首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stop-flow techniques were used to determine how temperature affected the axonal transport of dopamine-β-hydroxylase (DBH) activity in rabbit sciatic nerves in vitro. These nerves were cooled locally to 2°C for 1.5 hr, which caused a sharp peak of DBH activity to accumulate above the cooled region. Accumulated DBH was then allowed to resume migration at various temperatures. From direct measurements of the rate of migration, we found that the axonal transport velocity of DBH was a simple exponential function of temperature between 13°C and 42°C. Over this range of temperatures, the results were well described by the equation: V = 0.546(1.09)T, where V is velocity in mm/hr, and T is temperature in degrees centigrade. The Q10 between 13°C and 42°C was 2.33, and an Arrhenius plot of the natural logarithm of velocity versus the reciprocal of absolute temperature yielded an apparent activation energy of 14.8 kcal. Transport virtually halted when temperature was raised to 47°C, although only about half of the DBH activity disappeared during incubation at this temperature. Another transition occurred at 13°C; below this temperature, velocity fell precipitously. This was not an artifact peculiar to the stop-flow system since the rate of accumulation of DBH activity proximal to a cold-block also decreased abruptly when the temperature above the block was reduced below 13°C.  相似文献   

2.
The NMR (nuclear magnetic resonance) method of Conlon and Outhred (1972) was used to measure diffusional water permeability of the nodal cells of the green alga Chara gymnophylla. Two local minima at 15 and 30°C of diffusional water permeability (P d ) were observed delimiting a region of low activation energy (E a around 20 kJ/mol) indicative of an optimal temperature region for membrane transport processes. Above and below this region water transport was of a different type with high E a (about 70 kJ/mol). The triphasic temperature dependence of the water transport suggested a channel-mediated transport at 15–30°C and lipid matrix-mediated transport beyond this region. The K+ channel inhibitor, tetraethylammonium as well as the Cl channel inhibitor, ethacrynic acid, diminished P d in the intermediate temperature region by 54 and 40%, respectively. The sulfhydryl agent p-(chloromercuri-benzensulfonate) the water transport inhibitor in erythrocytes also known to affect K+ transport in Chara, only increased P d below 15°C. In high external potassium (`K-state') water transport minima were pronounced. The role of K+ channels as sensors of the optimal temperature limits was further emphasized by showing a similar triphasic temperature dependence of the conductance of a single K+ channel also known to cotransport water, which originated from cytoplasmic droplets (putatively tonoplast) of C. gymnophylla. The minimum of K+ single channel conductance at around 15°C, unlike the one at 30°C, was sensitive to changes of growth temperature underlining membrane lipid involvement. The additional role of intracellular (membrane?) water in the generation of discontinuities in the above thermal functions was suggested by an Arrhenius plot of the cellular water relaxation rate which showed breaks at 13 and 29°C. Received: 12 August 1998/Revised: 13 November 1998  相似文献   

3.
The axonal transport of DOPA-decarboxylase (EC 4.1.1.26) was investigated in rabbit sciatic nerves by means of in vitro stop-flow techniques. Enzyme activity accumulated just proximal to a region that was locally cooled to 5°C in nerves that were elsewhere incubated at 37°C. The accumulation of enzyme activity was linear with time and corresponded to an average orthograde transport velocity of 11 mm/day. Retrograde transport was not detected. When nerves that had been locally cooled for 3 h were rewarmed, the accumulated enzyme activity moved distally along them as a wave with a narrow range of velocities. The front of this wave traveled at a rate of about 150mm/day, and the mean velocity of the wave was about 120 mm/day. These values are much lower than those previously obtained for tyrosine hydroxylase (EC 1.14.16.2), dopamine-β-hydroxylase (EC 1.14.2.1) and norepinephrine in similarly designed experiments. Thus DOPA-decarboxylase appeared to be transported at intermediate velocities, and, since the mean velocity of the moving fraction was about 11 times the average velocity, it is ljkely that only 9% of the enzyme was undergoing transport at any given moment.  相似文献   

