首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative levels of ribosomes, ribosomal protein S1, and elongation factor G in the growth cycle of Escherichia coli were examined with two-dimensional polyacrylamide gel electrophoresis. Nonequilibrium pH gradient polyacrylamide gel electrophoresis was used in the first dimension, and polyacrylamide gradient-sodium dodecyl sulfate gel electrophoresis was used in the second dimension. The identities of protein spots containing S1 and elongation factor G were confirmed by radioiodination of the proteins and peptide mapping of the radiolabeled peptides. The levels of ribosomes and ribosomal protein S1 were coordinately reduced during transition from exponential phase to stationary phase. There was no accumulation of S1 in the stationary phase. In marked contrast, the level of elongation factor G showed no significant change from exponential phase to stationary phase. The relative level of elongation factor G compared with ribosomes or S1 increased by about 2.5-fold during transition from exponential phase to stationary phase. The results show that there are differences between the regulation of the levels of elongation factor G and of ribosomal proteins, including S1, apparent during the transition from exponential to stationary phase.  相似文献   

2.
Purified 50 S ribosomal subunits were found to contain significant amounts of protein coincident with the 30 S proteins S9 and/or S11 on two-dimensional polyacrylamide/urea electropherographs. Peptide mapping established that the protein was largely S9 with smaller amounts of S11. Proteins S5 and L6 were nearly coincident on the two-dimensional polyacrylamide/urea electropherographs. Peptide maps of material from the L6 spot obtained from purified 50 S subunits showed the presence of significant amounts of the peptides corresponding to S5. Experiments in which 35S-labelled 30 S subunits and non-radioactive 50 S subunits were reassociated to form 70 S ribosomes showed that some radioactive 30 S protein was transferred to the 50 S subunit. Most of the transferred radioactivity was associated with two proteins, S9 and S5. Sulfhydryl groups were added to the 50 S subunit by amidination with 2-iminothiolane (methyl 4-mercaptobutyrimidate). These were oxidized to form disulfide linkages, some of which crosslinked different proteins of the intact 50 S ribosomal subunit. Protein dimers were partially fractionated by sequential salt extraction and then by electrophoresis of each fraction in polyacrylamide gels containing urea. Slices of the gel were analysed by two-dimensional polyacrylamide/sodium dodecyl sulfate diagonal gel electrophoresis. Final identification of the constituent proteins in each dimer by two-dimensional polyacrylamide/urea gel electrophoresis showed that 50 S proteins L5 and L27 were crosslinked to S9. The evidence suggests that proteins S5, S9, S11, L5 and L27 are located at the interface region of the 70 S ribosome.  相似文献   

3.
G Freyssinet 《Biochimie》1977,59(7):597-610
Active cytoplasmic ribosone subunits 41 and 62S were prepared by treatment with 0.1 mM puromycin in the presence of 265 mM KCl. Active chloroplast subunits 32 and 49S were obtained after dialysis of chloroplast ribosomal preparations against 1 mM Mg(2+)-containing buffer. Proteins from these different ribosomal particles were mapped by two-dimensional gel electrophoresis in the presence of urea. The 41S small cytoplasmic ribosomal subunit contains 33-36 proteins, the 62S large cytoplasmic ribosomal subunit contains 37-43, the 32S small chloroplast ribosomal subunit contains 22-24, and the 49ts large chloroplast ribosomal subunit contains 30-34 proteins. Since some proteins are lost during dissociation of monosomes into subunits, the 89S cytoplasmic monosome would have 73-83 proteins and the 68S chloroplast monosome, 56-60. The amino acid composition of ribosomal proteins shows differences between chloroplast and cytoplasmic ribosomes.  相似文献   

4.
Exchange and stability of HeLa ribosomal proteins in vivo.   总被引:10,自引:0,他引:10  
The relative stabilities of individual HeLa ribosomal proteins and their capacity for exchange between ribosome-bound and -free states in the cytoplasm were examined. Most ribosomal proteins on cytoplasmic ribosomes were found to have uniform, high stability as measured by comparing the short term (12-hour) to steady state (3-day) labeling ratios determined for each ribosomal protein. This would be expected if the proteins in ribosomes either were all stable or were all degraded as a unit. The data do not rule out the possibility that individual proteins have different stabilities prior to their assembly into ribosomes. Four proteins labeled atypically. One large subunit protein (L5) had a lower than average ratio. We interpret this low ratio as being due to a large free pool of this protein. Three proteins (L10, L28, S2) had higher than average ratios, interpreted as being due to reduced protein stability. Two of these proteins (L10, L28) with high ratios were also found to exchange in vivo. The exchangeable proteins may be subject to increased degradation during the time that they spend in the exchangeable free pool. The third protein (S2) with an atypically high ratio is thought to be degraded or altered while on the ribosome, or slowly lost as ribosomes age, because exchange of this protein was not detected. These interpretations and some alternate interpretations are explained. The exchange of three large subunit proteins (L10, L19, L28) was detected by labeling of protein after ribosome synthesis had been inhibited with actinomycin D. Autoradiography of two-dimensional polyacrylamide gels showed labeling of these spots.  相似文献   

