首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract A gene which encodes resistance by abortive infection (Abi+) to bacteriophage was cloned from Lactococcus lactis ssp. lactis biovar. diacetylactis S94. This gene was found to confer a reduction in efficiency of plating and plaque size for prolate-headed bacteriophage φ53 (group I of homology) and total resistance to the small isometric-headed bacteriophage φ59 (group III of homology). The cloned gene is predicted to encode a polypeptide of 346 amino acid residues with a deduced molecular mass of 41 455 Da. No homology with any previously described genes was found. A probe was used to determine the presence of this gene in two strains on 31 tested.  相似文献   

2.
Abstract Five phage-resistant Lactococcus lactis strains were able to transfer by conjugation the lactose-fermenting ability (Lac+) to a plasmid-free Lac L. lactis strain. In each case, some Lac+ transconjugants were phage-resistant and contained one or two additional plasmids of high molecular mass, as demonstrated by pulsed-field gel electrophoresis. Plasmids pPF144 (144 kb), pPF107 (107 kb), pPF118 (118 kb), pPF72 (72 kb) and pPF66 (66 kb) were characterized: they are conjugative (Tra+), they confer a phage-resistant phenotype and they bear lactose-fermenting ability (Lactose plasmid) except for the last two. Plasmids pPF144, pPF107 and pPF118 resulted probably from a cointegrate formation between the Lactose plasmid and another plasmid of the donor strain, whereas pPF72, pPF66 and the Lactose plasmid were distinct in the corresponding transconjugants. Plasmids pPF72 and pPF66 produced a bacteriocin. At 30°C, the phage resistance conferred by the plasmids was complete against small isometric-headed phage and partial against prolate-headed phage, except for pPF107 whose phage resistance mechanism was totally effective against both types of phages, but was completely inactivated at 40°C. Restriction maps of four of the plasmids were constructed using pulsed-field gel electrophoresis.  相似文献   

3.
  总被引:1,自引:0,他引:1  
Abstract The replication region of the phage resistance plasmid pCI528 from Lactococcus lactis subsp. cremoris UC503 was localised to within a 10-kb Hin dIII restriction fragment. A 6.3-kb Bgl II- Hin dIII subclone of this fragment, cloned into a replication probe vector, allowed replication in Lactococcus but not in Bacillus or Lactobacillus . Sequence analysis revealed an ORF of 1152 bp preceded by a putative ori region containing a 22-bp sequence tandemly repeated three and three-quarter times, a second smaller direct repeat and two inverted repeats. Extensive homology was observed with the well characterised replication region of the small cryptic plasmid pCI305 (Hayes, F., Vos, P., Fitzgerald, G.F., de Vos, W. and Daly, C. Plasmid 25, 16–26).  相似文献   

4.
The presence and the nucleotide sequence of four multidrug resistance genes, lmrA, lmrP, lmrC, and lmrD, were investigated in 13 strains of Lactococcus lactis ssp. lactis, four strains of Lactococcus lactis ssp. cremoris, two strains of Lactococcus plantarum, and two strains of Lactococcus raffinolactis. Multidrug resistance genes were present in all L. lactis isolates tested. However, none of them could be detected in the strains belonging to the species L. raffinolactis and L. plantarum, suggesting a different set of multidrug resistance genes in these species. The analysis of the four deduced amino acid sequences established two different variants depending on the subspecies of L. lactis. Either lmrA, or lmrP, or both were found naturally disrupted in five strains, while full-length lmrD was present in all strains.  相似文献   

5.
  总被引:1,自引:0,他引:1  
The peptidoglycan hydrolase profile of Listeria monocytogenes EGD has been characterised under a variety of environmental and physiological conditions, using renaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The profiles show activities ranging from 29 to 186 kDa. The 186-kDa enzyme was only observable under specific medium and aeration conditions. The enzyme activities show differential substrate specificity and sensitivity to incubation conditions. The peptidoglycan hydrolase profile of several different Listeria strains was also compared.  相似文献   

