首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dissolved organic carbon (DOC) photochemical reactions establish important links between DOC and planktonic bacteria. We hypothesize that seasonal changes in DOC quality, related to the flood pulse, drive the effects of light-DOC interactions on uptake by planktonic bacteria uptake in clear-water Amazonian ecosystems. Water samples from two ecosystems (one lake and one stream) were incubated in sunlight during different hydrological periods and were then exposed to bacterial degradation. Photochemical and bacterial degradation were driven by seasonal DOC inputs. Bacterial mineralization was the main degradation pathway of autochthonous DOC in the lake, while allochthonous DOC was more available for photochemical oxidation. We suggest that sunlight enhances the bacterial uptake of refractory DOC but does not alter uptake of labile forms. We also observed a positive relationship between sunlight and bacterial degradation of DOC, instead of competition. We conclude that photochemical reactions and bacteria complementarily degrade the different sources of DOC during the flood pulse in Amazonian clear-water aquatic ecosystems.  相似文献   

2.
1,3-Butadiene (BD) in the atmosphere is a highly reactive hazardous air pollutant, which has a short lifetime and is quickly transformed to reaction products, some of which are also toxic. The ability to predict exposure to BD and its' products requires models with chemical mechanisms which can simulate these transformations. The atmospheric photochemical reactions of BD have been studied in the University of North Carolina Outdoor smog chamber, which has been used for over 30 years to test photochemical mechanisms for air quality simulation models for ozone. Experiments have been conducted under conditions of real sunlight and realistic temperature and humidity to study the transformations of BD and to develop and test chemical mechanisms for the simulation of these processes. Experimental observation of time-concentration data of BD decay and the formation of many products is compared to simulation results. This chemical mechanism can be incorporated into air quality simulation models which can be used to estimate ambient concentrations needed for exposure estimates.  相似文献   

3.
不同生态习性热带雨林树种的幼苗对光能的利用与耗散   总被引:10,自引:2,他引:8  
研究了生长于100%、25%和8%光照条件下的热带雨林先锋树种团花、演替顶极阶段的冠层树种绒毛番龙眼和中下层树种滇南风吹楠幼苗的光合能力及光能分配特性对光强的响应。与绒毛番龙眼和滇南风吹楠相比,团花具有较高的最大光合速率和最大电子传递速率,从光能分配对光强的响应曲线可以看出,随着光强的增加,3个树种幼苗叶片吸收的光能分配到光化学反应的比例减少,分配到热耗散的比例增加,光能在光化学反应与热耗散之间的分配呈显著负相关,与其它两个种相比,100%光下的团花幼苗将较多的光能分配到光化学反应中,热耗散较弱且未达到饱和。过剩光能少,没有引起长期光抑制,绒毛番龙眼和滇南风吹楠将叶片吸收的较多光能分配到热耗散中,但生长于100%光下的幼苗过剩光能仍然较多,导致幼苗遭受长期光抑制,结果表明,不同生态习性热带雨林树种幼苗更新对光环境的要求与这些幼苗对光能的利用和耗散特性密切相关。  相似文献   

4.
Vegetation shade is characterized by marked decreases in the red/far‐red ratio and photosynthetic irradiance. The activity of phytochrome in the field has typically been described by its photoequilibrium, defined by the photochemical properties of the pigment in combination with the spectral distribution of the light. This approach represents an oversimplification because phytochrome B (phyB) activity depends not only on its photochemical reactions but also on its rates of synthesis, degradation, translocation to the nucleus, and thermal reversion. To account for these complex cellular reactions, we used a model to simulate phyB activity under a range of field conditions. The model provided values of phyB activity that in turn predicted hypocotyl growth in the field with reasonable accuracy. On the basis of these observations, we define two scenarios, one is under shade, in cloudy weather, at the extremes of the photoperiod or in the presence of rapid fluctuations of the light environment caused by wind‐induced movements of the foliage, where phyB activity departs from photoequilibrium and becomes affected by irradiance and temperature in addition to the spectral distribution. The other scenario is under full sunlight, where phyB activity responds mainly to the spectral distribution of the light.  相似文献   