5.
Total protein was released from isolated HeLa cell nucleoli by guanidine hydrochloride, purified by cesium chloride density gradient centrifugation, and analyzed by two-dimensional polyacrylamide gel electrophoresis. Conditions of electrophoresis restricted attention to proteins that are positively charged at pH 8.6. Most of the major nucleolar protein spots co-electrophoresed with ribosomal proteins; the majority of ribosomal proteins from both the large and small ribosomal subunits were represented. Several proteins found in association with polysomes but not on ribosomal subunits and several proteins unique to the nucleolus were also identified in these nucleolar protein patterns. In order to determine whether the ribosomal proteins found in the nucleolus represented sizable pools of ribosomal proteins, or merely ribosomal proteins contained in the preribosomal particles, [35S]methionine-labeled nucleoli were mixed with [3H]methionine-labeled polysomes. From analysis of isotopic ratios in individual protein spots it was possible to determine the stoidchiometry of individual ribosomal proteins in the nucleolus relative to their complement on cytoplasmic ribosomes. All but a few proteins exhibited relative nucleolar stoichiometry values of approximately one, indicating that there are not significant pools of most ribosomal proteins in isolated nucleoli.  相似文献   

6.
The metabolism of the ribosomal and soluble protein components of Aerobacter aerogenes was examined during its incubation in a Mg(++)-deficient medium. Bacteria were exposed to leucine-H(3) during the exponential growth period preceding Mg(++) starvation, and extracts were prepared after intervals of starvation and were centrifuged through gradients of sucrose to separate ribosomal from soluble proteins. Ribosomal proteins synthesized during the preceding exponential growth were slowly lost from the ribosomes; after 8 hr of starvation, few, if any, sedimented with ribosomes. Losses of total protein, together with the known rate of ribosome decay during Mg(++) starvation, suggested that these ribosomal proteins are ultimately degraded to acid-soluble products and account for all protein lost by the starving cells. These conclusions were supported by studies of Mg(++) starvation in a uracil-requiring strain of A. aerogenes: during uracil starvation a smaller fraction of the proteins synthesized were ribosomal, and the fraction of protein which subsequently decayed during Mg(++) starvation was correspondingly less. During recovery from Mg(++) starvation, proteins, lost from disintegrated ribosomes, were not detectably reutilized into new particles even before their degradation to acid-soluble products was complete. Synthesis of soluble proteins continued for more than 24 hr of starvation at a rate per milliliter close to 45% of the instantaneous rate per milliliter of the exponentially growing bacteria at the time Mg(++) was removed. This value agreed with that found previously for synthetic rates of deoxyribonucleic acid, transfer ribonucleic acid, and ribosomal ribonucleic acid during starvation relative to rates during exponential growth.  相似文献   

7.
1. Ribosomes from cells of the genera Trichomonas and Tritrichomonas have been isolated and characterized. The ribosomes from each organism had a sedimentation coefficient of 70S in calibrated sucrose gradients and the subunits sedimented as 50S and 30S particles under the same conditions. 2. The major ribosomal RNAs from each species were identical in size to prokaryotic ribosomal RNAs when examined by denaturing gel electrophoresis. The ribosomes contained both 5.8S and 5S RNAs. 3. The ribosomal proteins were compared by the methods of two-dimensional gel electrophoresis and reversed phase HPLC. Electrophoresis of the ribosomal proteins in two different gel systems indicated the presence of 56 proteins in T. gallinae, 40 in T. bactrachorum and 45 in the Tritrichomonas sp. The protein molecular mass range was 8.5-40 kDa. 4. The HPLC analysis confirmed the protein number established by the gel methods. 5. Both methods of analysis revealed greater similarities between the ribosomal proteins of the 2 Tritrichomonas sp. than between those of the more distantly related T. gallinae and T. bactrachorum.  相似文献   

