首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《BBA》1985,807(2):127-133
Heat inactivation of oxygen evolution by isolated Photosystem II particles was accelerated by Cl depletion and exogenous Mn2+. Weak red light also accelerated heat inactivation. Heat treatment released the 33, 24 and 18 kDa proteins and Mn from the Photosystem II particles. The protein release was stimulated by Cl depletion and exogenous Mn2+, and the Mn release was also stimulated by Cl depletion. A 50% loss of Mn corresponded to full inactivation of oxygen evolution, whereas no direct correlation seemed to exist between the loss of any one protein and inactivation of oxygen evolution. Removal of the 24 and 18 kDa proteins from photosystem II particles only slightly decreased the heat stability of oxygen evolution.  相似文献   

2.
Treatment with 2.6 M urea of the Photosystem II particles depleted of two polypeptides of 24 kDa and 18 kDa completely released a polypeptide of 33 kDa and eliminated the oxygen-evolution activity. The 33-kDa polypeptide rebound to the urea-treated particles and partially reactivated the oxygen evolution. A quantitative analysis of the rebinding suggests tha there is a specific binding site for the 33-kDa polypeptide on the membrane surface.  相似文献   

3.
《FEBS letters》1986,200(1):231-236
Ligation of Mn2+ into the polynuclear Mn-catalyst of water oxidation was shown using PS II membranes depleted of their Mn and the 17, 23 and 33 kDa extrinsic proteins. This process specifically required light and Ca2+ concentrations of 5̃0 mM. Evidence was obtained indicating Mn2+/Ca2+ competition for Ca2+ and Mn2+ binding sites essential for the photoligation of Mn. Photoligation of Mn did not result in an increase of water oxidation capacity; however, water oxidation capacity was expressed following dark reconstitution minimally with the 33 kDa protein. The results represent the first observation of photoactivation of water oxidation in a system that excludes simple light-driven Mn2+ transport across membrane(s).  相似文献   

4.
《BBA》1987,890(1):6-14
The removal of peripheral membrane proteins of a molecular mass of 17 and 23 kDa by washing of spinach Photosystem-II (PS II) membranes in 1 M salt between pH 4.5 and 6.5 produces a minimal loss of the S1 → S2 reaction, as seen by the multiline EPR signal for the S2 state of the water-oxidizing complex, while reversibly inhibiting O2 evolution. The multiline EPR signal simplifies from a ‘19-line’ spectrum to a ‘16-line’ spectrum, suggestive of partial uncoupling of a cluster of 3 or 4 to yield photo-oxidation of a binuclear Mn site. Alkaline salt washing progressively releases a 33 kDa peripheral protein between pH 6.5 and 9.5, in direct parallel with the loss of O2 evolution and the S2 multiline EPR signal. The 33 kDa protein can be partially removed (20%) at pH 8.0 prior to managanese release. Salt treatment releases four Mn ions between pH 8.0 and 9.5 with the first 2 or 3 Mn ions released cooperatively. A common binding site is thus suggested in agreement with earlier EPR spectroscopic data establishing a tetranuclear Mn site. At least two of these Mn ions bind directly at a site in the PS II complex for which photooxidation by the reaction center is controlled by the 33 kDa protein. The washing of PS II membranes with 1 M CaCl2 to affect the release of the 33 kDa protein, while preserving Mn binding to the membrane (Ono, T.-A. and Inoue, Y. (1983) FEBS Lett. 164, 255–260), is found to leave some 33 kDa protein undissociated in proportion to the extent of O2 evolution and S2 multiline yield. These depleted membranes do not oxidize water or produce the normal S2 state without the binding of the 33 kDa protein. A method for the accurate determination of relative concentrations of the peripheral membrane proteins using gel electrophoresis is presented.  相似文献   

5.
《BBA》1985,806(2):283-289
Treatment of Photosystem II particles with 1.2 M CaCl2 released three proteins of 33, 24 and 18 kDa of the photosynthetic oxygen evolution system, but left Mn bound to the particles as demonstrated by Ono and Inoue (Ono, T. and Inoue, Y. (1983) FEBS Lett. 164, 252–260). Oxygen-evolution activity of the CaCl2-treated particles was very low in a medium containing 10 mM NaCl as a salt, but could be restored by the 33-kDa protein. When the particles were incubated in 10 mM NaCl at 0°C, two of the four Mn atoms per oxygen-evolution system were released with concomitant loss of oxygen-evolution activity. The 33-kDa protein suppressed the release of Mn and the inactivation during the incubation. These findings from reconstitution experiments suggest that the 33-kDa protein acts to preserve Mn atoms in the oxygen-evolution system. The 33-kDa protein could be partially substituted by 100 or 150 mM Cl for the preservation of the Mn and oxygen-evolution activity. The Mn in Photosystem II particles enhanced rebinding of the 33-kDa protein to the particles.  相似文献   

