首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li B  Comai L 《Nucleic acids research》2002,30(17):3653-3661
The DNA-dependent protein kinase (DNA-PK) complex, which is composed of a DNA-dependent kinase subunit (DNA-PKcs) and the Ku70/80 heterodimer, is involved in DNA double-strand break repair by non-homologous end joining (NHEJ). Ku70/80 interacts with the Werner syndrome protein (WRN) and stimulates WRN exonuclease activity. To investigate a possible function of WRN in NHEJ, we have examined the relationship between DNA-PKcs, Ku and WRN. First, we showed that WRN forms a complex with DNA-PKcs and Ku in solution. Next, we determined whether this complex assembles on DNA ends. Interestingly, the addition of WRN to a Ku:DNA-PKcs:DNA complex results in the displacement of DNA-PKcs from the DNA, indicating that the triple complex WRN:Ku:DNA-PKcs cannot form on DNA ends. The displacement of DNA-PKcs from DNA requires the N- and C-terminal regions of WRN, both of which make direct contact with the Ku70/80 heterodimer. Moreover, exonuclease assays indicate that DNA-PKcs does not protect DNA from the nucleolytic action of WRN. These results suggest that WRN may influence the mechanism by which DNA ends are processed.  相似文献   

2.
Rad9是一种重要的细胞周期监控点调控蛋白.越来越多的证据显示,Rad9也可与多种DNA损伤修复通路中的蛋白质相互作用,并调节其功能,在DNA损伤修复中发挥重要作用.非同源末端连接修复是DNA双链断裂的一条重要修复途径.Ku70、Ku80和DNA依赖的蛋白激酶催化亚基(DNA-PKcs)共同组成DNA依赖的蛋白激酶复合物(DNA-PK),在非同源末端修复连接中起重要作用.本研究中,检测到Rad9与Ku70有直接的物理相互作用和功能相互作用.我们在不同的细胞模型中发现,Rad9基因敲除、Rad9蛋白去除或Rad9表达降低会导致非同源末端连接效率明显下降.已有的研究表明,DNA损伤可导致细胞中Ku70与染色质结合增加及DNA-PKcs激酶活性增强.我们的结果显示,与野生小鼠细胞相比,Rad9基因敲除的小鼠细胞中, DNA损伤诱导的上述效应均减弱.综上所述,我们的研究首次报道了Rad9与非同源末端连接修复蛋白Ku70间有相互作用,并提示Rad9可通过调节Ku70/Ku80/DNA-PKcs复合物功能参与非同源末端连接修复.  相似文献   

3.
DNA-PKcs-dependent signaling of DNA damage in Dictyostelium discoideum   总被引:1,自引:0,他引:1  
DNA double-strand breaks (DSBs) can be repaired by either homologous recombination (HR) or nonhomologous end-joining (NHEJ). In vertebrates, the first step in NHEJ is recruitment of the DNA-dependent protein kinase (DNA-PK) to DNA termini. DNA-PK consists of a catalytic subunit (DNA-PKcs) that is recruited to DNA ends by the Ku70/Ku80 heterodimer. Although Ku has been identified in a wide variety of organisms, to date DNA-PKcs has only been identified experimentally in vertebrates. Here, we report the identification of DNA-PK in the nonvertebrate Dictyostelium. Dictyostelium Ku80 contains a conserved domain previously implicated in recruiting DNA-PKcs to DNA and consistent with this observation, we have identified DNA-PKcs in the Dictyostelium genome. Disruption of the gene encoding Dictyostelium DNA-PKcs results in sensitivity to DNA DSBs and defective H2AX phosphorylation in response to this form of DNA damage. However, these phenotypes are only apparent when DNA damage is administered in G(1) phase of the cell cycle. These data illustrate a cell cycle-dependent requirement for Dictyostelium DNA-PK in signaling and combating DNA DSBs and represent the first experimental verification of DNA-PKcs in a nonvertebrate organism.  相似文献   