8.
Rat liver ribosomes were dissociated into subunits using EDTA, sodium pyrophosphate, high concentrations of KC1, as well as by incubation with puromycin in presence of 0.5 M KC1. The subunits obtained were analyzed using the density gradient centrifugation technique and their ribosomal proteins were separated by means of two-dimensional polyacrylamide gel electrophoresis. The ribosomal protein patterns of the two subunits isolated using each of the dissociating method were compared to the protein patterns of monosomes prepared by puromycin treatment alone. Our results revealed that the use of chelating agents to dissociate the ribosomes resulted in the loss of some ribosomal proteins from the small subunit. On the other hand, the use of KC1 in high concentrations to dissociate the ribosomes did not appear to cause any major loss of proteins from the ribosomes except for some acidic proteins.  相似文献   

9.
The differential sensitivity of ribosomal proteins to removal by salts has been studied. Proteins were extracted from the large and small subunits of cytoplasmic ribosomes from Saccharomyces cerevisiae by washing the individual subunits with a series of solutions containing increasing concentrations of NH4Cl (0.74-3.56 M) for a defined time (20 min) at 0 degrees C. The molar ratio of magnesium to ammonium ions of 1:40 was maintained to protect the ribosomal subparticles from complete disassembly. Proteins extracted under each salt condition were analyzed for composition by two-dimensional polyacrylamide gel electrophoresis. The relative quantity of each protein was determined. Most proteins were not removed from the ribosomal particle completely by any one condition, but were preferentially enriched in a single fraction. Whereas most proteins could be solubilized, several proteins remained predominantly or exclusively with the final core particle. The kinetics of protein release from both subunits at a single NH4Cl concentration (0.74 M) were also studied. Release of protein was time dependent, i.e., longer extraction generally removed more of the same proteins. However, prolonged treatment (240 min) of subunits, even at the same salt concentration, resulted in removal of additional species of proteins in varying amounts. Among the ribosomal RNA species, only the 5 S RNA species was released from the ribosomal particles upon treatment.  相似文献   

10.
Proteomic studies have addressed the composition of plant chloroplast ribosomes and 70S ribosomes from the unicellular organism Chlamydomonas reinhardtii But comprehensive characterization of cytoplasmic 80S ribosomes from higher plants has been lacking. We have used two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) to analyse the cytoplasmic 80S ribosomes from the model flowering plant Arabidopsis thaliana. Of the 80 ribosomal protein families predicted to comprise the cytoplasmic 80S ribosome, we have confirmed the presence of 61; specifically, 27 (84%) of the small 40S subunit and 34 (71%) of the large 60S subunit. Nearly half (45%) of the ribosomal proteins identified are represented by two or more distinct spots in the 2-DE gel indicating that these proteins are either post-translationally modified or present as different isoforms. Consistently, MS-based protein identification revealed that at least one-third (34%) of the identified ribosomal protein families showed expression of two or more family members. In addition, we have identified a number of non-ribosomal proteins that co-migrate with the plant 80S ribosomes during gradient centrifugation suggesting their possible association with the 80S ribosomes. Among them, RACK1 has recently been proposed to be a ribosome-associated protein that promotes efficient translation in yeast. The study, thus provides the basis for further investigation into the function of the other identified non-ribosomal proteins as well as the biological meaning of the various ribosomal protein isoforms.Patrick Giavalisco, Daniel Wilson are contributed equally to this work.  相似文献   

11.
The extraction of proteins from eukaryotic ribosomes and ribosomal subunits   总被引:4,自引:0,他引:4  
Proteins were extracted from rat liver ribosomes and ribosomal subunits: with 67% acetic acid (in the presence of 3.3 mM, 33 mM, or 67 mM Mg) with 2 M LiCL in 4 M urea; with 0.25 N HCI; with 1% SDS; and after RNase digestion. The most efficient extraction and the best recovery were either with acetic acid in the presence of 33 mM or 67 mM Mg, or with LiCI-urea. Protein extracted with acetic acid, LiCi-urea, or with HCI had little or no contamination with RNA. The ribosomal proteins were analyzed by two-dimensional polyacrylamide gel electrophoresis: the proteins extracted with acetic acid were the most soluble in the sample gel solution; their electrophoretograms displayed the maximum number of spots and the smallest number of derivatives or altered proteins. Preparations of protein extracted with SDS or RNase were relatively insoluble in the sample gel solution, and proteins extracted with HCI showed a large number of derivatives. All things considered, the most satisfactory method for the extraction of protein from eukaryotic ribosomes is with 67% acetic acid in the presence of 33 mM MgCl2.  相似文献   