4.
Nonvolatile exudates from velvetleaf glandular trichomes inhibited root and shoot growth of several weed and crop species in petri plate bioassays, but had no effect on seed germination per se. The exudate was efficiently collected by wiping both the stems and petioles with cotton swabs or by leaching with water, but was absent on the leaves of velvetleaf plants. Cress (Lepidium sativum L.) was the most sensitive indicator species. Four types of trichomes appeared on the stem surface as revealed by scanning electron microscopy. Water soluble globules on the apices of 12- to 15-celled glandular trichomes recurred and demonstrated their original potency within eight days after removal with cotton swabs. Both the quantity and phytotoxicity of the exudates from velvetleaf plants cultured under varying environmental conditions were determined. While total exudate production was not affected at 16, 24, or 36 C, the exudates from plants cultured at 24 and 36 C were about twice as toxic as the exudate collected from plants grown at the lower temperature. Water stress decreased the amount of exudate collected, but the phytotoxic activity was increased by approximately the same factor.  相似文献   

5.
Stop-flow techniques were used to examine the rapid axonal transport of norepinephrine in rabbit sciatic nerves. When the midpoint of a nerve incubated in vitro was cooled to 2°C while the remainder was kept at 37°C, norepinephrine accumulated proximal to the cooled region at a rate corresponding to an average transport velocity between 5 and 6 mm/hr in a distal direction. Since only about half of the norepinephrine appeared to be free to move, the mean velocity of the moving fraction was probably twice as great. No norepinephrine accumulated distal to a broad cooled region under conditions in which there would have been a significant accumulation of dopamine-β-hydroxylase activity. Therefore, unlike dopamine-β-hydroxylase, norepinephrine may not be subject to rapid retrograde transport. When nerves that had been locally cooled for 1.5 hr were rewarmed uniformly to 37°C, a wave of norepinephrine moved exclusively in a distal direction. The peak of this wave moved at a velocity of 12.2 ± 0.5 mm/hr or 293 ± 12 mm/day; the front of the wave moved at about 18 mm/hr. or 430 mm/day; and the tail probably moved faster than 6 mm/hr. This spectrum of velocities was virtually identical to the one displayed by the wave of dopamine-β-hydroxylase activity that was generated under the same conditions. Our results are consistent with the conclusion that all axonal structures containing norepinephrine also contain dopamine-β-hydroxylase, but they are not consistent with the converse.  相似文献   

6.
An apparatus was devised which utilizes local cooling to reversibly interrupt the axonal transport of dopamine-β-hydroxylase (DBH) in rabbit sciatic nerves in vitro. Lowering the temperature of a short region of nerve to between 1 and 3°C, while keeping the remainder at 37°C, caused DBH activity to accumulate in and proximal to the cooled region. This accumulation was evident after 0.5 hr of cooling and increased in a nearly linear fashion with time for about 3 hr. The cooling-induced interruption in transport was rapidly reversed when nerves were rewarmed to 37°C. Upon rewarming after local cooling for 1.5 hr, a peak of accumulated DBH activity migrated toward the distal end of the nerve at a velocity of 300 ± 17 mm/day. This velocity was maintained for as long as the peak could be followed and was four times greater than the average velocity estimated from the rate of accumulation of DBH activity above a ligature at the distal end of these same nerves. It is concluded that ligation experiments grossly underestimate the true velocity of axonal transport of DBH and that the present technique offers great advantages in permitting direct study of the migration of separate axonal compartments of transported materials.  相似文献   