5.
Chemistry of hazardous air pollutants has been studied for many years, yet little is known about how these chemicals, once reacted within urban atmospheres, affect healthy and susceptible individuals. Once released into the atmosphere, 1,3-butadiene (BD) reacts with hydroxyl radicals and ozone (created by photochemical processes), to produce many identified and unidentified products. Once this transformation has occurred, the toxic potential of atmospheric pollutants such as BD in the ambient environment is currently unclear. During this study, environmental irradiation chambers (also called smog chambers), utilizing natural sunlight, were used to create photochemical transformations of BD. The smog chamber/in vitro exposure system was designed to investigate the toxicity of chemicals before and after photochemical reactions and to investigate interactions with the urban atmosphere using representative in vitro samples. In this study, we determined the relative toxicity and inflammatory gene expression induced by coupling smog chamber atmospheres with an in vitro system to expose human respiratory epithelial cells to BD, BDs photochemical degradation products, or the equivalent ozone generated within the photochemical mixture. Exposure to the photochemically generated products of BD (primarily acrolein, acetaldehyde, formaldehyde, furan and ozone) induced significant increases in cytotoxicity, IL-8, and IL-6 gene expression compared to a synthetic mixture of primary products that was created by injecting the correct concentrations of the detected products from the irradiation experiments. Interestingly, exposure to the equivalent levels of ozone generated during the photochemical transformation of BD did not induce the same level of inflammatory cytokine release for either exposure protocol, suggesting that the effects from ozone alone do not account for the entire response in the irradiation experiments. These results indicate that BDs full photochemical product generation and interactions, rather than ozone alone, must be carefully evaluated when investigating the possible adverse health effects to BD exposures. The research presented here takes into account that photochemical transformations of hazardous air pollutants (HAPs) does generate a dynamic exposure system and therefore provides a more realistic approach to estimate the toxicity of ambient air pollutants once they are released into the atmosphere.  相似文献   

6.
Amphiphilic bilayer membrane structures (vesicles) have been postulated to have been abiotically formed and spontaneously assemble on the prebiotic Earth, providing compartmentalization for the origin of life. These vesicles are similar to modern cellular membranes and can serve to contain water-soluble species, concentrate species, and have the potential to catalyze reactions. The origin of the use of photochemical energy in metabolism (i.e. energy transduction) is one of the central issues in the origin of life. This includes such questions as how energy transduction may have occurred before complex enzymatic systems, such as required by contemporary photosynthesis, had developed and how simple a photochemical system is possible. It has been postulated that vesicle structures developed the ability to capture and transduce light, providing energy for reactions. It has also been shown that pH gradients across the membrane surface can be photochemically created, but coupling these to drive chemical reactions has been difficult. Colloidal semiconducting mineral particles are known to photochemically drive redox chemistry. We propose that encapsulation of these particles has the potential to provide a source of energy transduction inside vesicles, and thereby drive protocellular chemistry, and represents a model system for early photosynthesis. In our experiments we show that TiO2 particles, in the ~20 nm size range, can be incorporated into vesicles and retain their photoactivity through the dehydration/rehydration cycles that have been shown to concentrate species inside a vesicle.  相似文献   

7.
8.
This study reports on the interacting effect of photochemical conditioning of dissolved organic matter and inorganic phosphorus on the metabolic activity of bacteria in freshwater. Batch cultures with lake-water bacteria and dissolved organic carbon (DOC) extracted from a humic boreal river were arranged in an experimental matrix of three levels of exposure to simulated sunlight and three levels of phosphorus concentration. We measured an increase in bacterial biomass, a decrease in DOC and bacterial respiration as CO(2) production and O(2) consumption over 450 h. These measurements were used to calculate bacterial growth efficiency (BGE). Bacterial degradation of DOC increased with increasing exposure to simulated sunlight and availability of phosphorus and no detectable growth occurred on DOC that was not pre-exposed to simulated sunlight. The outcome of photochemical degradation of DOC changed with increasing availability of phosphorus, resulting in an increase in BGE from about 5% to 30%. Thus, the availability of phosphorus has major implications for the quantitative transfer of carbon in microbial food webs.  相似文献   