12.
M Gilly  M Pellegrini 《Biochemistry》1985,24(21):5781-5786
[3H]Puromycin covalently incorporates into the protein and to a much lesser extent into the RNA components of Drosophila ribosomes in the presence of 254-nm light. The photoincorporation reaction takes place with a small number of large- (L2 and L17) and small- (S8 and S22) subunit proteins as determined by two-dimensional gel analysis. More quantitative one-dimensional gel results show that puromycin reacts with each of these proteins in a functional site specific manner. The small percentage of the total labeling that occurs with rRNA also appears to be site specific. The rRNA labeling arises from a puromycin-mediated cross-linking of ribosomal protein and rRNA. Ionic conditions shift the pattern of puromycin-labeled ribosomal proteins. These results suggest that puromycin can occupy two distinct sites on Drosophila 80S ribosomes. The pattern of ribosomal proteins labeled by puromycin is affected by the presence of other antibiotics such as emetine, anisomycin, and trichodermin.  相似文献   

13.
Quantitative analysis of the protein composition of yeast ribosomes   总被引:4,自引:0,他引:4  
The molecular weights of the individual yeast ribosomal proteins were determined. The ribosomal proteins from the 40-S subunit have molecular weights ranging from 11 800 to 31 000 (average molecular weight = 21 300). The molecular weights of the 60-S subunit proteins range from 10 000 to 48 400 (average molecular weight = 21 800). Stoichiometric measurements, performed by densitometric scanning on ribosomal proteins extracted from high-salt dissociated subunits revealed that isolated ribosomal subunits contain, besides some protein species occurring in submolar amounts, a number of protein species which are present in multiple copies: S13, S27, L22, L31, L33, L34 and L39. The mass fractions of the ribosomal proteins which were found to be present on isolated ribosomes in non-unimolar amounts, were re-examined by using an isotope dilution technique. Applying this method to proteins extracted from mildely isolated 80-S ribosomes, we found that some protein species such as S32, S34 and L43 still are present in submolar amounts. On the other hand, however, we conclude that some other ribosomal proteins, in particular the strongly acidic proteins L44 and L45 get partially lost during ribosome dissociation. Proteins L44/L45 appears to be present on 80-S ribosomes in three copies.  相似文献   

14.
The levels of initiation factors and other translational components were compared in crude lysates of Escherichia coli grown at different rates. Cells were grown in media containing [35S]sulfate and different carbon sources, and harvested during mid-exponential phase after about 10 generations of balanced growth. Initiation factors (IF), elongation factors (EF), and a number of ribosomal proteins were identified unambiguously in gel patterns following two-dimensional polyacrylamide gel electrophoresis. The molar concentration of each protein was calculated from measurements of the radioactivity in excised gel spots and knowledge of the sulfur content of each protein. We found that the ribosomal proteins and elongation factors were present in equimolar amounts except for L7/L12 and EF-Tu which were 4-fold and 5-fold more abundant, respectively, and that the levels of each protein increased in proportion to growth rate. These results are similar to ones obtained previously by other methods, and serve to confirm the validity of our method. We found that the levels of IF2a and IF3 also were approximately proportional to growth rate. We also measured the levels of all three initiation factors using a radioimmune assay, showed that the factors are present in equimolar amounts, and confirmed that their abundance increased in parallel with ribosomes. We conclude that initiation factor levels are coordinately regulated with one another and with ribosome and elongation factor levels.  相似文献   

15.
Summary The rRNA genes (rDNA) in Drosophila melanogaster are found in two clusters, one on the X and one on the Y chromosome. We have compared the ribosomal protein composition of wild-type Oregon-R flies containing both X-linked and Y-linked rDNA with that of flies containing only the Y-linked rDNA by two-dimensional polyacrylamide gel electrophoresis. Four basic proteins (1, 2/3, L4, and L7) normally present in wild-type flies were either electrophoretically not detectable (1, 2/3, and L4) or marginally detectable (L7) in flies with only Y-linked rDNA. No additional proteins were observed in these flies. However, immunodiffusion assays using specific antibodies raised against purified protein L4 confirmed that L4 was present but in relatively lower amounts in these Y-linked rDNA flies. An investigation was carried out to determine whether these electrophoretically undetectable proteins were more readily lost during ribosome preparation and hence were not readily detectable in the 80S particles by gel electrophoresis or whether they had been modified. Thus the proteins in the post-ribosomal cell supernatant and the high salt sucrose gradient were analyzed by two-dimensional gel electrophoresis and immunochemical assays with antibodies raised against protein L4 and total 80S ribosomal proteins. The experimental evidence indicates that there is a small amount of protein L4 and probably proteins 1, 2/3, and L7 in flies with only Y-linked rDNA but significantly less of these proteins than in wild-type flies.  相似文献   