7.
Streptomyces sp. QG-11-3, which produces a cellulase-free thermostable xylanase (96 IU ml−1) and a pectinase (46 IU ml−1), was isolated on Horikoshi medium supplemented with 1% w/v wheat bran. Carbon sources that favored xylanase production were rice bran (82 IU ml−1) and birch-wood xylan (81 IU ml−1); pectinase production was also stimulated by pectin and cotton seed cake (34 IU ml−1 each). The partially purified xylanase and pectinase were optimally active at 60°C. Both enzymes were 100% stable at 50°C for more than 24 h. The half-lives of xylanase and pectinase at 70, 75 and 80°C were 90, 75 and 9 min, and 90, 53 and 7 min, respectively. The optimum pH values for xylanase and pectinase were 8.6 and 3.0, respectively, at 60°C. Xylanase and pectinase were stable over a broad pH range between 5.4 and 9.4 and 2.0 to 9.0, respectively, retaining more than 85% of their activity. Ca2+ stimulated the activity of both enzymes up to 7%, whereas Cd2+, Co2+, Cr3+, iodoacetic acid and iodoacetamide inhibited xylanase up to 35% and pectinase up to 63%; at 1 mM, Hg2+ inhibited both enzymes completely. Journal of Industrial Microbiology & Biotechnology (2000) 24, 396–402. Received 29 September 1999/ Accepted in revised form 02 February 2000  相似文献   

8.
Restrictions to photosynthesis can limit plant growth at high temperature in a variety of ways. In addition to increasing photorespiration, moderately high temperatures (35–42 °C) can cause direct injury to the photosynthetic apparatus. Both carbon metabolism and thylakoid reactions have been suggested as the primary site of injury at these temperatures. In the present study this issue was addressed by first characterizing leaf temperature dynamics in Pima cotton (Gossypium barbadense) grown under irrigation in the US desert south‐west. It was found that cotton leaves repeatedly reached temperatures above 40 °C and could fluctuate as much as 8 or 10 °C in a matter of seconds. Laboratory studies revealed a maximum photosynthetic rate at 30–33 °C that declined by 22% at 45 °C. The majority of the inhibition persisted upon return to 30 °C. The mechanism of this limitation was assessed by measuring the response of photosynthesis to CO2 in the laboratory. The first time a cotton leaf (grown at 30 °C) was exposed to 45 °C, photosynthetic electron transport was stimulated (at high CO2) because of an increased flux through the photorespiratory pathway. However, upon cooling back to 30 °C, photosynthetic electron transport was inhibited and fell substantially below the level measured before the heat treatment. In the field, the response of assimilation (A) to various internal levels of CO2 (Ci) revealed that photosynthesis was limited by ribulose‐1,5‐bisphosphate (RuBP) regeneration at normal levels of CO2 (presumably because of limitations in thylakoid reactions needed to support RuBP regeneration). There was no evidence of a ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) limitation at air levels of CO2 and at no point on any of 30 ACi curves measured on leaves at temperatures from 28 to 39 °C was RuBP regeneration capacity measured to be in substantial excess of the capacity of Rubisco to use RuBP. It is therefore concluded that photosynthesis in field‐grown Pima cotton leaves is functionally limited by photosynthetic electron transport and RuBP regeneration capacity, not Rubisco activity.  相似文献   

9.
S R Louro  G Bemski 《FEBS letters》1982,142(2):293-296
The 270 MHz 1H NMR spectra of rabbit skeletal long and short S2 were indistinguishable at 20°C and 30°C and contained only a small proportion of sharp peaks associated with flexible regions. At 60°C both proteins were denatured and had essentially identical spectra. At 40°C and 50°C the long S2 spectrum contained a marginally greater proportion of sharp peaks, representing not more than 25 residues/chain. Our results are consistent with the presence of a small hinge in long S2 but do not support its containing an extensive region which provides contractile force by a helix—coil transition.  相似文献   

