首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 164 毫秒
1.
为了探索甜荞FUL同源基因参与花与籽粒发育调控的分子机制,该文采用同源克隆的方法从甜荞(Fagopyrum esculentum)长花柱和长雄蕊突变体(lpls)中克隆到1个长837 bp的FeFUL2基因(GenBank登录号为MG779493.1),其包含长690 bp的完整开放阅读框,编码1个由229个氨基酸残基组成的MADS-box转录因子。通过对FeFUL2进行分子系统发生、同源蛋白比对与转录因子结构分析,结果显示FeFUL2与核心真双子叶植物AP1/FUL亚家族转录因子中的euFUL进化系聚于1个进化分支,属甜荞euFUL型MADS-box转录因子,且包含1个57个氨基酸残基长的高度保守的MADS结构域、1个69个氨基酸残基长的次级保守的K结构域,其C末端转录激活区在序列长度和氨基酸残基组成上与其他euFUL型转录因子差异较大,但仍含有2个euFUL型转录因子特有的保守基元:FUL motif和paleo AP1 motif。用qPCR检测基因表达的组织特异性显示:FeFUL2基因在甜荞lpls突变体的根、茎、叶、花被片、雄蕊、雌蕊和发育4 d的幼果中均有表达,但其在花被片中表达量极显著高于该基因在其他器官中的表达量(LSD,P0.01)。综合转录因子的结构与基因的表达模式推测,FeFUL2基因与其他euFUL型基因的功能可能存在一定差异,其在花发育过程中可能主要参与甜荞花被片的发育调控。  相似文献   

2.
为了解鹅掌楸(Liriodendron chinense)的UGE基因功能,采用RACE和EPIC-PCR技术克隆到2个UGE基因,命名为LcUGE1和LcUGE2。结果表明,LcUGE1基因的c DNA全长为1 531 bp,包含1 050 bp的开放阅读框,编码349个氨基酸, gDNA长度为11 920 bp;LcUGE2基因的c DNA长度为1 378 bp,包含1 056 bp的开放阅读框,编码351个氨基酸,g DNA长度为6544 bp。LcUGE1和LcUGE2基因均含有9个外显子和8个内含子,且外显子长度和内含子剪切位点序列几乎一致,但内含子片段长度存在显著差异。编码的LcUGE1和LcUGE2蛋白高度保守,保守性达到82%。LcUGE1基因在雄蕊中表达量最高,而LcUGE2基因则在花萼中表达量最高。这表明LcUGEs基因可能参与鹅掌楸的生殖发育过程。  相似文献   

3.
石杨  汪梦婷  靳雨璠  于月  张旭  李家豪  姜南  李斌  陈稷  黄进 《广西植物》2022,42(11):1822-1829
多蛋白桥联因子1(multi protein bridging factor 1, MBF1)在植物应对逆境胁迫中起着重要的作用,而对于水稻中MBF1是否参与重金属胁迫响应机制目前尚未见相关报道。为了揭示水稻MBF1家族与重金属胁迫的相关性及其潜在作用机制,该研究利用PCR技术克隆水稻OsMBF1c基因的全长编码序列,通过生物信息学对基因功能进行分析和预测,并通过实时荧光定量PCR(RT-qPCR)分析其在镉(Cd)胁迫下的表达特征。结果表明:(1)OsMBF1c的全长编码序列为468 bp,共编码155个氨基酸,相对分子量为16.154 kDa。(2)OsMBF1c与大麦TdMBF1a.1亲缘关系最近,具有光、厌氧等环境因子诱导相关的顺式调节元件。(3)重金属Cd可诱导OsMBF1c表达且在时间上和组织中的表达水平具有特异性,100 μmol·L-1 Cd 处理1 h 后,地上部分OsMBF1c表达量明显上调,为对照组的7倍; 100 μmol·L-1 Cd 胁迫处理6 h后,根部OsMBF1c表达量上调为对照组的3倍。该研究结果进一步完善了非生物胁迫下MBF1家族的生物学功能研究。  相似文献   

