首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract.
  • 1 The effects of resource limitation and the lethal and sublethal effects of a granulosis virus on a lepidopteran host, the Indian meal moth, Plodia interpunctella, were examined.
  • 2 The food quality was manipulated by the addition of an inert bulking agent (methyl cellulose) which caused the size, development rate and fecundity of the moths to be reduced.
  • 3 The resource quality had no effect on the mortality due to the virus. In contrast, sublethal effects of the virus on pupal weight were more apparent under conditions of resource limitation.
  • 4 Considerable variation between the sublethal effects after challenge with different doses of the virus was found. The balance between deleterious sublethal effects of the virus and the selection of more robust individuals by the bioassays is proposed as a mechanism to explain this variation.
  • 5 Implications for the dynamics of insect hosts and their pathogens are discussed.
  相似文献   

2.
Transgenerational effects, whereby the environment experienced by a parent leads to an altered offspring phenotype, have now been described in a variety of taxa. In invertebrates, much of the research on these effects has concentrated on the role of parental exposure to pathogens or immune elicitors in determining offspring immune investment or disease resistance. To date, however, studies of transgenerational effects in invertebrates have generally been restricted to single infections or immune elicitors in ideal laboratory environments. Animals in field situations will commonly experience sub‐optimal environments and co‐infection by multiple species of parasites and pathogens, leading to increased relative costs of immune investment and changing fitness benefits from offspring responses to the parental environment. Here we investigate a more ecologically realistic scenario involving both multiple infections and resource limitation, using the Indian meal moth Plodia interpunctella as a model host, challenged with the entomopathogenic bacterium Bacillus thuringiensis and fungus Beauveria bassiana. Mothers were exposed to low doses of one or both pathogens, or a control. Offspring from each family were reared on either good‐ or poor‐quality food and then exposed to one or both pathogens. Maternal exposure to pathogens led to reduced pathogen resistance in offspring, depending on the combination of maternal and offspring pathogen‐specific infections and resource limitation in the offspring generation. Much research to date has focussed on trans‐generational immune priming, in which parental exposure to pathogens or immune elicitors leads to upregulated immune reactivity in their offspring. The lack of any such effects in our system suggests that the production of less resistant offspring following parental exposure to pathogens might be an important alternative, driven by costs of resistance rather than adaptive benefits.  相似文献   

3.
The relative importance of and changes in resource limitation of herbivorous rotifers were assessed during the clear-water phase in the Rímov Reservoir, Czech Republic, using in situ manipulative experiments. Resource limitation was tested experimentally as the difference in population growth rate (Δr) among various experimental treatments on four occasions. The reservoir community of rotifers was exposed to three treatments: (i) control, (ii) diluted and (iii) diluted and fertilized. Significant responses to these experimental manipulations were shown by Synchaeta spp., Polyarthra spp. and Keratella cochlearis. Growth rate was usually highest during the spring rotifer maximum and decreased during the clear water phase. The highest intensity of food limitation (expressed as ‚Chlorophyll-a’ limitation) was found in Synchaeta spp. K. cochlearis had low food limitation during the spring peak, high food limitation during the second experiment and low food limitation, again, during the later experiment. In contrast, Polyarthra spp. had the same Chlorophyll-a limitation throughout the whole experimental period. Linear regression was used to estimate the relative proportion of Δr variability explained by Chlorophyll-a concentration and rotifer density in all of the experiments. Chlorophyll-a concentration explained 89, 97 and 92% of the resource limitation in Synchaeta spp., Polyarthra spp. and K. cochlearis, respectively. The proportion of variability explained by rotifer density-dependent factors was lower: 60% for Synchaeta spp. and 68 % for Polyarthra spp.  相似文献   