10.
Cotton leaf curl virus disease reduces the cotton yield significantly every year and is transmitted by Bemisia tabaci. The study was designed to evaluate 15 varieties/lines against the disease. Multiple regression analysis was performed based on a-biotic environmental variables (maximum air temperature, minimum air temperature, relative humidity and rainfall) to predict disease incidence and its vector (Bemisia tabaci). Two bio-products were evaluated against the whitefly population to control the disease. Out of 15 cotton varieties/lines, no one was found highly resistant against the disease. Five varieties/lines (BT BT-980, BT-457, KIRAN, BT-666 and SLH-BT-6) exhibited moderately resistant response. Maximum air temperature (34–35.5 °C), minimum temperature (25.75–26.25 °C), relative humidity (64.14–66%), rainfall (1–2 mm) and wind speed (5.50–5.75 Kmh?1) favoured the disease development. Maximum whitefly population was favoured by maximum air temperature from 34–35.5 °C, 25.8–26.2 °C minimum air temperature, 64.14–66% relative humidity, 1–2 mm from rainfall and 5.50–5.75 Kmh?1 wind speed. Datura stramonium was found more effective as compared to Aviara (Homoeopathic) but not from the positive control (Acetamiprid).  相似文献   

11.
The effects of Pseudomonas putida ATH2-1RI/9 and Acidovorax delafieldii ATH2-2RS/1 on rhizosphere colonization, cyanide production, and growth of velvetleaf and corn was examined. When formulated in alginate beads and inoculated onto velvetleaf and corn plants (109 CFU/plant), only P. putida ATH2-1RI/9 consistently reduced velvetleaf growth. Neither isolate inhibited corn growth. Interestingly the levels of P. putida ATH2-1RI/9 in the velvetleaf rhizosphere were 1000-fold higher (7 × 107 CFU/g root) than the A. delafieldii ATH2-2RS/1 populations. Cyanide (53–68 mM/g root) was recovered from the P. putida ATH2-1RI/9-inoculated velvetleaf plants. In contrast both A. delafieldii ATH2-2RS/1 and P. putida ATH2-1RI/9 colonized the corn rhizosphere to the same extent (1–5 × 107 CFU/g root), producing 1 mM and 14 mM/g root respectively. These results suggest that bacterial formulation methods can influence the effectiveness of deleterious rhizobacteria in reducing weed growth.  相似文献   

12.
ABSTRACT. Temperature shifts have been used to block critical points in the conjugation sequence of Paramecium tetraurelia. Increasing temperatures above 27°C reduced ciliary agglutination, pair formation, and nuclear exchange; a complete inhibition of these stages occurred at 37°C. Temperatures below 19°C had no effect on ciliary agglutination or nuclear exchange but completely inhibited pair formation. The bases for the cells’ inability to form pairs at 19°C and 37°C were sought. Cells placed below 19°C were unable to deciliate or fuse membranes in the holdfast region; at 37°C, membrane fusion in both the holdfast and paroral regions was prevented. Time course studies on cross-fertilization reveal that temperatures 35°C block all stages of the process up to the actual exchange of pronuclei. After the exchange has begun, the process continues despite the elevated temperature. Temperature shifts are discussed as a means of conditionally blocking critical points in the developmental program of conjugation.  相似文献   

13.
Cryopreservation of bovine sperm in egg-yolk citrate extender (EYC) usually maintains fertility. Since plasma membrane proteins are important for the fertilizing potential of sperm, the possible loss of membrane proteins from sperm subjected to cryopreservation in EYC was evaluated. Sperm were washed and labeled with 125I without significantly reducing motility. Radiolabeled sperm were a) held for 2 hr at 22°C in N-2-hydroxyethylpiperazine-N'-ethanesulfonic acid (HEPES)-buffered saline containing 1% polyvinyl alcohol, b) cooled to 5 °C in glycerol-free EYC and held for 3 hr, or c) frozen-thawed in EYC containing 7% glycerol. Sperm were solubilized and proteins were separated by electrophoresis under denaturing conditions. Freeze-thawing dislodged most egg-yolk proteins from the spermatozoal plasma membrane that were bound to and retained by sperm that only were cooled to 5 °C. Autoradiography resolved 11-18 bands of 125I polypeptides. There was no difference (P > 0.05) in the amount of 125I protein retained by frozenthawed and cooled sperm. However, the radioactivity in two polypeptide bands (MW = 105 K and 24.2 K) was less (P < 0.05) for sperm held at 22 °C in HEPES-buffered saline. Thus, holding sperm in buffered saline at 22 °C resulted in a greater loss of 125I proteins from the plasma membrane than did cryopreservation of sperm in EYC. Cryopreservation did not induce greater loss of 125I proteins from the plasma membrane than simply cooling sperm to 5 °C in EYC.  相似文献   