6.
Divalent salt-washing of O2-evolving PS II particles caused total liberation of 33-, 24- and 16-kDa proteins, but the resulting PS II particles retained almost all amounts of Mn present in initial particles. The retained Mn was EPR-silent when the particles were kept in high concentrations of divalent salt. By divalent salt-washing, the activity of diphenylcarbazide (DPC) photooxidation was not affected at all, neither suppressed nor enhanced, while O2 evolution was totally inactivated. These results indicate that Mn can be kept associated with PS II particles even after liberation of the 33-kDa protein, and suggest that the 33-kDa protein is probably not responsible for binding Mn onto membranes, but is possibly responsible for maintaining the function of Mn atoms in the O2-evolving center.  相似文献   

7.
The rise and decay kinetics of EPR signal II have been used to probe the organization of the donor side of Photosystem II (PS II) before and after extraction of PS II preparations with high concentrations of salt. 800 mM NaCl or 500-800 mM NaBr substantially depletes the preparations of the 16 and 24 kDa proteins and decreases the steady-state rate of O2-evolution by 70-80% from control rates. These treatments do not largely alter the decay kinetics of Signal II; the rise kinetics remain in the instrument limited time range (2 microseconds or less) during the first 8-12 flashes. Treating PS II preparations with 800 mM CaCl2 removes the 16, 24 and 33 kDa proteins with at least 95% inhibition of the steady-state rates of O2 evolution. The additional removal of the 33 kDa polypeptide decreases the rates of oxidation and rereduction of Z, the species responsible for Signal II. Preparations treated with either mono- or divalent salts show a steady-state light-induced increase in Signal II similar to that seen in Tris-washed samples. Such a steady-state increase indicates that the rate of electron transport from water to Z is greatly decreased or blocked. The data are interpreted within a model in which there is an intermediate electron carrier between the O2 evolving complex and Z.  相似文献   

8.
The structure of the Mn complex of photosystem II (PSII) was studied by X-ray absorption spectroscopy. Oxygen-evolving spinach PSII membranes containing 4-5 Mn/PSII were treated with 0.8 M CaCl2 to extract the 33-, 24-, and 16-kilodalton (kDa) extrinsic membrane proteins. Mn was not released by this treatment, but subsequent incubation at low Cl- concentration generated preparations containing 2 Mn/PSII. The Mn X-ray absorption K-edge spectrum of the CaCl2-washed preparation containing 4 Mn/PSII is very similar to spectrum of native PSII, indicating that the oxidation states and ligand symmetry of the Mn complex in these preparations are not significantly different. The Mn extended X-ray absorption fine structure (EXAFS) of CaCl2-washed PSII fits to a Mn neighbor at approximately 2.75 A and two shells of N or O at approximately 1.78 and approximately 1.92 A. These distances are similar to those we have previously reported for native PSII preparations [Yachandra, V. K., Guiles, R. D., McDermott, A. E., Cole, J. L., Britt, R. D., Dexheimer, S. L., Sauer, K., & Klein, M. P. (1987) Biochemistry (following paper in this issue)] and are indicative of an oxo-bridged Mn complex. Our results demonstrate that the structure of the Mn complex is largely unaffected by removal of 33-, 24-, and 16-kDa extrinsic proteins, do not provide ligands to Mn. The Mn K-edge spectrum of the CaCl2-washed sample containing 2 Mn/PSII has a dramatically altered shape, and the edge inflection point is shifted to lower energy. The position of the edge is consistent with a Mn oxidation state of +3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
《BBA》1985,808(1):171-179
The effects of selective removal of extrinsic proteins on donor side electron transport in oxygen-evolving PS II particles were examined by monitoring the decay time of the EPR signal from the oxidized secondary donor, Z+, and the amplitude of the multiline manganese EPR signal. Removal of the 16 and 24 kDa proteins by washing with 1 M NaCl inhibits oxygen evolution, but rapid electron transfer to Z+ still occurs as evidenced by the near absence of Signal IIf. The absence of a multiline EPR signal shows that NaCl washing induces a modification of the oxygen-evolving complex which prevents the formation of the S2 state. This modification is different from the one induced by chloride depletion of PS II particles, since in these a large multiline EPR signal is found. After removal of the 33 kDa protein with 1 M MgCl2, Signal IIf is generated after a light flash. Readdition of the 33 kDa component to the depleted membranes accelerates the reduction of Z+. Added calcium ions show a similar effect. These findings suggest that partial advancement through the oxygen-evolving cycle can occur in the absence of the 16 and 24 kDa proteins. The 33 kDa protein, on the other hand, may be necessary for such reactions to take place.  相似文献   

