   总被引:8,自引:1,他引:7  
20世纪60年代以来的研究发现,真核细胞质中存在着由蛋白纤维构成的复杂网络状结构——细胞骨架(cytoskeleton)。另外,植物细胞中也有细胞骨架成分。  相似文献   

10.
1课题的提出和引入 初中学生学习细胞吸水原理的知识,仅限于对植物细胞吸水或失水的了解,而动物细胞吸水的原理是否与植物细胞一样,对学生来说仍是一未知领域.以此为出发点,设立研究课题--研究动物细胞的吸水原理.让学生通过提出猜想,设计实验进行验证,总结结论,然后让学生自己得出动物细胞的吸水原理,使学生从中掌握一些科学的研究方法.  相似文献   

11.
The factors and mechanisms regulating assembly of intermediate filament (IF) proteins to produce filaments with their characteristic 10 nm diameter are not fully understood. All IF proteins contain a central rod domain flanked by variable head and tail domains. To elucidate the role that different domains of IF proteins play in filament assembly, we used negative staining and electron microscopy (EM) to study the in vitro assembly properties of purified bacterially expressed IF proteins, in which specific domains of the proteins were either mutated or swapped between a cytoplasmic (mouse neurofilament-light (NF-L) subunit) and nuclear intermediate filament protein (human lamin A). Our results indicate that filament formation is profoundly influenced by the composition of the assembly buffer. Wild type (wt) mouse NF-L formed 10 nm filaments in assembly buffer containing 175 mM NaCl, whereas a mutant deleted of 18 NH2-terminal amino acids failed to assemble under similar conditions. Instead, the mutant assembled efficiently in buffers containing CaCl2 > or = 6 mM forming filaments that were 10 times longer than those formed by wt NF-L, although their diameter was significantly smaller (6-7 nm). These results suggest that the 18 NH2-terminal sequence of NF-L might serve two functions, to inhibit filament elongation and to promote lateral association of NF-L subunits. We also demonstrate that lengthening of the NF-L rod domain, by inserting a 42 aa sequence unique to nuclear IF proteins, does not compromise filament assembly in any noticeable way. Our results suggests that the known inability of nuclear lamin proteins to assemble into 10 nm filaments in vitro cannot derive solely from their longer rod domain. Finally, we demonstrate that the head domain of lamin A can substitute for that of NF-L in filament assembly, whereas substitution of both the head and tail domains of lamins for those of NF-L compromises assembly. Therefore, the effect of lamin A "tail" domain alone, or the synergistic effect of lamin "head" and the "tail" domains together, interferes with assembly into 10-nm filaments.  相似文献   

12.
《The Journal of cell biology》1990,111(6):3049-3064
To investigate the sequences important for assembly of keratins into 10- nm filaments, we used a combined approach of (a) transfection of mutant keratin cDNAs into epithelial cells in vivo, and (b) in vitro assembly of mutant and wild-type keratins. Keratin K14 mutants missing the nonhelical carboxy- and amino-terminal domains not only integrated without perturbation into endogenous keratin filament networks in vivo, but they also formed 10-nm filaments with K5 in vitro. Surprisingly, keratin mutants missing the highly conserved L L E G E sequence, common to all intermediate filament proteins and found at the carboxy end of the alpha-helical rod domain, also assembled into filaments with only a somewhat reduced efficiency. Even a carboxy K14 mutant missing approximately 10% of the rod assembled into filaments, although in this case filaments aggregated significantly. Despite the ability of these mutants to form filaments in vitro, they often perturbed keratin filament organization in vivo. In contrast, small truncations in the amino-terminal end of the rod domain more severely disrupted the filament assembly process in vitro as well as in vivo, and in particular restricted elongation. For both carboxy and amino rod deletions, the more extensive the deletion, the more severe the phenotype. Surprisingly, while elongation could be almost quantitatively blocked with large mutations, tetramer formation and higher ordered lateral interactions still occurred. Collectively, our in vitro data (a) provide a molecular basis for the dominance of our mutants in vivo, (b) offer new insights as to why different mutants may generate different phenotypes in vivo, and (c) delineate the limit sequences necessary for K14 to both incorporate properly into a preexisting keratin filament network in vivo and assemble efficiently into 10-nm keratin filaments in vitro.  相似文献   