14.
A maltooligosaccharide-forming amylase that hydrolyzes starch into maltotriose and maltopentaose was found in the culture filtrate of a strain of Bacillus circulans GRS 313 isolated from local soil. The enzyme was purified by organic solvent fractionation, Sephadex G-100 gel filtration and CM-Sephadex column chromatography. Optimum pH and temperature of amylase were evaluated using response surface methodology (RSM) and were found to be 48°C and 4.9, respectively. The enzyme was stable up to 60°C and its pH stability was in the range of 5.0–8.0. The K m and V max of the amylase with starch were 11.66 mg/ml and 68.97 U, respectively, and the energy of activation, E a, was 7.52 kcal/mol. Dextrin inhibited the enzyme competitively, with a K i of 6.1 mg/ml, and glucose caused noncompetitive inhibition with a K i of 9.5 mg/ml. The enzyme was inhibited by Hg2+, Mn2+, Fe3+ and Cu2+ and enhanced by Co2+ and Mg2+. EDTA reversed the inhibitory effect of the metals. Paper chromatographic and high-performance liquid chromatography analysis of the products of the amylolytic reaction showed the presence of maltotriose, maltotetraose, maltopentaose, maltose and glucose in the starch hydrolysate. Journal of Industrial Microbiology & Biotechnology (2002) 28, 193–200 DOI: 10.1038/sj/jim/7000220 Received 11 December 2000/ Accepted in revised form 22 October 2001  相似文献   

15.
Nitrogenous excretion in two snails, Littorina saxatilis (high intertidal) and L. obtusata (low intertidal) was studied in relation to temperature acclimation (at 4° and 21°C), including total N excretion rates, the fraction of urea in N excretion, corresponding O:N ratios and the partitioning of deaminated protein between catabolic and anabolic processes at 4°, 11° and 21°C. Aggregate N excretion rates in both species showed no significant compensatory adjustments following acclimation. Total weight specific N excretion rates at 21°C were higher in standard 3 mg L. saxatilis (739 ng N mg−1 h−1) than standard 5 mg L. obtusata (257 ng N mg−1 h−1) for snails acclimated to 21°C. Comparisons of Q10 values of total weight specific N excretion to Q10 values for weight specific oxygen consumption ({xxV}O2) between 4° to 11 °C and 11° to 21°C indicated that, while total rates of catabolic metabolism ({xxV}O2) and protein deamination in L. obtusata were essentially parallel, the relationship between N excretion and {xxV}O2 in L. saxatilis revealed the partitioning of a larger share of deaminated protein carbon into anabolism at 4° and 21°C than at 11°C. Urea N accounted for a larger share of aggregate N excreted in L. saxatilis than in L. obtusata, but in both species urea N is a greater proportion of total N excreted when acclimated at 4°C (urea N: ammonia N ratio range: 1 to 2.15) than in snails acclimated to 21°C (urea N: ammonia N ratio range: 0.46 to 1.39). Molar O:N ratios indicate that the proportion of metabolism supported by protein catabolism is greater in L. saxatilis (O:N range: 2.5–8.4) than in L. obtusata (O:N range: 7.3–13.0). In both species, regardless of acclimation temperature, the O:N ratios are generally lowest (high protein catabolism) at 4°C and highest at 21°C.  相似文献   