4.
The Sleeping Beauty (SB) element is a useful tool to probe transposon-host interactions in vertebrates. We investigated requirements of DNA repair factors for SB transposition in mammalian cells. Factors of nonhomologous end joining (NHEJ), including Ku, DNA-PKcs, and Xrcc4 as well as Xrcc3/Rad51C, a complex that functions during homologous recombination, are required for efficient transposition. NHEJ plays a dominant role in repair of transposon excision sites in somatic cells. Artemis is dispensable for transposition, consistent with the lack of a hairpin structure at excision sites. Ku physically interacts with the SB transposase. DNA-PKcs is a limiting factor for transposition and, in addition to repair, has a function in transposition that is independent from its kinase activity. ATM is involved in excision site repair and affects transposition rates. The overlapping but distinct roles of repair factors in transposition and in V(D)J recombination might influence the outcomes of these mechanistically similar processes.  相似文献   

5.
DNA-dependent protein kinase (DNA-PK) plays an essential role in the repair of DNA double-stranded breaks (DSBs) mediated by the nonhomologous end-joining pathway. DNA-PK is a holoenzyme consisting of a DNA-binding (Ku70/Ku80) and catalytic (DNA-PKcs) subunit. DNA-PKcs is a serine/threonine protein kinase that is recruited to DSBs via Ku70/80 and is activated once the kinase is bound to the DSB ends. In this study, two large, distinct fragments of DNA-PKcs, consisting of the N terminus (amino acids 1–2713), termed N-PKcs, and the C terminus (amino acids 2714–4128), termed C-PKcs, were produced to determine the role of each terminal region in regulating the activity of DNA-PKcs. N-PKcs but not C-PKcs interacts with the Ku-DNA complex and is required for the ability of DNA-PKcs to localize to DSBs. C-PKcs has increased basal kinase activity compared with DNA-PKcs, suggesting that the N-terminal region of DNA-PKcs keeps basal activity low. The kinase activity of C-PKcs is not stimulated by Ku70/80 and DNA, further supporting that the N-terminal region is required for binding to the Ku-DNA complex and full activation of kinase activity. Collectively, the results show the N-terminal region mediates the interaction between DNA-PKcs and the Ku-DNA complex and is required for its DSB-induced enzymatic activity.  相似文献   

6.
Two major complementary double-strand break (DSB) repair pathways exist in vertebrates, homologous recombination (HR), which involves Rad54, and non-homologous end-joining, which requires the DNA-dependent protein kinase (DNA-PK). DNA-PK comprises a catalytic subunit (DNA-PKcs) and a DNA-binding Ku70 and Ku80 heterodimer. To define the activities of individual DNA-PK components in DSB repair, we targeted the DNA-PKcs gene in chicken DT40 cells. DNA-PKcs deficiency caused a DSB repair defect that was, unexpectedly, suppressed by KU70 disruption. We have shown previously that genetic ablation of Ku70 confers RAD54-dependent radioresistance on S-G(2) phase cells, when sister chromatids are available for HR repair. To test whether direct interference by Ku70 with HR might explain the Ku70(-/-)/DNA-PKcs(-/-/-) radioresistance, we monitored HR activities directly in Ku- and DNA-PKcs-deficient cells. The frequency of intrachromosomal HR induced by the I-SceI restriction enzyme was increased in the absence of Ku but not of DNA-PKcs. Significantly, abrogation of HR activity by targeting RAD54 in Ku70(-/-) or DNA-PKcs(-/-/-) cells caused extreme radiosensitivity, suggesting that the relative radioresistance seen with loss of Ku70 was because of HR-dependent repair pathways. Our findings suggest that Ku can interfere with HR-mediated DSB repair, perhaps competing with HR for DSB recognition.  相似文献   

7.
DNA non-homologous end-joining (NHEJ) is a major mechanism for repairing DNA double-stranded (ds) breaks in mammalian cells. Here, we characterize the interaction between two key components of the NHEJ machinery, the Ku heterodimer and the DNA ligase IV/Xrcc4 complex. Our results demonstrate that Ku interacts with DNA ligase IV via its tandem BRCT domain and that this interaction is enhanced in the presence of Xrcc4 and dsDNA. Moreover, residues 644-748 of DNA ligase IV encompassing the first BRCT motif are necessary for binding. We show that Ku needs to be in its heterodimeric form to bind DNA ligase IV and that the C-terminal tail of Ku80, which mediates binding to DNA-PKcs, is dispensable for DNA ligase IV recognition. Although the interaction between Ku and DNA ligase IV/Xrcc4 occurs in the absence of DNA-PKcs, the presence of the catalytic subunit of DNA-PK kinase enhances complex formation. Previous studies have shown that DNA-PK kinase activity causes disassembly of DNA-PKcs from Ku at the DNA end. Here, we show that DNA-PK kinase activity also results in disassembly of the Ku/DNA ligase IV/Xrcc4 complex. Collectively, our findings provide novel information on the protein-protein interactions that regulate NHEJ in cells.  相似文献   