4.
Weithoff G 《Oecologia》2004,139(4):594-603
Herbivore populations are commonly restricted by resource limitation, by predation or a combination of the two. Food supplement experiments are suitable for investigating the extent of food limitation at any given time. The main part of this study was performed in an extremely acidic lake (pH 2.7) where the food web consists of only a few components and potential food sources for herbivores are restricted to two flagellates. Life table experiments proved that Chlamydomonas was a suitable food source whereas Ochromonas was an unsuitable food source. The two flagellates and the two rotifers exhibit a pronounced vertical distribution pattern. In this study, a series of food supplement experiments were performed in order to: (1) quantify and compare potential resource limitation of two primary consumers (Cephalodella hoodi and Elosa worallii, Rotatoria) over time, (2) compare their response at different temperatures, (3) evaluate the effect of having an unsuitable food source alongside a valuable one, (4) estimate the effect of predation on rotifers by Heliozoa, and (5) compare the results with those from other acidic lakes. Additionally, the spatio-temporal population dynamics of both species were observed. The field data confirmed a vertical separation of the two species with E. worallii dominating in the upper water layers, and C. hoodi in the deeper, cooler water layers. The results from the food supplement experiments in which Chlamydomonas served as the supplemented suitable food source showed that the two rotifers were food limited in the epilimnion throughout the season to different extents, with Cephalodella being more severely food limited than Elosa. The experiments at different temperatures provided evidence that Elosa had a higher optimum temperature for growth than Cephalodella. When the unsuitable food algae Ochromonas was added alongside the suitable food source Chlamydomonas, C. hoodi was unaffected but E. worallii was negatively affected. Predation of Heliozoa on rotifers was observed but the total effect on the rotifer dynamics is probably low. The comparison with other lakes showed that resource limitation also occurred in one other lake, although to a lesser extent. Overall, the vertical separation of the two rotifers could be explained by both their differential extent of resource limitation and differential response to temperature.  相似文献   

5.
Lactation is the most energetically demanding stage of reproduction in female mammals. Increased energetic allocation toward current reproduction may result in fitness costs, although the mechanisms underlying these trade‐offs are not well understood. Trade‐offs during lactation may include reduced energetic allocation to cellular maintenance, immune response, and survival and may be influenced by resource limitation. As the smallest marine mammal, sea otters (Enhydra lutris) have the highest mass‐specific metabolic rate necessitating substantial energetic requirements for survival. To provide the increased energy needed for lactation, female sea otters significantly increase foraging effort, especially during late‐lactation. Caloric insufficiency during lactation is reflected in the high numbers of maternal deaths due to End‐Lactation Syndrome in the California subpopulation. We investigated the effects of lactation and resource limitation on maternal stress responses, metabolic regulation, immune function, and antioxidant capacity in two subspecies of wild sea otters (northern: E. l. nereis and southern: E. l. kenyoni) within the California, Washington, and Alaska subpopulations. Lactation and resource limitation were associated with reduced glucocorticoid responses to acute capture stress. Corticosterone release was lower in lactating otters. Cortisol release was lower under resource limitation and suppression during lactation was only evident under resource limitation. Lactation and resource limitation were associated with alterations in thyroid hormones. Immune responses and total antioxidant capacity were not reduced by lactation or resource limitation. Southern sea otters exhibited higher concentrations of antioxidants, immunoglobulins, and thyroid hormones than northern sea otters. These data provide evidence for allocation trade‐offs during reproduction and in response to nutrient limitation but suggest self‐maintenance of immune function and antioxidant defenses despite energetic constraints. Income‐breeding strategists may be especially vulnerable to the consequences of stress and modulation of thyroid function when food resources are insufficient to support successful reproduction and may come at a cost to survival, and thereby influence population trends.  相似文献   

6.
Elevational gradients provide an interesting opportunity for studying the effect of climatic drivers over short distances on the various facets of biodiversity. It is globally assumed that the decrease in species richness with increasing elevation follows mainly the decrease in ecosystem productivity, but studies on functional diversity still remain limited. Here, we investigated how resource use and food preferences by both individual ant species and communities foraging in the understory vary with elevation along a complete elevational gradient (200 to 3200 m asl). Five bait types reflecting some of the main ecosystem processes in which ants are involved were tested: mutualism (sucrose and melezitose), predation (live termites), and detritivory (crushed insects and chicken feces). The observed monotonic decrease in both species richness and occurrences with elevation increase was accompanied by changes in some of the tested ecosystem processes. Such variations can be explained by resource availability and/or resource limitation: Predation and bird feces removal decreased with increasing elevation possibly reflecting a decline in species able to use these resources, while insect detritivory and nectarivory were most probably driven by resource limitation (or absence of limitation), as their relative use did not change along the gradient. Consequently, resource attractiveness (i.e., food preferences at the species level) appears as an important factor in driving community structuring in ants together with the abiotic environmental conditions.  相似文献   