6.
The ability and frequency at which target organisms can develop resistance to bacteriocins is a crucial consideration in designing and implementing bacteriocin-based biocontrol strategies. Lactococcus lactis ssp. lactis IL1403 was used as a target strain in an attempt to determine the frequency at which spontaneously resistant mutants are likely to emerge to the lantibiotic lacticin 3147. Following a single exposure to lacticin 3147, resistant mutants only emerged at a low frequency (10(-8)-10(-9)) and were only able to withstand low levels of the bacteriocin (100 AU mL(-1)). However, exposure to increasing concentrations, in a stepwise manner, resulted in the isolation of eight mutants that were resistant to moderately higher levels of lacticin 3147 (up to 600 AU mL(-1)). Interestingly, in a number of cases cross-resistance to other lantibiotics such as nisin and lacticin 481 was observed, as was cross-resistance to environmental stresses such as salt. Finally, reduced adsorption of the bacteriocin in to the cell was documented for all resistant mutants.  相似文献   

7.
产抑菌素菌株SM—A的分离和鉴定   总被引:2,自引:0,他引:2  
自市售酸乳酪中分离到一株乳球菌SM-A菌株。该菌株产生的抑菌素能抑制或杀死芽孢杆菌、葡萄球菌、微球菌、链球菌、棒杆菌和梭菌等革兰氏阳性细菌,但对革兰氏阴性细菌、霉菌和酵母无效。SM-A菌株多为链球状,也有成对存在。革兰氏染色阳性,抗酸染色阴性,兼性厌氧生长,最适生长温度32℃,不形成芽孢,无荚膜和鞭毛,不运动;可从多种糖类产酸,但不产气;接触酶、苯丙氨酸脱氨酶和酪氨酸脱羧酶均为阴性,精氨酸双水解酶阳性;不液化明胶,还原石蕊牛奶并胨化,生长温度范围10~43℃,DNA中G Cmol为36.4%。经鉴定,SM-A菌株为乳酸乳球菌乳酸亚种(Lactococcus lactis subsp.lactis)。  相似文献   

8.
    
The acidic proteome of Lactococcus lactis grown anaerobically was compared for three different growth conditions: cells growing on maltose, resting cells metabolizing maltose, and cells growing on glucose. In maltose metabolizing cells several proteins were up-regulated compared with glucose metabolizing cells, however only some of the up-regulated proteins had apparent relation to maltose metabolism. Cells growing on maltose produced formate, acetate and ethanol in addition to lactate, whereas resting cells metabolizing maltose and cells growing on glucose produced only lactate. Increased levels of alcohol-acetaldehyde dehydrogenase (ADH) and phosphate acetyltransferase (PTA) in maltose-growing cells compared with glucose-growing cells coincided with formation of mixed acids in maltose-growing cells. The resting cells did not grow due to lack of an amino acid source and fermented maltose with lactate as the sole product, although ADH and PTA were present at high levels. The maltose consumption rate was approximately three times lower in resting cells than in exponentially growing cells. However, the enzyme levels in resting and growing cells metabolizing maltose were similar, which indicates that the difference in product formation in this case is due to regulation at the enzyme level. The levels of 30S ribosomal proteins S1 and S2 increased with increasing growth rate for resting cells metabolizing maltose, maltose-growing cells and glucose-growing cells. A modified form of HPr was synthesized under amino acid starvation. This is suggested to be due to alanine misincorporation for valine, which L. lactis is auxotrophic for. L. lactis conserves the protein profile to a high extent, even after prolonged amino acid starvation, so that the protein expression profile of the bacterium remains almost invariant.  相似文献   

9.
    
This study describes how a metabolic engineering approach can be used to improve bacterial stress resistance. Some Lactococcus lactis strains are capable of taking up glutathione, and the imported glutathione protects this organism against H(2)O(2)-induced oxidative stress. L. lactis subsp. cremoris NZ9000, a model organism of this species that is widely used in the study of metabolic engineering, can neither synthesize nor take up glutathione. The study described here aimed to improve the oxidative-stress resistance of strain NZ9000 by introducing a glutathione biosynthetic capability. We show that the glutathione produced by strain NZ9000 conferred stronger resistance on the host following exposure to H(2)O(2) (150 mM) and a superoxide generator, menadione (30 microM). To explore whether glutathione can complement the existing oxidative-stress defense systems, we constructed a superoxide dismutase deficient mutant of strain NZ9000, designated as NZ4504, which is more sensitive to oxidative stress, and introduced the glutathione biosynthetic capability into this strain. Glutathione produced by strain NZ4504(pNZ3203) significantly shortens the lag phase of the host when grown aerobically, especially in the presence of menadione. In addition, cells of NZ4504(pNZ3203) capable of producing glutathione restored the resistance of the host to H(2)O(2)-induced oxidative stress, back to the wild-type level. We conclude that the resistance of L. lactis subsp. cremoris NZ9000 to oxidative stress can be increased in engineered cells with glutathione producing capability.  相似文献   