8.
In mammalian cells, the Ku and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) proteins are required for the correct and efficient repair of DNA double-strand breaks. Ku comprises two tightly-associated subunits of approximately 69 and approximately 83 kDa, which are termed Ku70 and Ku80 (or Ku86), respectively. Previously, a number of regions of both Ku subunits have been demonstrated to be involved in their interaction, but the molecular mechanism of this interaction remains unknown. We have identified a region in Ku70 (amino acid residues 449-578) and a region in Ku80 (residues 439-592) that participate in Ku subunit interaction. Sequence analysis reveals that these interaction regions share sequence homology and suggests that the Ku subunits are structurally related. On binding to a DNA double-strand break, Ku is able to interact with DNA-PKcs, but how this interaction is mediated has not been defined. We show that the extreme C-terminus of Ku80, specifically the final 12 amino acid residues, mediates a highly specific interaction with DNA-PKcs. Strikingly, these residues appear to be conserved only in Ku80 sequences from vertebrate organisms. These data suggest that Ku has evolved to become part of the DNA-PK holo-enzyme by acquisition of a protein-protein interaction motif at the C-terminus of Ku80.  相似文献   

9.
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an enormous, 470-kDa protein serine/threonine kinase that has homology with members of the phosphatidylinositol (PI) 3-kinase superfamily. This protein contributes to the repair of DNA double-strand breaks (DSBs) by assembling broken ends of DNA molecules in combination with the DNA-binding factors Ku70 and Ku80. It may also serve as a molecular scaffold for recruiting DNA repair factors to DNA strand breaks. This study attempts to better define the role of protein kinase activity in the repair of DNA DSBs. We constructed a contiguous 14-kb human DNA-PKcs cDNA and demonstrated that it can complement the DNA DSB repair defects of two mutant cell lines known to be deficient in DNA-PKcs (M059J and V3). We then created deletion and site-directed mutations within the conserved PI 3-kinase domain of the DNA-PKcs gene to test the importance of protein kinase activity for DSB rejoining. These DNA-PKcs mutant constructs are able to express the protein but fail to complement the DNA DSB or V(D)J recombination defects of DNA-PKcs mutant cells. These results indicate that the protein kinase activity of DNA-PKcs is essential for the rejoining of DNA DSBs in mammalian cells. We have also determined a model structure for the DNA-PKcs kinase domain based on comparisons to the crystallographic structure of a cyclic AMP-dependent protein kinase. This structure gives some insight into which amino acid residues are crucial for the kinase activity in DNA-PKcs.  相似文献   

10.
11.
DNA double strand break (DSB) repair by non-homologous end joining (NHEJ) is initiated by DSB detection by Ku70/80 (Ku) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) recruitment, which promotes pathway progression through poorly defined mechanisms. Here, Ku and DNA-PKcs solution structures alone and in complex with DNA, defined by x-ray scattering, reveal major structural reorganizations that choreograph NHEJ initiation. The Ku80 C-terminal region forms a flexible arm that extends from the DNA-binding core to recruit and retain DNA-PKcs at DSBs. Furthermore, Ku- and DNA-promoted assembly of a DNA-PKcs dimer facilitates trans-autophosphorylation at the DSB. The resulting site-specific autophosphorylation induces a large conformational change that opens DNA-PKcs and promotes its release from DNA ends. These results show how protein and DNA interactions initiate large Ku and DNA-PKcs rearrangements to control DNA-PK biological functions as a macromolecular machine orchestrating assembly and disassembly of the initial NHEJ complex on DNA.  相似文献   