7.
The interactions between parasites and their hosts can cause profound changes in host behavior, including changes that can alter other trophic interactions. The western flower thrips Frankliniella occidentalis is an important omnivorous insect vector of Tomato spotted wilt virus (TSWV), which infects crops worldwide and also infects its thrips vector. Here, we show that tospovirus‐infected female thrips become more predaceous, illustrating how the functional role of omnivores may change in response to pathogen infection. Our findings support the hypothesis that increased predation among virus‐infected female thrips compensates for the detrimental effects of virus infection. Because predatory behavior is unlikely to increase virus transmission to plants, it is doubtful that this shift in feeding behavior is due to an adaptive parasite manipulation of vector behavior. In this study, increases in predatory behavior were observed in female thrips, but not in male thrips. This sexually dimorphic compensatory response indicates that male and female thrips utilize different feeding strategies to compensate for parasite infection, the expression of which is constrained by resource availability. Our findings demonstrate a novel, but potentially common pathway by which viruses can influence the structure of trophic interactions in food webs.  相似文献   

8.
Summary We examined the demographic costs of Chaoborus-induced defensive spine structures in Daphnia pulex. Our aim was to assess the role of resource limitation and the interaction effects of limiting food level and antipredator structures on fitness of D. pulex and to pinpoint those life stages that are most sensitive to changes in the defence regime. Chaoborus-induced and typical morphotypes of D. pulex were reared at high and low food concentrations. Instar-based matrix population models were used to quantify the effects of predator-induction, food and their interaction on fitness of D. pulex. Predator-induction caused a statistically significant reduction in fitness at low food levels, but not at high food levels. Sensitivity analyses revealed that the fitness effects were primarily due to changes in the growth rate in instars 1–5, and secondarily to small reductions in the fertility of instars 5–10. The interaction between Chaoborus exposure and low food concentration was negative, and mediated through growth and fertility components. Both these components were reduced more in the Chaoborus-exposed, low food treatment than would be expected in the absence of interaction.  相似文献   

9.
Animals modify their foraging strategies in response to environmental changes that affect foraging performance. In some species, cleptobiosis represents an alternative strategy for resource access. The environmental factors that favor the incidence or prevalence of cleptobiosis, however, are poorly described. The cleptobiotic Neotropical ant Ectatomma ruidum is characterized by a high frequency of thievery behavior, a specific type of intraspecific cleptobiosis, in which specialized thief workers insinuate themselves into nests of neighboring colonies and intercept food items brought into these nests. Here, we evaluate how colonies adjust thievery behavior in response to food availability. We supplemented food availability and measured how the incidence and intensity of thievery responded to resource availability. We found that the incidence and intensity of thievery decline in response to supplemental food, suggesting that thievery behavior is a response to resource limitation at the population scale. This finding indicates that the phenomenon of intraspecific thievery, although a rare strategy in among colonies of social animals, is a viable alternative foraging tactic in the context of competition and food limitation.  相似文献   

10.
1. Synovigenic parasitoids emerging with no or only a few mature oocytes could not rely on only capital resources, but also need to acquire income resources. Income resources in nature can either contribute to egg maturation as a food resource and/or create unpredictability in realised reproductive opportunities for synovigenic parasitoids. Therefore, we hypothesised such resources could affect life history traits and the risks of egg/time limitation in synovigenic parasitoids. 2. Using the Ovigeny Index, we investigated the effects of various host availability levels (unavailable, limited, and unlimited availability) and non‐host foods (water and honey) on life history traits and on the occurrence of egg/time limitation in Eretmocerus hayati, a predominant parasitoid on Bemisia tabaci. 3. The Ovigeny Index of Er. hayati was 0.28, which suggested it was a typical synovigenic species. Both host availability levels and non‐food type had major effects on life history traits of this parasitoid, but the availability of hosts for both feeding and reproduction was the key factor. Meanwhile, egg/time limitation was encountered by all wasps and its intensity varied with host availability levels. 4. Our results confirmed that the income resource and reproductive opportunity played a central role in shaping the life history and risks of egg/time limitation of a synovigenic parasitoid.  相似文献   

