首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparative investigation of of smooth muscle actomyosine ATP-ase sensitivity to some inhibitors of energy-dependent Ca(2+)-transporting systems has been carried out. It is proved that the ATP-ase of actomyosine is nonselectively inhibited by thapsigargin (imaginary inhibition constant Ki is equal 29.4 +/- 5.2 nM), cyclopiazonic acid (Ki = 626 +/- 118 nM), eosin Y (Ki = 70 +/- 14 nM) and p-chlormercurybenzoate (Ki = 380 +/- 151 nM). The data obtained could be used for the further development of the ideas about regularities of Ca(2+)-dependent control of the smooth muscles contraction-relaxation.  相似文献   

2.
The investigation of pH-dependence of superprecipitation reaction and ATPase activity of myometrium actomyosin in the interval of pH 5.5-8.0 has detected cupola-shaped curves with maximal activity of both processes by pH 6.5. On the basis of calculating the constants of ionization it was supposed that in the case of actomyosin ATPase imidazole groups of two histidins had an essential role in reaction of ATP hydrolysis and in superprecipitation process--imidazol group of histidine and carboxyl group of asparagin acid. The investigation of [ATP]- and [Mg2+]-dependence of superprecipitation reaction by pH 6.0, 6.5 and 7.0 has demonstrated different pH-sensitiveness of Michaelis constants and maximal speeds relatively Mg2+ and ATP for both processes. It was shown that pH-optimum of ATPase activity of myometrium actomyosin coincided with maximal affinity of actomyosin with ATP and Mg2+ while as for superprecipitation reaction the correlation between value of process by certain pH and affinity with ATP and Mg2+ was not detected.  相似文献   

3.
In order of estimating some regularities of ethanol direct (effectory) effect to transmembrane calcium metabolism in the myometrium the action of this substance on the energy-dependent Ca(2+)-transporting systems of the uterine myocytes subcellular structures has been studied. The systems of Mg2+, ATP-dependent Ca2+ transport regarding their sensitivity to ethanol inhibitory effect were displayed as satisfying the following sequences: endoplasmic reticulum calcium pump > plasma membrane solubilized Ca2+, Mg2+, ATP-ase > mitochondrial Ca(2+)-accumulating system = plasma membrane calcium pump. Alongside with the latter, the oxytocin-insensitive component of Mg2+, ATP-dependent Ca2+ accumulation in the endoplasmic reticulum was defined to be less resistant to inhibitory effect of ethanol if compared with the oxytocin-sensitive one. On the base of the data received some mechanisms of ethanol effectory action on the intracellular calcium homeostasis in the myometrium cells are under the discussion.  相似文献   

4.
5.
The effects of nitric oxide donor sodium nitroprusside (SNP) on ATPase activities of smooth muscle actomyosin and myosin were investigated. The effect of SNP on actomyosin ATPase activity was biphasic: the low concentration of this reagent increased the actomyosin ATPase activity while the high concentration exerted opposite effect. These effects were similar to those induced by the specific thiol-alkylating agent N-ethylmaleimide. These data demonstrate that nitric oxide exert the direct effect on smooth muscle contractile proteins. Such effect may be involved in physiological action of NO on smooth muscle.  相似文献   

6.
7.
Influence of aliphatic polyamines of spermine and spermidine on the enzymatic activity of the ouabain-sensitive Na+,K(+)-ATPase and the ouabain-resistant basal Mg(2+)-ATPase (specific activity--10.6 +/- 0.9 and 18.1 +/- 1.2 microM P(i)/hour on 1 mg of protein accordingly, n = 7) has been studied in the experiments carried out with the suspension of the myometrium cell plasmatic membranes treated with 0.1% digitonin solution. It was found, that the polyamine spermine in concentration of 1 and 10 mM activated the Na+,K(+)-ATPase by 54 and 64% on the average relative to control value. Spermidine also stimulated the Na+,K(+)-ATPase activity, however it did it less efficiently than spermine: by 8 and 20% on the average at concentration of 1 and 10 mM, accordingly. Similarly, polyamines had affect on the basal Mg(2+)-ATPase: spermine in concentration of 1 and 10 mM activated it by 26 and 39% relative to control value; spermidine in concentration of 1 and 10 mM activated it by 10 and 32% relative to control. The magnitudes of the apparent activation constant K(a) of spermine were 0.35 +/- 0.07 and 0.10 +/- 0.02 mM for Na+,K(+)-ATPase and basal Mg(2+)-ATPase, accordingly (M +/- m, n = 5). It is supposed, that the obtained experimental data can be useful in the further research of the membrane mechanisms underlying of the cationic exchange in the smooth muscles, in particular, when investigating the role of the plasmatic membrane in providing electromechanical coupling in them, and also in regulation of ionic homeostasis in the smooth muscle cells.  相似文献   