4.
为探究夏枯草中GGPPS基因的生物学特性及功能,该文在夏枯草转录组测序的基础上设计特异性引物,采用逆转录PCR技术获得夏枯草中GGPPS基因的全长核苷酸序列,并进行生物信息学分析;采用qPCR法分析PvGGPPS基因在不同外源性物质诱导下在夏枯草果穗中的表达量以及该基因在夏枯草不同组织中的表达量。结果表明:PvGGPPS基因开放阅读框1 092 bp,编码363个氨基酸,理论分子量为38 815.68 D,等电点为5.69。PvGGPPS蛋白具有异戊烯基焦磷酸合酶家族的特征结构域。系统进化树表明PvGGPPS蛋白与丹参、毛喉鞘蕊花GGPPS蛋白具有较高的亲缘关系。qPCR分析表明,PvGGPPS基因在叶中表达量高于果穗及茎。对果穗施加7种外源性物质处理24 h后,GA3处理组该基因表达量升高。PvGGPPS基因在夏枯草不同组织中表达量差异较大,且受外源物质诱导表达。该研究结果为进一步研究PvGGPPS基因对夏枯草萜类成分合成途径中的功能及表达调控奠定基础。  相似文献   

5.
为了解橄榄(Canarium album)抗寒相关转录因子ICE1的调控功能,采用RT-PCR技术克隆了‘福榄1号’的ICE1,命名为CaICE1,并进行生物信息学、qRT-PCR表达模式和相关miRNA预测分析。结果表明,CaICE1 cDNA序列的开放阅读框长度为1 650 bp,可编码549个氨基酸(GenBank登录号MG459422)。Ca ICE1为不稳定亲水性蛋白质,含有跨膜结构、磷酸化位点以及HLH保守结构域,定位于细胞核,与枳的ICE1亲缘关系较近。CaICE1密码子偏好性较弱,AGA、AGG、TGG和CCA可能为其最优密码子群。CaICE1主要在橄榄花、种子和叶中大量表达,-3℃低温胁迫下CaICE1表达水平比常温显著上升。psRNAtarget预测结果表明,CaICE1可能是miR825、miR477、miR5658、miR1436和miR394等多个逆境响应miRNA的靶基因。因此,CaICE1可能在橄榄低温胁迫过程中发挥重要调控作用,且可能受miRNA的调控。  相似文献   

6.
以切花百合(Lilium brownii var. viridulum)‘卡瓦纳’cDNA为模板,克隆了过氧化氢酶(LbCAT)和谷胱甘肽过氧化物酶(LbGPX)基因。序列分析表明,这2个基因分别包含1 479 bp和519 bp的开放阅读框(ORF),编码492个和172个氨基酸。进化分析结果表明,LbCAT蛋白与岷江百合CAT蛋白的氨基酸序列相似性最高(99.19%),且亲缘关系最近;LbGPX蛋白与油棕GPX蛋白的氨基酸序列相似性最高(78.61%),亲缘关系最近。qRT PCR结果显示,LbCATLbGPX在百合根、鳞茎、叶和花中都有表达。LbCAT在叶中表达量最高,LbGPX在花中表达量最高。这2个基因在百合花蕾的生长发育过程中均有表达,且表达量逐渐增加;在PEG处理后2个基因的转录水平升高,但独角金内酯(SLs)处理却显著降低了这2个基因的转录水平;该结果为百合抗逆性机理研究以及抗逆育种奠定了基础。  相似文献   

7.
香豆酸-3-羟化酶属于植物中最大的蛋白酶细胞色素P450家族之一,在植物生命活动中发挥着重要作用。为了解地黄香豆酸-3-羟化酶基因RgC3H合成毛蕊花糖苷的功能,该研究基于地黄代谢组学分析获得KEGG途径中的C3H,采用多重比对在NCBI中获得同源基因的一个保守序列,并基于该保守序列和地黄SRA数据库,采用电子克隆和RT-PCR克隆技术获得地黄C3H基因全长CDS(RgC3H),对其进行生物信息学分析。结果表明:RgC3H基因全长为1 530 bp,且编码一个含509个氨基酸、分子量为57.91 kD、无信号肽的蛋白质; 基于氨基酸序列的结构分析显示,RgC3H有一个保守区域-P450结构域; 系统进化分析结果显示,RgC3H与芝麻和猴面花的C3H基因具有很高的同源性。上述结果为进一步研究RgC3H基因在地黄毛蕊花糖苷生物合成途径中的作用奠定了基础。  相似文献   