13.
IF (intermediate filament) proteins can be cleaved by caspases to generate proapoptotic fragments as shown for desmin. These fragments can also cause filament aggregation. The hypothesis is that disease-causing mutations in IF proteins and their subsequent characteristic histopathological aggregates could involve caspases. GFAP (glial fibrillary acidic protein), a closely related IF protein expressed mainly in astrocytes, is also a putative caspase substrate. Mutations in GFAP cause AxD (Alexander disease). The overexpression of wild-type or mutant GFAP promotes cytoplasmic aggregate formation, with caspase activation and GFAP proteolysis. In this study, we report that GFAP is cleaved specifically by caspase 6 at VELD225 in its L12 linker domain in vitro. Caspase cleavage of GFAP at Asp225 produces two major cleavage products. While the C-GFAP (C-terminal GFAP) is unable to assemble into filaments, the N-GFAP (N-terminal GFAP) forms filamentous structures that are variable in width and prone to aggregation. The effect of N-GFAP is dominant, thus affecting normal filament assembly in a way that promotes filament aggregation. Transient transfection of N-GFAP into a human astrocytoma cell line induces the formation of cytoplasmic aggregates, which also disrupt the endogenous GFAP networks. In addition, we generated a neo-epitope antibody that recognizes caspase-cleaved but not the intact GFAP. Using this antibody, we demonstrate the presence of the caspase-generated GFAP fragment in transfected cells expressing a disease-causing mutant GFAP and in two mouse models of AxD. These findings suggest that caspase-mediated GFAP proteolysis may be a common event in the context of both the GFAP mutation and excess.  相似文献   

14.
Caspase cleavage of key cytoskeletal proteins, including several intermediate filament proteins, triggers the dramatic disassembly of the cytoskeleton that characterizes apoptosis. Here we describe the muscle-specific intermediate filament protein desmin as a novel caspase substrate. Desmin is cleaved selectively at a conserved Asp residue in its L1-L2 linker domain (VEMD downward arrow M(264)) by caspase-6 in vitro and in myogenic cells undergoing apoptosis. We demonstrate that caspase cleavage of desmin at Asp(263) has important functional consequences, including the production of an amino-terminal cleavage product, N-desmin, which is unable to assemble into intermediate filaments, instead forming large intracellular aggregates. Moreover, N-desmin functions as a dominant-negative inhibitor of filament assembly, both for desmin and the structurally related intermediate filament protein vimentin. We also show that stable expression of a caspase cleavage-resistant desmin D263E mutant partially protects cells from tumor necrosis factor-alpha-induced apoptosis. Taken together, these results indicate that caspase proteolysis of desmin at Asp(263) produces a dominant-negative inhibitor of intermediate filaments and actively participates in the execution of apoptosis. In addition, these findings provide further evidence that the intermediate filament cytoskeleton has been targeted systematically for degradation during apoptosis.  相似文献   

15.
The discovery of large supramolecular complexes such as the purinosome suggests that subcellular organization is central to enzyme regulation. A screen of the yeast GFP strain collection to identify proteins that assemble into visible structures identified four novel filament systems comprised of glutamate synthase, guanosine diphosphate–mannose pyrophosphorylase, cytidine triphosphate (CTP) synthase, or subunits of the eIF2/2B translation factor complex. Recruitment of CTP synthase to filaments and foci can be modulated by mutations and regulatory ligands that alter enzyme activity, arguing that the assembly of these structures is related to control of CTP synthase activity. CTP synthase filaments are evolutionarily conserved and are restricted to axons in neurons. This spatial regulation suggests that these filaments have additional functions separate from the regulation of enzyme activity. The identification of four novel filaments greatly expands the number of known intracellular filament networks and has broad implications for our understanding of how cells organize biochemical activities in the cytoplasm.  相似文献   

16.
Actin filaments, microtubules, and intermediate filaments (IFs) are central elements of the metazoan cytoskeleton. At the molecular level, the assembly mechanism for actin filaments and microtubules is fundamentally different from that of IFs. The former two types of filaments assemble from globular proteins. By contrast, IFs assemble from tetrameric complexes of extended, half-staggered, and antiparallel oriented coiled-coils. These tetramers laterally associate into unit-length filaments; subsequent longitudinal annealing of unit-length filaments yields mature IFs. In vitro, IFs form open structures without a fixed number of tetramers per cross-section along the filament. Therefore, a central question for the structural biology of IFs is whether individual subunits can dissociate from assembled filaments and rebind at other sites. Using the fluorescently labeled IF-protein vimentin for assembly, we directly observe and quantitatively determine subunit exchange events between filaments as well as with soluble vimentin pools. Thereby we demonstrate that the cross-sectional polymorphism of donor and acceptor filaments plays an important role. We propose that in segments of donor filaments with more than the standard 32 molecules per cross-section, subunits are not as tightly bound and are predisposed to be released from the filament.  相似文献   