9.
以气体交换和叶绿素荧光测定相结合的方法研究了亚热带自然林乔木荷树、黧蒴和林下灌木九节、罗伞幼苗的光合电子传递及激发能利用的分配对生长光强的适应特性。4种植物生长于100%、36%和16%的自然光下8个月,叶片的光化学速率和热能耗散速率随光强增大而提高,热能耗散占总的光能吸收的比例也因光强不同而改变,16%光下的相对热耗散率约为40%~45%,100%自然光下增大至50%~75%。叶片总的非环式电子流速率及其分配到光呼吸的比例在100%光强下最高。乔木和灌木的电子传递和光能分配特性在16%光下相似,在100%光下差别较明显。除灌木种有较高的热耗散比例之外,其余的参数皆比乔木的低。结果表明乔木与灌木皆可通过提高激发能热耗散比例和提高光合电子传递向光呼吸的比例来适应于高光强条件。  相似文献   

10.
A herbicide, sodium pentachlorophenoxide (Na-PCP), used in Japan, is easily decomposed with sunlight after its application in the rice field. The photochemical reaction of Na-PCP in an aqueous solution on exposure to sunlight afforded numerous products which were mainly accompanied with chloranilic acid and a yellow compound (I). The chemical structure of the yellow compound I was established as being 3, 4, 5-trichloro-6-(2′-hydroxy-3′, 4′, 5′, 6′-tetrachlorophenoxy)-o-benzoquinone by chemical and spectroscopic evidences.

Minor decomposition products of sodium pentachlorophenoxide (Na-PCP) in an aqueous solution by sunlight have been isolated. Chemical structures of them are described, and infrared and ultraviolet spectra are presented in support of these stractures. These illustrate a new type of oxidative reaction of phenols.  相似文献   

11.
《植物生态学报》2015,39(11):1093
AimsResponses of plants to increased irradiance are governed by two strategies: an increase in the utilization of absorbed light and photo-protective mechanisms. Varied physiological responses to increased irradiance were observed in plant species with differing adaptabilities to light regimes. This research aims to explore the physiological responses and photo-protective mechanisms of two Rhododendron plants to changes in light regimes. MethodsChlorophyll fluorescence parameters and rapid light curves were measured for leaves of R. hybrida (a shade-tolerant species) and R. simsii (a light-loving and shade-tolerant species) following exposure to sunlight for five days after growing in the shade for one year.Important findings Natural sunlight decreased the efficiency of photochemical reaction by reducing the fraction of incident light in photochemical energy utilization and decreased thermal dissipation through regulating energy dissipation in photosystem II (PSII) in the leaves of R. hybrida. As a result, natural sunlight induced the accumulation of excess excitation energy in PSII, and caused photo-inhibition and even photodamage in the leaves of R. hybrida, which was suddenly transferred from long-term shading to sun exposures. The acclimation capacity to changes of growth light regimes was stronger in R. simsii than in R. hybrida, due to a higher capability for photochemical reaction, thermal dissipation and cyclic electron flows around photosystem I in the leaves of R. simsii. Rhododendron simsii could utilize a high fraction of incident light in photochemistry and regulate energy dissipation in PSII to protect the photosynthetic apparatus under both shading and natural sunlight condition. Therefore, high light intensity under natural sunlight did not cause photo-inhibition in R. simsii.  相似文献   

12.
Evaluating in vivo photochemical genotoxicity (photogenotoxicity) or photochemical carcinogenicity (photocarcinogenicity) in the skin that is actually exposed to light is important for estimating the risk of human exposure to chemicals under sunlight. With regard to the skin micronucleus test, Nishikawa et al. developed a reliable technique that is simple and in which the negative control has a stable background. In the present study, we applied 8-methoxypsoralen (8-MOP) and benzo[a]pyrene (B[a]P) to the backs of hairless mice and subjected the mice to irradiation by a sunlight simulator in order to investigate whether this test can detect photogenotoxicity of these chemicals. In the treatment with 8-MOP [0.00075% and 0.0015% (w/v)], a significant increase was observed in the frequency of micronucleated cells only under light irradiation using the sunlight simulator. At a high chemical dose, the frequency of micronucleated cells increased from 48h after the treatment, peaked at 96h, and then decreased at 168h. Furthermore, at 96h with the high dose under light irradiation, we frequently observed cells with nuclear buds. In the treatment with B[a]P [first experiment: 0.025% and 0.05% (w/v); second experiment: 0.005%, 0.01%, and 0.02% (w/v)], a significant increase was observed in the frequency of micronucleated cells at skin-irritating doses [0.01%, 0.02%, 0.025%, and 0.05% (w/v)] at 72 or 96h after the treatment only under light irradiation using the sunlight simulator. In conclusion, photogenotoxicity of 8-MOP and B[a]P was detected in the in vivo photochemical skin micronucleus study.  相似文献   