10.
Protein composition and Mn abundance were compared between the two photosystem II (PSII) particle preparations obtained before and after photoactivation of the latent O2-evolving system in intermittently flashed wheat leaves. The following results have been obtained: (a) nonphotoactivated PSII particles were devoid of two extrinsic proteins which corresponded to the 24 and 16 kilodalton proteins in spinach particles, although the particles contained all the intrinsic proteins and the 33 kilodalton extrinsic protein. (b) The two extrinsic proteins absent in nonphotoactivated PSII particles were present in nonphotoactivated thylakoids, but were easily removed by a hypotonic shock followed by brief sonication. Such removal of the proteins did not occur in photoactivated thylakoids. (c) Nonphotoactivated PSII particles contained 1.5 Mn/400 chlorophyll, while photoactivated particles contained 8 Mn/400 chlorophyll. (d) Nonphotoactivated thylakoids contained 6 Mn/400 chlorophyll, but most of them were removed from thylakoids by a hypotonic shock in the presence of ethylenediaminetetraacetate. Such removal of Mn did not occur in photoactivated thylakoids.  相似文献   

11.
Gregor W  Cinco RM  Yu H  Yachandra VK  Britt RD 《Biochemistry》2005,44(24):8817-8825
The 33 kDa manganese-stabilizing extrinsic protein binds to the lumenal side of photosystem II (PS II) close to the Mn(4)Ca cluster of the oxygen-evolving complex, where it limits access of small molecules to the metal site. Our previous finding that the removal of this protein did not alter the magnetic coupling regime within the manganese cluster, measured by electron spin-echo envelope modulation [Gregor, W., and Britt, R. D. (2000) Photosynth. Res. 65, 175-185], prompted us to examine whether this accessibility control is also true for substrate water, using the same pulsed EPR technique. Comparing the deuteron modulation of the S(2)-state multiline signal of PS II membranes, equilibrated with deuterated water (D(2)O) after removal or retention of the 33 kDa protein, we observed no change in the number and the distance of deuterons magnetically coupled to manganese, indicating that the number and distance of water molecules bound to the manganese cluster are independent of bound 33 kDa protein in the S(1) state, in which the sample was poised prior to cryogenic illumination. A simple modulation depth analysis revealed a distance of 2.5-2.6 A between the closest deuteron and manganese. These results are in agreement with our refined X-ray absorption analysis. The manganese K-edge positions, reflecting their oxidation states, and the extended X-ray absorption fine structure amplitudes and distances between the manganese ions and their oxygen and nitrogen ligands (1.8, 2.7, and 3.3-3.4 A) were independent of bound 33 kDa protein.  相似文献   

12.
《BBA》1985,807(1):64-73
Photosystem II (PS II) particles retaining a high rate of O2 evolution were prepared from a thermophilic cyanobacterium, Synechococcus vulcanus Copeland, and the composition and properties of their peripheral proteins were investigated. The following results were obtained. (1) The O2-evolving PS II particles of S. vulcanus contained only one peripheral protein with a molecular mass of 34000 which corresponded to the 33 kDa protein in higher plant PS II particles, but no other peripheral proteins corresponding to the 24 and 16 kDa proteins of higher plant PS II particles. (2) The cyanobacterial peripheral 34 kDa protein was removed from the particles by 1 M CaCl2-washing concomitant with total inactivation of O2 evolution, and the inactivated O2 evolution was reconstituted to 75% of the original activity by rebinding of this protein back to the washed particles. (3) The cyanobacterial peripheral 34 kDa protein rebound to CaCl2-washed spinach PS II particles and restored O2 evolution to an appreciable extent (28%). (4) The spinach peripheral 33 kDa protein rebound to CaCl2-washed PS II particles of S. vulcanus and partially restored O2 evolution (60%). These results suggested that the peripheral 34 kDa protein of S. vulcanus possesses the determinants for both binding and activity reconstitution identical with those of the peripheral 33 kDa protein of spinach.  相似文献   