12.
The DNA-dependent protein kinase (DNA-PK) is composed of a large catalytic subunit (DNA-PKcs) and a DNA-binding protein, Ku. Cells lacking DNA-PK activity are radiosensitive and are defective in DNA double-strand break repair and V(D)J recombination. Although much information regarding the interactions of Ku with DNA ends is available, relatively little is known about the interaction of DNA-PKcs with DNA-bound Ku. Here we show, using electrophoretic mobility shift assays, that chemical crosslinkers enhance the formation of protein-DNA complexes containing DNA-PKcs, Ku and other proteins in extracts from cells of normal human cell lines. Extracts from cells of the radiosensitive human cell line M059J, which lacks DNA-PKcs, are not competent to form these protein-DNA complexes, while addition of purified DNA-PKcs protein restores complex formation. This assay may be useful for screening for DNA-PK function in cells of human cell lines and for identifying proteins that interact with the DNA-PK-DNA complex. We also show that Ku protein in rodent cells can interact with human DNA-PKcs; however, this assay may be less useful for studying Ku/DNA-PKcs interactions in cells of rodent cell lines due to the low abundance of DNA-PKcs in these cells.  相似文献   

13.
Recognition of DNA double-strand breaks during non-homologous end joining is carried out by the Ku70-Ku80 protein, a 150 kDa heterodimer that recruits the DNA repair kinase DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to the lesion. The atomic structure of a truncated Ku70-Ku80 was determined; however, the subunit-specific carboxy-terminal domain of Ku80--essential for binding to DNA-PKcs--was determined only in isolation, and the C-terminal domain of Ku70 was not resolved in its DNA-bound conformation. Both regions are conserved and mediate protein-protein interactions specific to mammals. Here, we reconstruct the three-dimensional structure of the human full-length Ku70-Ku80 dimer at 25 A resolution, alone and in complex with DNA, by using single-particle electron microscopy. We map the C-terminal regions of both subunits, and their conformational changes after DNA and DNA-PKcs binding to define a molecular model of the functions of these domains during DNA repair in the context of full-length Ku70-Ku80 protein.  相似文献   

14.
Lee SH  Kim CH 《Molecules and cells》2002,13(2):159-166
DNA-dependent protein kinase (DNA-PK) is a nuclear serine/threonine protein kinase that is activated upon DNA damage generated by ionizing radiation or UV-irradiation. It is a three-protein complex consisting of a 470-kDa catalytic subunit (DNA-PKcs) and the regulatory DNA binding subunits, Ku heterodimer (Ku70 and Ku80). Mouse and human cells deficient in DNA-PKcs are hypersensitive to ionizing radiation and defective in V(D)J recombination, suggesting a role for the kinase in double-strand break repair and recombination. The Ku heterodimer binds to double-strand DNA breaks produced by either DNA damage or recombination, protects DNA ends from degradation, orients DNA ends for re-ligation, and recruits its catalytic subunit and additional factors necessary for successful end-joining. DNA-PK is also involved in an early stage of damage-induced cell cycle arrest, however, it remains unclear how the enzyme senses DNA damage and transmits signals to downstream gene(s) and proteins.  相似文献   

15.
The major pathway in mammalian cells for repairing DNA double-strand breaks (DSB) is via nonhomologous end joining. Five components function in this pathway, of which three (Ku70, Ku80, and the DNA-dependent protein kinase catalytic subunit [DNA-PKcs]) constitute a complex termed DNA-dependent protein kinase (DNA-PK). Mammalian Ku proteins bind to DSB and recruit DNA-PKcs to the break. Interestingly, besides their role in DSB repair, Ku proteins bind to chromosome ends, or telomeres, protecting them from end-to-end fusions. Here we show that DNA-PKcs(-/-) cells display an increased frequency of spontaneous telomeric fusions and anaphase bridges. However, DNA-PKcs deficiency does not result in significant changes in telomere length or in deregulation of the G-strand overhang at the telomeres. Although less severe, this phenotype is reminiscent of the one recently described for Ku86-defective cells. Here we show that, besides DNA repair, a role for DNA-PKcs is to protect telomeres, which in turn are essential for chromosomal stability.  相似文献   