16.
The use of aprotic solvents for preserving the electron transport properties of mitochondria at subzero temperatures is based upon the use of binary water and ethylene glycol mixtures or upon ternary and quaternary mixtures that include dimethyl sulfoxide and the lower aliphatic alcohols. In order to better preserve the respiratory control properties of mitochondria at subzero temperatures, detailed studies have been made of the effects of these mixtures on the respiratory control and electron transport from NADH or succinate of mitochondrial preparations. It is found that ADP is not metabolized at a measurable rate below 0 °C, but that Ca2+ is rapidly taken up and can thus be used to assay respiratory control ratios down to ?8 °C. In the region below ?8 °C the charge-sensitive probe oxonol-V has been used to evaluate energy coupling. By using Ca2+ to stimulate respiration at 0 °C good results are obtained with ethylene glycol/water alone and optimal results are obtained with a quaternary mixture. A mixture that freezes at ?21 °C gives about 50% inhibition of the respiratory control ratio for electron transport at 0 °C with NADH or succinate as substrates. The mixtures permit low-temperature studies of mitochondrial functions under conditions of minimal respiratory rate, including the kinetics of electron transfer reactions, the formation of intermediate compounds, and the rapid freeze-trapping of mitochondrial reactions for analytical chemistry or 31P NMR.  相似文献   

17.
The objective of this research was to investigate the effects of cooling on the development of bovine zygotes. One-cell bovine embryos were maintained at 39°C (control), 20°C, 10°C, or 0°C for 5, 10, or 20 minutes, then cultured in vitro for 7 days and the proportion of embryos developing to the compact morula or blastocyst stage compared between different treatments. Duration of exposure time had no effect on development. Development rates to the compact morula or blastocyst stage were 3.9%, 11.4%, 17.4%, and 24.4% for zygotes maintained at 0°C, 10°C, 20°C, and 39°C, respectively, with differences in embryo yield between every treatment (P < 0.05). In a second experiment, bovine pronuclei (karyoplasts) and cytoplasts were cooled at 0°C or maintained at 39°C for 5 minutes. Pronuclear transplantation was then utilized to create 4 types of reconstructed embryos, those with: 1) non-cooled pronuclei and non-cooled cytoplasm, 2) non-cooled pronuclei and cooled cytoplasm, 3) cooled pronuclei and non-cooled cytoplasm, and 4) cooled pronuclei and cooled cytoplasm. The proportion of embryos developing to the blastocyst stage was highest when non-cooled pronuclei were transferred into non-cooled cytoplasm (18.9%), and similar to that of non-cooled, non-manipulated control zygotes (13.2%, P > 0.05). No embryos developed to the blastocyst stage when pronuclei (cooled or non-cooled) were transferred into cooled cytoplasm. However, zygotes with cooled pronuclei transferred into non-cooled cytoplasm yielded 4.5% blastocysts (P < 0.05). More embryos developed to the compact morula or blastocyst stage when non-cooled vs. cooled cytoplasm was utilized, regardless of whether the pronuclei were cooled (P < 0.05). These data demonstrate that pronuclei are more tolerant to low temperature exposure than is ovum cytoplasm. Mol. Reprod. Dev. 47:435–439, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
The presence of dicyclohexylcarbodiimide (DCCD) inhibited the activities of vanadate-sensitive H+ -ATPase in both native and reconstituted plasma membrane of maize (Zea mays L. cv. WF9 × Mo 17) roots. Concentration dependence of DCCD inhibition on adenosine triphosphate (ATP) hydrolysis of native plasma membrane vesicles suggested that the molar ratio of effective DCCD binding to ATPase was close to 1. The DCCD inhibition of ATP hydrolysis could be slightly reduced by the addition of ATP, Mg:ATP, adenosine monophosphate (AMP), Mg:AMP and adenosine diphosphate (ADP). More hydrophilic derivatives of DCCD such as l-ethyl-N?-3-trimethyl ammonium carbodiimide (EDAC) or 1-ethyl-3-3-dimethyl-aminopropyl carbodiimide (EDC) gave no inhibition, indicating that the effective DCCD binding site was located in a hydrophobic region of the protein. The proton transport activity of reconstituted plasma membrane at a temperature below 20°C or above 25°C was much sensitive to DCCD treatment. Build-up of the proton gradient was analyzed according to a kinetic model, which showed that proton leakage across de-energized reconstituted plasma membranes was not affected by DCCD, but was sensitive to the method employed to quench ATP hydrolysis. Reconstituted plasma membrane vesicles treated with DCCD exhibited a differential inhibition of the coupled H+-transport and ATP hydrolysis. The presence of 50 μM DCCD nearly abolished transport but inhibited less than 50% of ATP hydrolysis. The above results suggest that the link between proton transport and vanadate-sensitive ATP hydrolysis is indirect in nature.  相似文献   