16.
Tetrahymena pyriformis 60-S ribosomal subunits treated with EDTA release a 7-S particle containing 5-S RNA and a 36000-Mr protein that is similar to mammalian 5-S-RNA-binding protein L5 in molecular weight, in two-dimensional acrylamide gel mobility, and in peptide pattern as generated by a simple, one-dimensional acrylamide gel technique. Human and T. pyriformis 40-S ribosomal subunits, treated with buffers lacking magnesium or containing EDTA, release varying amounts of two large acidic proteins. We have identified these released proteins by two-dimensional gel electrophoresis.  相似文献   

17.
Structural proteins of active 60-S and 40-S subunits of rat liver ribosomes were analysed by two-dimensional polyacrylamide gel electrophoresis. 35 and 29 spots were shown on two-dimensional gel electrophoresis of proteins from large and small subunits, respectively. It was noted that the migration distances of stained proteins with Amido black 10B remained unchanged in the following sodium dodecyl sulfate-acrylamide gel electrophoresis, although some minor degradation and/or aggregation products were observed in the case of several ribosomal proteins, especially of those with high molecular weights. This finding made it possible to measure the molecular weight of each ribosomal protein in the spot on two-dimensional gel electrophoresis by following sodium dodecyl sulfate-acrylamide gel electrophoresis. The molecular weights of the protein components of two liver ribosomal subunits were determined by this 'three-dimensional' polyacrylamide gel electrophoresis. The molecular weights of proteins of 40-S subunits ranged from 10 000 to 38 000 and the number average molecular weight was 23 000. The molecular weights of proteins of 60-S subunits ranged from 10 000 to 60 000 and the number average molecular weight was 23 900.  相似文献   

18.
Exposure of yeast 80 S ribosomes to chaotropic salts such as NaClO4 or NaSCN at concentrations as low as 0.4 M resulted in complete dissociation and subsequent aggregation of the ribosomal proteins. However, under similar conditions, both NaCl and NaBr did not cause dissociation and aggregation. The protein precipitate obtained by exposing the ribosomes to 0.5 M NaClO4 was free of any rRNA contamination as judged by ultraviolet-absorption analysis. Comparison of the two-dimensional polyacrylamide gel electrophoretic analysis of the above ribosomal protein precipitate with that ribosomal proteins isolated by the standard acetic acid extraction procedure revealed that the protein precipitate contained all the ribosomal proteins. Based on these results, a simple method for the isolation of total ribosomal proteins and rRNA under mild, nondenaturing conditions is proposed. A possible mechanism for the dissociation of proteins from the ribosome by chaotropic salts is also discussed.  相似文献   

19.
One- and two-dimensional gel electrophoresis were employed to characterise the proteins derived from the ribosomes of the thermophilic fungusThermomyces lanuginosus. Approximately 32 (29 basic and 3 acidic) and 45 (43 basic and 2 acidic) protein spots were resolved fromTh. lanuginosus small and large ribosomal subunits, respectively. The molecular weight of the small subunit proteins ranged from 9,800–36,000 Da with a number average molecular weight of 20,300 Da. The molecular weight range for the large subunit proteins was 12,000–48,500 Da with a number average molecular weight of 25,900 Da. Most proteins appeared to be present in unimolar amounts. These data are comparable with but not identical to those from other eukaryotic ribosomes. The sensitivities of the ribosomal proteins to increasing concentrations of NH4Cl were also evaluated by two-dimensional gel electrophoresis. Most ribosomal proteins were gradually released over a wide range of salt concentrations but some were preferentially enriched in one or two salt conditions.  相似文献   

20.
Analysis of in vivo phosphorylation of mouse liver ribosomal proteins was performed by two-dimensional polyacrylamide gel electrophoresis following 32P-injection. Our method is special and differs from other eukaryotic systems reported in that all proteins separated on the first dimension gel are completely solubilized, moving quantitatively to the second dimension gel. Only ribosomes from polysomes were used, ensuring analysis of ribosomes actively engaged in protein synthesis. We resolved sixty-five distinct proteins from ribosomes from membrane bound or free polysomes. In both cases radioautography revealed similar labeled patterns with one highly phosphorylated ribosomal protein and five marginally labeled spots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号