17.
Through the coordinated action of diverse actin-binding proteins, cells simultaneously assemble actin filaments with distinct architectures and dynamics to drive different processes. Actin filament cross-linking proteins organize filaments into higher order networks, although the requirement of cross-linking activity in cells has largely been assumed rather than directly tested. Fission yeast Schizosaccharomyces pombe assembles actin into three discrete structures: endocytic actin patches, polarizing actin cables, and the cytokinetic contractile ring. The fission yeast filament cross-linker fimbrin Fim1 primarily localizes to Arp2/3 complex-nucleated branched filaments of the actin patch and by a lesser amount to bundles of linear antiparallel filaments in the contractile ring. It is unclear whether Fim1 associates with bundles of parallel filaments in actin cables. We previously discovered that a principal role of Fim1 is to control localization of tropomyosin Cdc8, thereby facilitating cofilin-mediated filament turnover. Therefore, we hypothesized that the bundling ability of Fim1 is dispensable for actin patches but is important for the contractile ring and possibly actin cables. By directly visualizing actin filament assembly using total internal reflection fluorescence microscopy, we determined that Fim1 bundles filaments in both parallel and antiparallel orientations and efficiently bundles Arp2/3 complex-branched filaments in the absence but not the presence of actin capping protein. Examination of cells exclusively expressing a truncated version of Fim1 that can bind but not bundle actin filaments revealed that bundling activity of Fim1 is in fact important for all three actin structures. Therefore, fimbrin Fim1 has diverse roles as both a filament "gatekeeper" and as a filament cross-linker.  相似文献   

18.
The intermediate filaments (IFs) form major structural elements of the cytoskeleton. In vitro analyses of these fibrous proteins reveal very different assembly properties for the nuclear and cytoplasmic IF proteins. However, keratins in particular, the largest and most heterogenous group of cytoplasmic IF proteins, have been difficult to analyze due to their rapid assembly dynamics under the near-physiological conditions used for other IF proteins. We show here that keratins, like other cytoplasmic IF proteins, go through a stage of assembling into full-width soluble complexes, i.e., "unit-length filaments" (ULFs). In contrast to other IF proteins, however, longitudinal annealing of keratin ULFs into long filaments quasi-coincides with their formation. In vitro assembly of IF proteins into filaments can be initiated by an increase of the ionic strength and/or lowering of the pH of the assembly buffer. We now document that 23-mer peptides from the head domains of various IF proteins can induce filament formation even under conditions of low salt and high pH. This suggests that the "heads" are involved in the formation and longitudinal association of the ULFs. Using a Tris-buffering protocol that causes formation of soluble oligomers at pH 9, the epidermal keratins K5/14 form less regular filaments and less efficiently than the simple epithelial keratins K8/18. In sodium phosphate buffers (pH 7.5), however, K5/14 were able to form long partially unraveled filaments which compacted into extended, regular filaments upon addition of 20 mM KCl. Applying the same assembly regimen to mutant K14 R125H demonstrated that mutations causing a severe disease phenotype and morphological filament abnormalities can form long, regular filaments with surprising efficiency in vitro.  相似文献   

19.
Neurofilaments are obligate heteropolymers in vivo   总被引:22,自引:12,他引:10       下载免费PDF全文
《The Journal of cell biology》1993,122(6):1337-1350
Neurofilaments (NFs), composed of three distinct subunits NF-L, NF-M, and NF-H, are neuron-specific intermediate filaments present in most mature neurons. Using DNA transfection and mice expressing NF transgenes, we find that despite the ability of NF-L alone to assemble into short filaments in vitro NF-L cannot form filament arrays in vivo after expression either in cultured cells or in transgenic oligodendrocytes that otherwise do not contain a cytoplasmic intermediate filament (IF) array. Instead, NF-L aggregates into punctate or sheet like structures. Similar nonfilamentous structures are also formed when NF-M or NF-H is expressed alone. The competence of NF-L to assemble into filaments is fully restored by coexpression of NF- M or NF-H to a level approximately 10% of that of NF-L. Deletion of the head or tail domain of NF-M or substitution of the NF-H tail onto an NF- L subunit reveals that restoration of in vivo NF-L assembly competence requires an interaction provided by the NF-M or NF-H head domains. We conclude that, contrary to the expectation drawn from earlier in vitro assembly studies, NF-L is not sufficient to assemble an extended filament network in an in vivo context and that neurofilaments are obligate heteropolymers requiring NF-L and NF-M or NF-H.  相似文献   

20.
The alternatively spliced SM1 and SM2 smooth muscle myosin heavy chains differ at their respective carboxyl termini by 43 versus 9 unique amino acids. To determine whether these tailpieces affect filament assembly, SM1 and SM2 myosins, the rod region of these myosin isoforms, and a rod with no tailpiece (tailless), were expressed in Sf 9 cells. Paracrystals formed from SM1 and SM2 rod fragments showed different modes of molecular packing, indicating that the tailpieces can influence filament structure. The SM2 rod was less able to assemble into stable filaments than either SM1 or the tailless rods. Expressed full-length SM1 and SM2 myosins showed solubility differences comparable to the rods, establishing the validity of the latter as a model for filament assembly. Formation of homodimers of SM1 and SM2 rods was favored over the heterodimer in cells coinfected with both viruses, compared with mixtures of the two heavy chains renatured in vitro. These results demonstrate for the first time that the smooth muscle myosin tailpieces differentially affect filament assembly, and suggest that homogeneous thick filaments containing SM1 or SM2 myosin could serve distinct functions within smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号