11.
12.
To assess nutritional consequences associated with lake oligotrophication for aquatic consumers, we analyzed the elemental and biochemical composition of natural seston and concomitantly conducted laboratory growth experiments in which the freshwater key herbivore Daphnia was raised on natural seston of the nowadays (2008) oligotrophic Lake Constance throughout an annual cycle. Food quality mediated constraints on Daphnia performance were assessed by comparing somatic growth rates with seston characteristics (multiple regression analysis) and by manipulating the elemental and biochemical composition of natural seston experimentally (nutrient supplementation). Results were compared to similar experiments carried out previously (1997) during a mesotrophic phase of the lake. In the oligotrophic phase, particulate carbon and phosphorus concentrations were lower, fatty acid concentrations were higher, and the taxonomic composition of phytoplankton was less diverse, with a more diatom‐ and cryptophytes‐dominated community, compared to the previous mesotrophic phase. Multiple regression analysis indicated a shift from a simultaneous limitation by food quantity (in terms of carbon) and quality (i.e. α‐linolenic acid) during the mesotrophic phase to a complex multiple nutrient limitation mediated by food quantity, phosphorus, and omega‐3 fatty acids in the following oligotrophic phase. The concomitant supplementation experiments also revealed seasonal changes in multiple resource limitations, i.e. the prevalent limitation by food quantity was accompanied by a simultaneous limitation by either phosphorus or omega‐3 fatty acids, and thus confirmed and complemented the multiple regression approach. Our results indicate that seasonal and annual changes in nutrient availabilities can create complex co‐limitation scenarios consumers have to cope with, which consequently may also affect the efficiency of energy transfer in food webs.  相似文献   

13.
Variable densities of an invasive species may represent variation in invasion resistance, due to variation in resource availability. This study determined whether low- and high-density cheatgrass (Bromus tectorum L.) patches within a shadscale-bunchgrass community of western Utah, USA, can be explained by variation in resource availability. It also explored the possible role of seed limitation and enemy pressure on invasion patterns. Two parallel field experiments were conducted:(1) increasing resources within low-density cheatgrass patches and, conversely (2) reducing resources within high-density cheatgrass patches. Treatments were applied at three life stages separately and across all stages. In low-density cheatgrass patches (assumed to represent high resistance), a disturbance that reduced soil compaction had the strongest positive effect, significantly increasing biomass by 250% and density by 104% in comparison to the control. The second strongest effect was reducing neighbors (native grasses), which significantly increased cheatgrass biomass and density. These results indicate that resources are present in low-density cheatgrass patches, but they are unavailable without disturbance and/or are exploited by competitors, and hence represent resistance to invasion. In high-density cheatgrass patches (assumed to represent low resistance), nitrogen availability was important in maintaining cheatgrass densities. Reducing nitrogen (via sucrose addition) significantly decreased density (by 37%) but not biomass. Life stages of cheatgrass were differentially affected by these resource manipulations. In addition, herbivore (primarily grasshoppers) and pathogen (head smut) pressures were documented to affect cheatgrass density, but did not explain resistance patterns. Instead, we found that differential resource availability explains the observed variation in cheatgrass density, and variation in natural resistance.  相似文献   

14.
Sarah M. Swope 《Oecologia》2014,174(1):205-215
Herbivore damage often deters pollinator visitation and many invasive plants in North America are pollinator-dependent. This has important implications for the biological control of invasive plants because it means that agents that deter pollinators may have a larger than expected impact on the plant. Yet interactions between pollinators and biocontrol agents are rarely evaluated. Centaurea solstitialis, one of the most problematic invasive species in California, is dependent on pollinators for reproduction. I factorially manipulated infection by a biocontrol pathogen and pollen supplementation to test for (1) pollen limitation in C. solstitialis, (2) whether infection increased pollen limitation, and (3) whether this varied across a soil moisture gradient. Plants growing on north-facing slopes where soil moisture was higher experienced mild pollen limitation in the absence of the pathogen and more pronounced pollen limitation when they were infected. Plants on drier south-facing slopes did not suffer from pollen limitation but instead appeared to suffer from resource limitation. Pathogen infection directly reduced seed set in C. solstitialis by 67–72 %. On north-facing slopes, infection had an additional, indirect effect by increasing the degree of pollen limitation plants experienced. The trait that mediates this indirect pathogen–pollinator interaction is the number of inflorescences plants produced: infected plants made fewer inflorescences which led to greater pollen limitation. Although in the present study this outcome is dependent on abiotic factors that vary over small spatial scales, exploiting other invasive plants’ dependence on pollinators by selecting agents that deter visitation may enhance agent impact.  相似文献   