13.
Free fatty acids (FFA) generated in thylakoids upon chilling of tomato leaves at 0°C for a few days result in release of functionally active Mn and inactivation of O2 evolution. Chilling does not lead to a decrease in the extrinsic 16, 23 and 33 kDa polypeptides. Upon illumination of chilled leaves both Mn content and O2 evolution in thylakoids are restored and FFA content is reduced to the level of the control. Photoactivation of O2 evolution in chilled leaves does not change the ratio of unsaturated/saturated FFA. Constant Arrhenius activation energy (Ea) for O2 evolution by thylakoids isolated from control leaves was found, whereas it increased at temperatures below 8.0 and 10.5°C in thylakoids from cold-treated and photoactivated leaves, respectively. This indicates that restoration of O2 evolution as well as of FFA and Mn contents is not accompanied by a complete reversal of membrance conformation.  相似文献   

14.
Treatment of Photosystem II particles from spinach chloroplasts with Triton X-100 with 2.6 M urea in the presence of 200 mM NaCl removed 3 polypeptides of 33 kDa, 24 kDa and 18 kDa, but left Mn bound to the particles. The (urea + NaCl)-treated particles could evolve oxygen in 200 mM, but not in 10 mM NaCl. Mn was gradually released with concomitant loss of oxygen-evolution activity in 10 mM NaCl but not in 200 mM Cl?. The NaCl-treated particles, which contained Mn and the 33-kDa polypeptide but not the 24-kDa and 18-kDa polypeptides, did not lose Mn or oxygen-evolution activity in 10 mM NaCl. These observations suggest that the 33-kDa polypeptide maintains the binding of Mn to the oxygen-evolution system and can be functionally replaced by 200 mM Cl?.  相似文献   

15.
Oxygen-evolving Photosystem-II particles were isolated after treatment of spinach chloroplasts with Triton X-100. Treatment of these particles with 2 M NaCl released polypeptides of 24 and 16 kDa concomitant with a loss of the water-splitting activity. Readdition of the concentrated 24-16 kDa protein fraction restored water splitting in the salt-washed particles, the extent of reconstitution being dependent upon the intensity of continuous light during the assay. Under flash illumination, the salt-washed particles transported the normal number of electrons from water to DCIP on the first two flashes but much less reduction occurred on all subsequent flashes; addition of reconstituting protein only slightly prevented this loss process. Absorbance difference spectroscopy revealed that the salt-washed particles were at least able to perform the normal S1-S2 transition. The results suggest that removal of the 24-16 kDa protein affects the efficiency of the higher S-state transitions. Additional components may be required for optimal reconstitution and interference with the secondary electron acceptor mechanism after salt washing was detected.  相似文献   

16.
An immunological approach was used for nearest-neighbor analyses for the 23 and 33 kDA proteins of the oxygen-evolving complex. Functional Photosystem II particles with a simple polypeptide composition were partly solubilized with detergent and incubated with monospecific antibodies against either the 23 or the 33 kDa protein. SDS-polyacrylamide gel electrophoresis revealed that the immunoprecipitates, apart from the antigenic proteins, also contained polypeptides at 24, 22 and 10 kDa. In contrast, polypeptides of the light-harvesting and Photosystem II core complexes showed very poor coprecipitation with the 23 and 33 kDa proteins. The 24, 22 and 10 kDa polypeptides were not precipitated by the antibodies if the 23 and 33 kDa proteins had been removed from the particles prior to solubilization. These observations demonstrate a close association between the 24, 22 and 10 kDa polypeptides and the 23 and 33 kDa proteins of the oxygen-evolving complex. None of these precipitated polypeptides contained any manganese. It is suggested that the 24, 22 and 10 kDa polypeptides are subunits of the oxygen-evolving complex and involved in the binding of the extrinsic 23 and 33 kDa proteins to the inner thylakoid surface.  相似文献   