13.
The PROPHIS facility is an efficient tool for the synthesis of chemicals with moderately concentrated sunlight on a semi-technical scale. The feasibility of selected solar photochemical reaction classes--including heterogeneous and homogeneous reactions--has been demonstrated using various set-ups of the plant. This paper outlines the potential of solar photochemistry by representative examples.  相似文献   

14.
The photochemical behaviour of the herbicide napropamide is studied on cellulose and silica surfaces, using steady-state and laser-flash diffuse reflectance techniques. The results are used to probe how the reaction sites of the host matrices influence the photo-reactive pathways. Napropamide undergoes reaction when irradiated with UV (lamps) or visible (sunlight) radiation on both solid supports. The nature of the intermediates and final products depend strongly on the presence or absence of molecular oxygen. The triplet state of napropamide adsorbed on cellulose is detected by both time-resolved luminescence and transient absorption spectroscopies. The triplet sate was not observed on silica, but transients which include the participation of molecular oxygen are detected during flash photolysis studies. The keto intermediates of the photo-Claisen rearrangement products are observed on both solids. Substituted 1-naphthols from photo-Claisen reactions and 1-naphthol are among the main reaction products. 1,4-Naphthoquinone is a major photoproduct in the presence of molecular oxygen and is expected to be prevalent when napropamide undergoes photodegradation in the environment (i.e., after being applied to plants and fields).  相似文献   

15.
植物通过提高光能利用能力和光保护途径以响应环境光强的增加, 但不同植物对环境光强增加的生理响应存在差异, 从而导致植物对光环境的适应性不一致。为探讨植物对光环境变化的生理响应及其适应机制, 该文以遮阴条件下培养1年的2种杜鹃属(Rhododendron)植物比利时杜鹃(R. hybrida)和杜鹃(R. simsii)为材料, 对其由遮阴后转入全光照下培养5天时的叶片叶绿素荧光参数及其快速光曲线变化进行了比较研究, 以期从叶片吸收光能分配和光保护机制的角度探讨这2种植物对光环境变化的适应机制。结果表明: 全光照降低了喜阴植物比利时杜鹃叶片的光化学反应和热耗散能力, 且其吸收光能分配于光化学反应和调节性能量耗散部分的比例减少, 导致光系统II反应中心过量激发能积累, 造成了叶片光抑制甚至光破坏。杜鹃作为耐阴喜光植物对光环境变化具有较强的适应性, 具有较高的光化学反应、热耗散和环式电子传递能力等内在生理特性; 在遮阴和全光照两种光环境下均能维持较高的吸收光能在光化学反应和调节性能量耗散部分的分配比例, 从而保护了光合机构的正常运行, 是其全光照强光未造成叶片光抑制的原因。  相似文献   

16.
An investigation on the photobleaching behavior of fluorescein in microscopy was carried out through a systematic analysis of photobleaching mechanisms. The individual photochemical reactions of fluorescein were incorporated into a theoretical analysis and mathematical simulation to study the photochemical processes leading to photobleaching of fluorescein in microscopy. The photobleaching behavior of free and bound fluorescein has also been investigated by experimental means. Both the theoretical simulation and experimental data show that photobleaching of fluorescein in microscopy is, in general, not a single-exponential process. The simulation suggests that the non-single-exponential behavior is caused by the oxygen-independent, proximity-induced triplet-triplet or triplet-ground state dye reactions of bound fluorescein in microscopy. The single-exponential process is a special case of photobleaching behavior when the reactions between the triplet dye and molecular oxygen are dominant.  相似文献   