8.
The ATPase activities of acto-heavy meromyosin and of acto-myosin minifilaments have been compared under the same conditions at low ATP (0.1 mM) and at several KC1 concentrations. The activities, which are strongly salt-dependent in both systems, have been found to be similar at high ionic strength (about 0.16 M) but different at lower ionic strength (0.06-0.07 M). Under this last condition, the catalytic constants kcat and Km are lower for acto-myosin minifilaments than for acto-heavy meromyosin ATPase. In addition, at low ionic strength, any decrease in the concentration of any of the ionic species (ATP, citrate, etc.) induces an increase in the interaction strength between myosin and actin filaments, as revealed by the Km changes. The presence of the troponintropomyosin complex and of Ca2+ also enhances the strength of this interaction. On the other hand, the occurrence of particular interactions between F-actin and myosin minifilaments is further substantiated by the phenomenon of superprecipitation which occurs when the ATP concentration decreases. The favourable effect of the organized structure of the myosin minifilaments on the ATPase activity of actomyosin is discussed.  相似文献   

9.
10.
The effect of C-protein on the actin-activated ATPase of column-purified skeletal muscle myosin has been investigated at varied ionic strength. At ionic strengths below about 0.1, C-protein is a potent inhibitor. The inhibition is not reversed by increasing the actin concentration, showing that it is caused by C-protein bound to the myosin filaments. When the ionic strength is raised above about 0.12, on the other hand, the inhibition vanishes and C-protein becomes a mild activator of the actomyosin ATPase. Both effects appear rapidly upon addition of C-protein to pre-formed myosin filaments, so C-protein probably acts by binding to the surface of the filaments.  相似文献   

11.
12.
The effect of staphylococcus active substances--protein A (PA) and peptidoglican (PG) at concentrations 10(-6)-10(-2) mg/ml on the ATPase activity of pig stomach natural actomyosin and myosin was studied. It was shown that PA and PG at direct contact with smooth muscle contractile proteins caused the activation and inhibition of ATPase activity, respectively. On the basis of this investigation it was assumed that staphylococcal active substances were able to modify of the ATPase activity smooth muscle contractile proteins perhaps via direct action on the myosin molecule, which could be accompanied by conformational changes of the active center of myosin ATPase.  相似文献   

13.
By estimating the respiratory activity of various chicken embryonal organs we have noted that it was the highest for the kidney tissues and lower and lower for liver, brain and heart tissues. After the addition of ethanol to the culture medium we may conclude that ethanol 2,5% does not substantially alter the cellular respiratory activity, whereas ethanol 5% remarkably appears to inhibit it. In fact for this last condition the heart and kidney fragments, when are transplanted after 48 hours in "pendent drop", result rarely surviving.  相似文献   

14.
Regulation of molluscan actomyosin ATPase activity   总被引:2,自引:0,他引:2  
The interaction of myosin and actin in many invertebrate muscles is mediated by the direct binding of Ca2+ to myosin, in contrast to modes of regulation in vertebrate skeletal and smooth muscles. Earlier work showed that the binding of skeletal muscle myosin subfragment 1 to the actin-troponin-tropomyosin complex in the presence of ATP is weakened by less than a factor of 2 by removal of Ca2+ although the maximum rate of ATP hydrolysis decreases by 96%. We have now studied the invertebrate type of regulation using heavy meromyosin (HMM) prepared from both the scallop Aequipecten irradians and the squid Loligo pealii. Binding of these HMMs to rabbit skeletal actin was determined by measuring the ATPase activity present in the supernatant after sedimenting acto-HMM in an ultracentrifuge. The HMM of both species bound to actin in the presence of ATP, even in the absence of Ca2+, although the binding constant in the absence of Ca2+ (4.3 X 10(3) M-1) was about 20% of that in the presence of Ca+ (2.2 X 10(4) M-1). Studies of the steady state ATPase activity of these HMMs as a function of actin concentration revealed that the major effect of removing Ca2+ was to decrease the maximum velocity, extrapolated to infinite actin concentration, by 80-85%. Furthermore, at high actin concentrations where most of the HMM was bound to actin, the rate of ATP hydrolysis remained inhibited in the absence of Ca+. Therefore, inhibition of the ATPase rate in the absence of Ca2+ cannot be due simply to an inhibition of the binding of HMM to actin; rather, Ca2+ must also directly alter the kinetics of ATP hydrolysis.  相似文献   