15.
Although the Plodia interpunctella-granulovirus system is one of the most studied models for insect-pathogen interactions, there are relatively few precise data on the dynamics of the virus in coexisting populations of these two organisms. Previous work has suggested that resource quality, in terms of the diet supplied to P. interpunctella, has a strong effect on the population dynamics of host and pathogen. Here we investigate the impact of resource-dependent host patterns of abundance on pathogen dynamics and prevalence. In the laboratory, three populations of P. interpunctella feeding on a good quality food and infected with a granulovirus were compared with three populations also infected with a granulovirus but feeding on poor quality food. Populations feeding on good quality food produced larger adult moths, and had greater numbers of adult moths, healthy larvae, and virus-infected larvae. A higher proportion of larvae in these good quality populations were infected with virus, and adult moths exhibited cyclic fluctuations in abundance, unlike those on poor quality food. This cyclic behaviour was shown to be associated with cycles in the age structure of the larval population. Previous theoretical work suggests that these cycles may result from asymmetric competition between young and old larvae. Cyclic fluctuations in the proportion of infected larvae, that occurred on good, but not on poor quality food, were also shown to be related to cycles in the age structure of the larval population.  相似文献   

16.
Food shortage is an important selective factor shaping animal life‐history trajectories. Yet, despite its role, many aspects of the interaction between parental and offspring food environments remain unclear. In this study, we measured developmental plasticity in response to food availability over two generations and tested the relative contribution of paternal and maternal food availability to the performance of offspring reared under matched and mismatched food environments. We applied a cross‐generational split‐brood design using the springtail Orchesella cincta, which is found in the litter layer of temperate forests. The results show adverse effects of food limitation on several life‐history traits and reproductive performance of both parental sexes. Food conditions of both parents contributed to the offspring phenotypic variation, providing evidence for transgenerational effects of diet. Parental diet influenced sons’ age at maturity and daughters’ weight at maturity. Specifically, being born to food‐restricted parents allowed offspring to alleviate the adverse effects of food limitation, without reducing their performance under well‐fed conditions. Thus, parents raised on a poor diet primed their offspring for a more efficient resource use. However, a mismatch between maternal and offspring food environments generated sex‐specific adverse effects: female offspring born to well‐fed mothers showed a decreased flexibility to deal with low‐food conditions. Notably, these maternal effects of food availability were not observed in the sons. Finally, we found that the relationship between age and size at maturity differed between males and females and showed that offspring life‐history strategies in O. cincta are primed differently by the parents.  相似文献   

17.
Diet has a profound direct and indirect effect on reproductive success in both sexes. Variation in diet quality and quantity can significantly alter the capacity of females to lay eggs and of males to deliver courtship. Here, we tested the effect of dietary resource limitation on the ability of male Drosophila melanogaster to respond adaptively to rivals by extending their mating duration. Previous work carried out under ad libitum diet conditions showed that males exposed to rivals prior to mating significantly extend mating duration, transfer more ejaculate proteins and achieve higher reproductive success. Such adaptive responses are predicted to occur because male ejaculate production may be limited. Hence, ejaculate resources require allocation across different reproductive bouts, to balance current vs. future reproductive success. However, when males suffer dietary limitation, and potentially have fewer reproductive resources to apportion, we expect adaptive allocation of responses to rivals to be minimized. We tested this prediction and found that males held on agar‐only diets for 5–7 days lost the ability to extend mating following exposure to rivals. Interestingly, extended mating was retained in males held on low yeast/sugar: no sugar/yeast diet treatments, but was mostly lost when males were maintained on ‘imbalanced’ diets in which there was high yeast: no sugar and vice versa. Overall, the results show that males exhibit adaptive responses to rivals according to the degree of dietary resource limitation and to the ratio of individual diet components.  相似文献   