10.
AIMS: To develop food-grade cloning and expression vectors for use in genetic modification of Lactococcus lactis. METHODS AND RESULTS: Two plasmid replicons and three dominant selection markers were isolated from L. lactis and used to construct five food-grade cloning vectors. These vectors were composed of DNA only from L. lactis and contained no antibiotic resistance markers. Three of the vectors (pND632, pND648 and pND969) were based on the same plasmid replicon and carried, either alone or in combination, the three different selectable markers encoding resistance to nisin, cadmium and/or copper. The other two (pND965DJ and pND965RS) were derived from a cadmium resistance plasmid, and carried a constitutive promoter and a copper-inducible promoter, respectively, immediately upstream of a multicloning site. All vectors were stable in L. lactis LM0230 for at least 40 generations without selection pressure. The two groups of vectors were compatible in L. lactis LM0230. The vectors pND648 and pND965RS, as representatives of the two groups, were transferred successfully by electroporation into and maintained in an industrial strain of L. lactis. The usefulness of the vectors was further demonstrated by expressing a phage resistance gene (abiI) in another industrial strain of L. lactis. CONCLUSIONS: The five food-grade vectors constructed are potentially useful for industrial strains of L. lactis. SIGNIFICANCE AND IMPACT OF THE STUDY: These vectors represent a new set of molecular tools useful for food-grade modifications of L. lactis.  相似文献   

11.
12.
Conjugal matings were performed between Lactococcus lactis DRC1 (a lactose-fermenting (Lac+), bacteriocin-producing (Bac+) strain) and L. lactis HID113 (Lac- and Bac-). Transconjugant derivatives of HID113 were identified on the basis of lactose fermentation, resistance to the DRC1 bacteriocin (dricin) or reduced sensitivity to phage sk1. Regardless of how they were identified, all transconjugants gave fewer and smaller plaques with phages c2 and sk1 than did HID113. All but one of 275 transconjugants tested also produced dricin, suggesting some functional relationship or close genetic linkage between the reduced phage sensitivity and dricin production and resistance. Some transconjugants were also Lac+, but this property was unstable.  相似文献   

13.
    
AIMS: To determine the resistance of Lactococcus lactis ssp. lactis HV219 to acids, bile, antibiotics, inflammatory drugs and spermicides, compare adsorption of the strain to bacteria and Caco-2 cells under stress, and evaluate the antimicrobial activity of bacteriocin HV219. METHODS AND RESULTS: Bacteriocin HV219 activity against Gram-positive and Gram-negative bacteria was confirmed by leakage of DNA and beta-galactosidase, and atomic force microscopy. Adsorption of bacteriocin HV219 to bacteria is influenced by pH, temperature, surfactants and salts. Initially, only 3% of HV219 cells adhered to Caco-2 cells. However, after 2 h, adherence increased to 7%. Strain HV219 and Listeria monocytogenes ScottA did not compete for colonization. Strain HV219 is sensitive to most antibiotics tested, but resistant to amikacin, ceftazidime, nalidixic acid, metronidazole, neomycin, oxacillin, streptomycin, sulphafurazole, sulphamethoxazole, sulphonamides, tetracycline and tobramycin. Ibuprofen, ciprofloxacin, diklofenak and nonoxylol-9 inhibited the growth of strain HV219. CONCLUSION: Strain HV219 is resistant to hostile conditions in the intestinal tract, including therapeutic levels of specific antibiotics and binds to Caco-2 cells, but not in competition with L. monocytogenes. SIGNIFICANCE AND IMPACT OF THE STUDY: Strain HV219 will only be effective as probiotic if taken with specific antibiotics and not with anti-inflammatory drugs and spermicides.  相似文献   

14.
A simple and quick method has been developed to isolate plasmid DNA from Lactococcus lactis using overnight or stationary-phase cultures which therefore eliminates the need for subculturing for generating log-phase cultures that are necessary with existing methods. The new method was effective in isolating plasmids, from 1.4 to 64 kb, from the three subspecies of Lactococcus lactis. The resultant DNA was of high yield and purity and therefore no additional purification steps were required for down-stream molecular procedures.  相似文献   

15.
    