15.
In the rapid “quench” kientics of myosin, the “initial phosphate burst” is the excess inorganic phosphate that is produced during the early time-course of ATP hydrolysis by myosin subfragment-1 (S-1) or HMM. In general, the existence of a Pi burst implies a rapid (i.e., generally an order of magnitude faster than the steady-state hydrolysis rate) lysis of the phospho-anhydride bond within the ATP molecule, followed by one or more slower steps that are rate limiting for the process. Thus, the presence of a Pi burst can provide an important clue to the mechanism of the reaction. However, in the case of actomyosin, this clue as long been the subject of controversy and misunderstanding. To measure the (initial) Pi burst, myosin S-1 (or HMM) is rapidly mixed with ATP and then the mixture is acid quenched after a specific time period. The medium produced contains free Pi generated from hydrolysis of the ATP. The quantitative measure of the phosphate generated in this way has always been significantly greater than that expected by steady-state “release” of Pi alone, and it is that very difference between this measured Pi after the quench and that amount of Pi expected to be released by steady-state considerations in that same time period that has been referred to as the “initial Pi burst”. Recent investigations of the kinetics of Pi release have used an entirely new method that directly measures the release of Pi from the enzyme-product complex. These studies have made reference to the properties of the “initial Pi burst” in the presence of actin, as well as to a new kinetic entity: the “burst of Pi release”, and have been often vague concerning the true nature of the initial Pi burst, as well as the properties of Pi release as predicted by the current models of the actin activation of the myosin ATPase activity. The purpose of the current article is to correct this oversight, to discuss the “burst” in some detail, and to display the kinetics predicted by the current models for the actin activation of myosin. Furthermore, predictions for the kinetics of the new “burst of Pi release” are discussed in terms of its ability to discriminate between the two current competing models for actin activation of the myosin ATPase activity.  相似文献   

16.
The effect of the reversible inhibitor of membrane-bound Ca2+ -transporting system in smooth muscle--eosin Y--on apparent kinetic parameters that characterize the sensitivity to Mg2+ of myometrium actomyosine ATPase reaction was investigated. It is shown that eosin Y decreases an affinity of actomyosin for Mg2+ and does not influence the number of turns of the smooth muscle actomyosin ATPase activity that was defined by Mg2+. This suggests possible competition of eosin Y with Mg2+ for the active center of actomyosin ATPase. However, the negatively charged inhibitor cannot be adsorbed on Mg2+-binding site of the active center because of essential differences in size, form and charge between eosin Y and Mg2+. Most likely, eosin Y acts on uterus smooth muscle actomyosin as an allosteric inhibitor. Consequently, the mechanism of eosin Y action on ATPase activity of myometrium contractile proteins is different from the mechanism of its influence on ATP-hydrolase enzyme systems of plasmatic membranes.  相似文献   

17.
Superprecipitation of an actomyosin suspension was measured at various temperatures (2.5 degrees - 20 degrees) using Mg-ITP as substrate. Superprecipitation was induced by the addition of Mg-ITP at all temperatures, but decreased in extent with decrease in temperature. The predominant intermediate in the Mg-ITP hydrolysis of myosin depends on the temperature; at 20 degrees it is the myosin-IDP-Pi complex, while below 8 degrees it is the myosin-ITP complex (Hozumi, T. (1976) Eur. J. Biochem. 63, 241). Therefore, the occurrence of superprecipitation below 8 degrees is not compatible with muscle models in which formation of a myosin-product complex is the rate-limiting intermediate.  相似文献   

18.
Myometrium cell plasma membrane Ca2+, Mg(2+)-ATPase purified by an affinity chromatography on calmodulin-sepharose 4B is calmodulin-dependent enzyme. Concentration of calmodulin required for half-maximal activation of enzyme was about 26 nM. By unlike to the enzymes originated from other tissues sensitivity to the calmodulin of the myometrial sarcolemma Ca(2+)-transporting ATPase was lower: calmodulin increased Vmax of ATPase about 1.25-fold, the apparent constant of the activation of enzyme by Ca2+ failed to alter independently on the phospholipid presenting at the enzyme isolation.  相似文献   

19.
Potentiation of actomyosin ATPase activity by filamin   总被引:2,自引:0,他引:2  
It was found that thin filaments from chicken gizzard muscle activate skeletal muscle myosin Mg2+-ATPase to a greater extent than does the complex of chicken gizzard actin and tropomyosin. The protein factor responsible for this additional activation has been now identified as the high Mr actin binding protein, filamin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号