16.
The leucine rich region of DNA-PKcs contributes to its innate DNA affinity   总被引:2,自引:0,他引:2  
Gupta S  Meek K 《Nucleic acids research》2005,33(22):6972-6981
DNA-PK is a protein complex that consists of a DNA-binding, regulatory subunit [Ku] and a larger ~465 kDa catalytic subunit [DNA-PKcs], a serine/threonine protein kinase. The kinase activity of DNA-PKcs resides between residues 3745 and 4013, a PI3 kinase domain. Another recognized domain within this large protein is a leucine zipper (LZ) motif or perhaps more appropriately designated a leucine rich region (LRR) that spans residues 1503–1602. Whereas, DNA-PK's kinase activity has been shown to be absolutely indispensable for its function in non-homologous end joining (NHEJ), little is known about the functional relevance of the LRR. Here we show that DNA-PKcs with point mutations in the LRR can only partially reverse the radiosensitive phenotype and V(D)J recombination deficits of DNA-PKcs deficient cells. Disruption of the LRR motif affects the ability to purify DNA-PKcs via its binding to DNA-cellulose, but does not affect its interaction with Ku or its catalytic activity. These data suggest that the LRR region of DNA-PKcs may contribute to its intrinsic DNA affinity, and moreover, that intrinsic DNA binding is important for optimal function of DNA-PKcs in repairing double strand breaks in living cells.  相似文献   

17.
The Ku protein-DNA-dependent protein kinase system is one of the major pathways by which cells of higher eukaryotes respond to double-strand DNA breaks. The components of the system are evolutionarily conserved and homologs are known from a number of organisms. The Ku protein component binds directly to DNA ends and may help align them for ligation. Binding of Ku protein to DNA also nucleates formation of an active enzyme complex containing the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The interaction between Ku protein, DNA-PKcs and nucleic acids has been extensively investigated. This review summarizes the results of these biochemical investigations and relates them to recent molecular genetic studies that reveal highly characteristic repair and recombination defects in mutant cells lacking Ku protein or DNA-PKcs.  相似文献   

18.
Akt phosphorylation has previously been described to be involved in mediating DNA damage repair through the nonhomologous end-joining (NHEJ) repair pathway. Yet the mechanism how Akt stimulates DNA-protein kinase catalytic subunit (DNA-PKcs)-dependent DNA double-strand break (DNA-DSB) repair has not been described so far. In the present study, we investigated the mechanism by which Akt can interact with DNA-PKcs and promote its function during the NHEJ repair process. The results obtained indicate a prominent role of Akt, especially Akt1 in the regulation of NHEJ mechanism for DNA-DSB repair. As shown by pull-down assay of DNA-PKcs, Akt1 through its C-terminal domain interacts with DNA-PKcs. After exposure of cells to ionizing radiation (IR), Akt1 and DNA-PKcs form a functional complex in a first initiating step of DNA-DSB repair. Thereafter, Akt plays a pivotal role in the recruitment of AKT1/DNA-PKcs complex to DNA duplex ends marked by Ku dimers. Moreover, in the formed complex, Akt1 promotes DNA-PKcs kinase activity, which is the necessary step for progression of DNA-DSB repair. Akt1-dependent DNA-PKcs kinase activity stimulates autophosphorylation of DNA-PKcs at S2056 that is needed for efficient DNA-DSB repair and the release of DNA-PKcs from the damage site. Thus, targeting of Akt results in radiosensitization of DNA-PKcs and Ku80 expressing, but not of cells deficient for, either of these proteins. The data showed indicate for the first time that Akt through an immediate complex formation with DNA-PKcs can stimulate the accumulation of DNA-PKcs at DNA-DSBs and promote DNA-PKcs activity for efficient NHEJ DNA-DSB repair.  相似文献   

19.
20.
The 12/23 rule is a critical step for regulation of V(D)J recombination. To date, only the RAG proteins and high mobility group protein 1 or 2 have been implicated in 12/23 regulation. Through protein fractionation and biochemical experiments, we find that Ku70/Ku80 and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) modulate RAG-mediated cleavage. Modulation of cleavage by Ku70/80 and DNA-PKcs results in preferential inhibition of 12/12 and 23/23 DNA cleavage, thus increasing 12/23 rule specificity. This observation indicates that DNA repair factors, Ku70/80 and DNA-PKcs, might be present upstream of the DNA cleavage events and not recruited downstream as is currently thought, assigning new nonrepair functions to the DNA-dependent protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号