Nisin is a 34‐amino‐acid antimicrobial peptide produced by Lactococcus lactis belonging to the class of lantibiotics. Nisin displays a high bactericidal activity against various Gram‐positive bacteria, including some human‐pathogenic strains. However, there are some nisin‐non‐producing strains that are naturally resistant owing to the presence of the nsr gene within their genome. The encoded protein, NSR, cleaves off the last six amino acids of nisin, thereby reducing its bactericidal efficacy. An expression and purification protocol has been established for the NSR protein from Streptococcus agalactiae COH1. The protein was successfully crystallized using the vapour‐diffusion method in hanging and sitting drops, resulting in crystals that diffracted X‐rays to 2.8 and 2.2 Å, respectively.  相似文献   

16.
为改善乳酸乳球菌的生长性能,以轮枝链霉菌染色体DNA为模板,扩增得到编码谷氨酰胺转胺酶成熟酶的基因mtg,将其克隆到质粒pNZ8148中,电转化乳酸乳球菌NZ9000,获得乳酸乳球菌NZ9000(pFL001)(重组菌)。在不控制pH条件下,重组菌的胞外pH显著高于对照菌NZ9000(pNZ8148);前者的最高生物量可达4.13gL,而后者只有0.34gL。在控制pH为6.5±0.1的条件下,重组菌最高生物量为4.73gL,对葡萄糖的菌体最高平均得率为71.1gmol,而相同条件下对照菌最高生物量为2.6gL,对葡萄糖的菌体最高平均得率为27.3gmol。由此表明,重组菌与对照菌相比,好氧生长性能得到显著改善。可能的原因是mtg的活性表达升高了重组菌的胞内pH,原先用于泵出胞内H 所需的部分能量可能因此得到节省,这样相应增加了用于细胞生长的能量。  相似文献   

17.
Nisin-producing Lactococcus lactis cells protect their own cytoplasmic membrane by specific immunity proteins, NisF/E/G and NisI, a transporter complex and a lipoprotein, respectively. A portion of NisI is secreted to the medium in a lipid-free form (LF-NisI). Here, kinetics of the interaction between nisin and LF-NisI was examined by surface plasmon resonance analysis. The affinity constant KD for the interaction was calculated to be in the micromolar range. Contribution of the secreted LF-NisI to nisin immunity was studied by replacing the lipoprotein specific nisI signal sequence with a secretion signal of non-lipoprotein origin. Secretion of LF-NisI in NisF/E/G-expressing L. lactis strain NZ9840 increased significantly its nisin tolerance suggesting that the lipid-free form of NisI could have a supportive role in nisin immunity.  相似文献   

18.
提出了在恒定不同pH的发酵条件下,乳酸链球菌SM526的菌体生长、底物消耗、乳酸及Nisin产生的动力学模型。菌体生长、乳酸及Nisin产生用逻辑方程描述,而底物消耗是菌体生长和乳酸产生速率的函数。模型表明,乳酸链球菌SM526菌体生长和乳酸产生的最佳pH为7.0,而Nisin产生的最佳pH却为6.5。  相似文献   

19.
    
Lactic acid bacteria were screened for methional production from 4-methylthio-2-ketobutanoate. Only Lactococcus lactis IFPL730 produced high amounts of methional. It was demonstrated that production of this compound was an exclusively enzymatic reaction. The present work describes for the first time that L. lactis can convert enzymatically methionine to methional in a process mediated by aminotransferase and alpha-ketoacid decarboxylase activities. The activity seems to be strain dependent.  相似文献   

20.
    
  1. Download : Download high-res image (89KB)
  2. Download : Download full-size image
Highlights
  • •The proteomes of L. lactis MG1363 and phage p2 at different stages of infection were characterized.
  • •16% (226/1412) of the bacterial proteins detected were unique to infected cultures.
  • •A targeted approach using synthetic peptides improved the coverage of phage p2 proteome.
  • •By means of proteogenomics, we uncovered a conserved phage protein coded by a previously unannotated gene.
  • •Deletion of the bacterial gene llmg_0219 (unknown function) impedes phage p2 infection.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号