18.
Summary Intraspecific predation is taxonomically widespread, but few species routinely prey on conspecifics. This is surprising as conspecifics could be a valuable resource for animals limited by food. A potential cost of cannibalism that has been largely unexplored is that it may enhance the risk of acquiring debilitating pathogens or toxins from conspecifics. We examined how pathogens affect variation in the incidence of cannibalism in tiger salamander larvae (Ambystoma tigrinum nebulosum), which occur as two environmentally-induced morphs, typicals and cannibals. Salamanders from one population were more likely than those in another to develop into cannibals, even when reared under identical conditions. Variation in the propensity to become a cannibal may be caused by variation in pathogen density. In the population with cannibals at low frequency, bacterial blooms in late summer correlated with massive die-offs of salamanders. The frequency of cannibals correlated significantly negatively with bacterial density in ten different natural lakes. In the laboratory, cannibals exposed to a diseased conspecific always preyed on the sick animal. As a result, cannibals wre more likely to acquire and die from disease than were typicals that were similarly exposed, or cannibals that were exposed to healthy conspecifics. Since conspecifics often share lethal pathogens, enhanced risk of disease may explain why cannibalism is generally infrequent. Pathogens may constrain not only the tendency to be behaviorally cannibalistic, but also the propensity to develop specialized cannibal morphologies.  相似文献   

19.
Urbanisation and agriculture cause declines for many wildlife, but some species benefit from novel resources, especially food, provided in human‐dominated habitats. Resulting shifts in wildlife ecology can alter infectious disease dynamics and create opportunities for cross‐species transmission, yet predicting host–pathogen responses to resource provisioning is challenging. Factors enhancing transmission, such as increased aggregation, could be offset by better host immunity due to improved nutrition. Here, we conduct a review and meta‐analysis to show that food provisioning results in highly heterogeneous infection outcomes that depend on pathogen type and anthropogenic food source. We also find empirical support for behavioural and immune mechanisms through which human‐provided resources alter host exposure and tolerance to pathogens. A review of recent theoretical models of resource provisioning and infection dynamics shows that changes in host contact rates and immunity produce strong non‐linear responses in pathogen invasion and prevalence. By integrating results of our meta‐analysis back into a theoretical framework, we find provisioning amplifies pathogen invasion under increased host aggregation and tolerance, but reduces transmission if provisioned food decreases dietary exposure to parasites. These results carry implications for wildlife disease management and highlight areas for future work, such as how resource shifts might affect virulence evolution.  相似文献   

20.
We studied the effects of food limitation on the population dynamics of the freshwater cyclopoid copepod Diacyclops thomasi in Oneida Lake, New York. In the field population, maximum juvenile abundance coincided seasonally with high phytoflagellate concentration. During the clear-water phase (a seasonal period of low algal density), D. thomasi disappeared from the water column, but fourth-instar copepodids (CIV) were found encysted in developmental arrest in the sediment. Laboratory assays of the effect of the density of two types of food on copepod life history parameters showed that temporal variation in the concentration of relatively small phytoflagellates significantly affected stage-specific development times. This food limitation was most pronounced during the clear-water phase, and supplementation of the diet with a laboratory-cultured phytoflagellate, Chlamydomonas, prevented food limitation. Although developmental arrest appears to be controlled primarily by photoperiod, availability of the larger, more mobile food, Euglena, also influenced the percentage of individuals entering developmental arrest in the laboratory. An investigation of the spatial and temporal emergence pattern in the field revealed that CIV copepodids started to emerge in late autumn and that emergence rates were significantly greater at deep-water locations (9–12 m water depth) compared with shallow-water locations (5–7 m). The clear-water phase in Oneida Lake is an annual event, probably produced by intense grazing by Daphnia pulicaria and Daphnia galeata. Food limitation is thus very likely a recurrent phenomenon for D. thomasi. This apparent seasonal competitive impact of Daphnia on Diacyclops affects both nauplii and immature copepodids. Diacyclops shows two types of responses to the food limitation: (1) the physiological response of slowed active development, and (2) the adaptive response of developmental arrest. Received: 3 November 1997 / Accepted: 1 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号