19.
Cells were grown as primary monolayer cultures from kidney cortex of guinea pigs (nonhibernators), hamsters and ground squirrels (both hibernating species). When plates of cells were placed at 5 °C, cells of guinea pigs lost 37% of their K+ in 2 h and those of the hibernator lost about 10%.Uptake of 42K into the cells exhibited a simple, single exponential time course at both temperatures. Unidirectional efflux of K+ was equal to K+ influx in all cultures at 37 °C and, within limits of error, in hibernator cells at 5 °C. Efflux was 3- to 5-fold greater than influx in guinea pig cells at 5 °C.After 2 h in the cold the ouabain-sensitive K+ influx remaining (7–15% of that at 37 °C) was about the same in the cells of the 3 species. Cells from active hamsters and from hibernating ground squirrels, however, exhibited significantly greater pump activity after 45 min in the cold (19 and 14%, respectively). The stimulation of K+ influx by increasing [K+]o did not show an increase in Km+ at 5 °C in cells of guinea pigs and ground squirrels. Lowering [K+]c and/or raising [Na+]c by treatment in low- and high-K+ media caused only slight stimulation of K+ influx, except in cells of ground squirrels at 5 °C in which the stimulation was at least 11-times greater than at 37 °C or in cells of guinea pigs at either temperature.This altered kinetic response of K+ transport to cytoplasmic ion stimulation with cooling accounted for about one-third of the improved regulation of K+ at 5 °C in ground squirrel cells; the other two-thirds was attributable to a greater decrease in K+ leak with cooling. The inhibition of active transport by cold in all 3 species was much less severe than that previously seen in any (Na+ + K+)-ATPase of mammalian cells.  相似文献   

20.
Studies were conducted to determine the uptake and metabolism of the pigment synthesis inhibiting herbicide clomazone in tolerant-soybean (Glycine max [L.] Merr. cv Corsoy) and susceptible-cotton (Gossypium hirsutum [L.] cv Stoneville 825) photomixotrophic cell suspensions. Soybean and cotton on a whole plant level are tolerant and susceptible to clomazone, respectively. Preliminary studies indicated that I50 values for growth, chlorophyll (Chl), β-carotene, and lutein were, respectively, >22, 14, 19, and 23 times greater for the soybean cell line (SB-M) 8 days after treatment (DAT) compared to the cotton cell line (COT-M) 16 DAT. Differences in [14C]clomazone uptake cannot account for selectivity since there were significantly greater levels of clomazone absorbed by the SB-M cells compared to the COT-M cells for each treatment. The percentage of absorbed clomazone converted to more polar metabolite(s) was significantly greater by the SB-M cells relative to COT-M cells at 6 and 24 hours after treatment, however, only small differences existed between the cell lines by 48 hours after treatment. Nearly identical levels of parental clomazone was recovered from both cell lines for all treatments. A pooled metabolite fraction isolated from SB-M cells had no effect on the leaf pigment content of susceptible velvetleaf (Abutilon theophrasti Medic.) or soybean seedlings. Conversely, a pooled metabolite fraction from COT-M cells reduced the leaf Chl content of velvetleaf. Soybean tolerance to clomazone appears to be due to differential metabolism (bioactivation) and/or differences at the site of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号