17.
Removal of 23 and 17 kDa water-soluble polypeptides from PS II membranes causes a marked decrease in oxygen-evolution activity, exposes the oxidizing side of PS II to exogenous reductants (Ghanotakis, D.F., Babcock, G.T. and Yocum, C.F. (1984) Biochim. Biophys. Acta 765, 388–398) and alters a high-affinity binding site for Ca2+ in the oxygen-evolving complex (Ghanotakis, D.F., Topper, J.N., Babcock, G.T. and Yocum, C.F. (1984) FEBS Lett. 170, 169–173). We have examined further the state of the functional Mn complex in PS II membranes from which the 17 and 23 kDa species have been removed by high-salt treatment. These membranes contain a structurally altered Mn complex which is sensitive to destruction by low concentrations of NH2OH which cannot, in native PS II membranes, cause extraction of functional Mn. In addition to NH2OH, a wide range of other small (H2O2, NH2NH2, Fe2+) and bulky (benzidine, hydroquinone) electron donors extract Mn (up to 80%) from the polypeptide-depleted PS II preparations. This extraction is due to reduction of the functional Mn complex since light, which would generate higher oxidation states within the Mn complex, prevents Mn release by reductants. Release of Mn by reductants does not extract the 33 kDa water-soluble protein implicated in Mn binding to the oxidizing side of PS II, although the protein can be partially or totally extracted from Mn-depleted preparations by exposure to high ionic strength or to high (0.8 M) concentrations of Tris. We view our results as evidence for a shield around the Mn complex of the oxygen-evolving complex comprised of the 33 kDa polypeptide along with the 23 and 17 kDa proteins and tightly bound Ca2+.  相似文献   

18.
The effect of linolenic acid (18:3) on release of the 43 kDa polypeptide and manganese from photosystem II ( PS II ) membranes depleted of extrinsic polypeptides was studied. In both control and NaCl-washed particles which were depleted of the extrinsic 23 and 16 kDa polypeptides, the 18:3 treatment caused a 20% release of the 33 and 43 kDa polypeptides. In CaCl2, (or urea + NaCl)-washed particles, which were depleted of the 33 kDa polypeptide in addition to the 23 and 16 kDa polypeptides, the release of the 43 kDa polypeptide increased to 70%, whereas only 25% of the 47 kDa polypeptide was removed. These findings suggest (i) that the 33 and the 43 kDa polypeptides are neighbows in the photosynthetic membrane and (ii) that the 33 kDa polypeptide shields the 43 kDa polypeptide against the action of 18:3. Incubation of CaCl2, or (urea + NaCI)-treated PSII particles in the presence or absence of 18:3 resulted in the loss of only 2 of the 4 Mn atoms present per reaction center. this indicates that the 2 Mn atoms more firmly associated with PSII are not affected by the removal of the extrinsic 16, 23 and 33 kDa polypeptides, and the intrinsic 43 kDa polypeptide. nor by the treatment with linolenic acid.  相似文献   

19.
N. Murata  M. Miyao  T. Omata  H. Matsunami  T. Kuwabara 《BBA》1984,765(3):363-369
The stoichiometry of the proteins of the photosynthetic oxygen evolution system and of the electron transport components in Photosystem II particles prepared with Triton X-100 from spinach chloroplasts were determined. Per about 220 chlorophyll molecules, there were one reaction center II, one molecule each of the 33, 24 and 18 kDa proteins, four Mn atoms, two cytochromes b-559 (one high-potential, the other low-potential), and 3.5 plastoquinone-9 molecules, but practically no cytochrome b-563, cytochrome f, phylloquinone, α-tocopherol or α-tocopherylquinone.  相似文献   

20.
Selective extraction-reconstitution experiments with the extrinsic Photosystem II polypeptides (33 kDa, 23 kDa and 17 kDa) have demonstrated that the manganese complex and the 33 kDa polypeptide are both necessary structural elements for the tight binding of the water soluble 17 and 23 kDa species. When the manganese complex is intact the 33 kDa protein interacts strongly with the rest of the photosynthetic complex. Destruction of the Mn-complex has two dramatic effects: i) The binding of the 33 kDa polypeptide is weaker, since it can be removed by exposure of the PS II system to 2 M NaCl, and ii) the 17 and 23 kDa species do not rebind to Mn-depleted Photosystem II membranes that retain the 33 kDa protein.Abbreviations Chl chlorophyll - HQ hydroquinone - MES 2(N-morpholino)ethanesulfonic acid - PS II Photosystem II - Tris 2-amino-2-hydroxymethylpropane-1,3-diol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号