17.
Cocoa grows under shade, but some cultivars develop successfully in full sunlight. In order to characterize the response to photosynthetic photon flux density (PPFD) of a Modern Criollo cocoa clone, gas exchange, photochemical activity and leaf traits, and their relation to growth were measured in seedlings growing in a greenhouse at three different values of PPFD, as well as in adults in full sunlight and shade in the field. Plants showed changes in physiological, biochemical, and morpho‐anatomical traits in response to the different light conditions, and in the phenotypic plasticity of these variables. Seedlings subjected to high PPFD in the greenhouse showed decreases in photosynthetic rate, apparent quantum yield of CO2 fixation and photochemical quenching, and increases in non‐photochemical quenching, suggesting down‐regulation of PSII. In contrast, trees under full sunlight in the field showed a marked reduction in maximum quantum yield of PSII, indicating photoinhibition and supporting that cocoa is a shade tolerant crop. Cocoa showed higher plasticity of physiological and biochemical variables than morpho‐anatomical variables in response to PPFD. Effects of time under treatment in the greenhouse and plant age (greenhouse vs field) on plasticity were observed. The acclimation observed in some of the variables studied after 6 months in high light did not represent a particular advantage to seedlings, since relative growth rate was lower than in low‐ and medium‐light seedlings.  相似文献   

18.
Reactions of singlet oxygen in humic waters   总被引:1,自引:0,他引:1  
SUMMARY. The oxidation of 2, 5-diniethylfuran (DMF) to cis-1, 2- diacetylethylene (DAE) is a specific test for singlet oxygen (1O2). A method has been developed for the measurement of DAB by direct injection gas chromatography. By the use of this method, the photochemical generation of 1O2 has been demonstrated in samples of two Canadian humic waters.
Two other photochemical reactions probably mediated by 1O2generation, the oxidation of histidine and the inactivation of a-chymotrypsin, have been demonstrated in these waters.
The possible ecological and environmental implications of these findings are discussed.  相似文献   

19.
The plant photoreceptor phototropin is an autophosphorylating serine-threonine protein kinase activated by UV-A/blue light. Two domains, LOV1 and LOV2, members of the PAS domain superfamily, mediate light sensing by phototropin. Heterologous expression studies have shown that both domains function as FMN-binding sites. Although three plant blue light photoreceptors, cry1, cry2, and phototropin, have been identified to date, the photochemical reactions underlying photoactivation of these light sensors have not been described so far. Herein, we demonstrate that the LOV domains of Avena sativa phototropin undergo a self-contained photocycle characterized by a loss of blue light absorbance in response to light and a spontaneous recovery of the blue light-absorbing form in the dark. Rate constants and quantum efficiencies for the photoreactions indicate that LOV1 exhibits a lower photosensitivity than LOV2. The spectral properties of the photoproduct produced for both LOV domains are unrelated to those found for photoreduced flavins and flavoproteins, but are consistent with those of a flavin-cysteinyl adduct. Flavin-thiol adducts are generally short-lifetime reaction intermediates formed during the flavoprotein-catalyzed reduction of protein disulfides. By site-directed mutagenesis, we have identified several amino acid residues within the putative chromophore binding site of LOV1 and LOV2 that appear to be important for FMN binding and/or the photochemical reactivity. Among those is Cys39, which plays an important role in the photochemical reaction of the LOV domains. Replacement of Cys39 with Ala abolished the photochemical reactions of both LOV domains. We therefore propose that light sensing by the phototropin LOV domains occurs via the formation of a stable adduct between the FMN chromophore and Cys39.  相似文献   

20.
Formation of a semiquinone free radical derived from chlorophyll in the reaction of photoreduction has been discovered by A. A. Krasnovsky, Sr. in 1953. This review consider the results obtained in the author's laboratory, concerning the participation of free radicals in photochemical reactions under UV-irradiation of aromatic amino acids, proteins, and lipids, as well as in the reactions of chemiluminescence (CL) in the protein and chlorophyll-containing systems. Free radicals are the very first products of photochemical reactions in all systems studied. The back reactions of radicals are accompanied with photon emission. From the point of view of the molecular energetics, the radiativeless electronic transition in molecules is the most probable event, the transition triplet level is less probable, and the transition to the singlet excited level is virtually impossible. This may explain the low quantum yield of CL, similarity of CL and phosphorescence (rather than fluorescence) spectrum of the reaction products, low quantum yield of CL, and its high temperature coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号