8.
为了解马尾松(Pinus massoniana)磷酸甘油酸激酶1(PGK1)与胞质溶胶葡萄糖磷酸异构酶(GPIC)的功能,采用RACE技术克隆了PmPGK1PmGPIC基因,并进行了生物信息学分析与亚细胞定位,采用实时荧光定量PCR技术分析PmPGK1PmGPIC的表达特性。结果表明,PmPGK1PmGPIC全长为2 106和1 848 bp,分别编码507和566个氨基酸。PmPGK1和PmGPIC分别定位于叶绿体和胞质溶胶。PmPGK1表达量为新叶 > 老叶 > 新茎 > 根 > 花;而PmGPIC为老叶 > 花 > 新叶 > 新茎 > 根。低温胁迫24 h,PmPGK1PmGPIC的表达量均随时间延长先降低后升高,且PmGPIC的表达量在处理2 h后即降至较低水平;高浓度CO2胁迫24 h,PmPGK1的表达量随时间延长呈降低-升高-再降低的变化趋势,PmGPIC的表达下调但变化较不显著。因此,推测PmPGK1主要参与卡尔文循环及叶绿体/质体糖酵解,PmGPIC主要参与细胞质基质糖酵解;PmPGK1、PmGPIC活性在低温胁迫下均受抑制;PmPGK1活性在CO2胁迫下受到显著抑制,而PmGPIC活性的影响不大。  相似文献   

9.
为研究八氢番茄红素合成酶(phytoene synthase)基因在龙眼类胡萝卜素合成途径中的作用机制,该文从龙眼转录组数据中筛选获得一个PSY基因,命名为DlPSY,采用生物信息学方法对龙眼PSY蛋白的一级结构、理化性质、信号肽、跨膜结构、亚细胞定位、亲疏水性、蛋白质二级结构、蛋白质三级结构、卷曲螺旋、蛋白质结合位点、系统进化树、蛋白质互作等进行分析和预测,并同时运用实时荧光定量PCR(RT-qPCR)技术对DlPSY基因在龙眼根和叶中的差异表达进行分析。结果表明:龙眼DlPSY基因长度为1 260 bp,编码420个氨基酸;生物信息学预测DlPSY蛋白具有Isoprenoid Biosyn C1超家族结构,含有信号肽,为分泌性蛋白,无跨膜结构,是一种可溶性亲水蛋白,定位于膜外; DlPSY蛋白的二级结构主要由α-螺旋和无规则卷曲组成,具有卷曲螺旋。Ramachandran评估结果表明应用SWISS-MODEL构建的蛋白质三级结构模型可靠,其配体结合位点为344Phe和347Lys。RT-qPCR分析结果表明DlPSY基因在龙眼根和叶中均有表达,叶中表达量高于其在根中的表达量。该研究结果为下一步采用遗传学方法提高龙眼中类胡萝卜素的含量奠定理论基础。  相似文献   

10.
为了解BRI1基因在巨桉中的功能,采用PCR技术克隆了EgrBRI1基因,分析了EgrBRI1的生物信息学和亚细胞定位,并对EgrBRI1基因响应激素和胁迫的差异表达进行了分析。结果表明,EgrBRI1基因全长3 893 bp,编码1 197个氨基酸。EgrBRI1蛋白稳定,空间结构复杂,存在3个motifs,主要定位于细胞膜。茉莉酸甲酯和油菜素内酯(BR)处理后,EgrBRI1基因在叶片中的表达上升,而水杨酸处理则没有明显的变化。盐胁迫和冷胁迫下,EgrBRI1基因表达表现为先下降后上升的趋势。因此,EgrBRI1基因能快速对外施激素做出响应,并在巨桉抗逆方面发挥重要作用,这可能是通过对BR信号的响应来实现的。  相似文献   

11.
吴诗琪  潘凤  赵财 《广西植物》2023,43(11):2065-2077
为了探究西南地区野生刺梨(Rosa roxburghii)的遗传多样性和起源演化,该研究基于2段单拷贝核基因(GAPDH和ncpGS)和3段叶绿体基因(atpF-trnH、trnL-trnF和trnG-trnS)的拼接序列,对刺梨27个野生居群共320个个体进行PCR扩增和测序,并用相关软件对测序结果进行分析。结果表明:(1)在单拷贝核基因和叶绿体基因水平上刺梨均表现出较低的遗传多样性(scnDNA: Hd=0.469 2, π=0.000 49; cpDNA: Hd=0.653 4, π=0.000 65),并且不同居群间存在较大差异。(2)分子方差分析(AMOVA)结果均显示,遗传变异主要发生在居群内,表明居群内的变异是野生刺梨遗传变异的主要来源,居群间存在明显的遗传分化( cpDNA:FST=0.336 47,GST=0.273,NST= 0.308; scnDNA:FST=0.094 87,NST=0.076,GST=0.056),刺梨的分布不具有明显的谱系地理结构(P>0.05)。(3)中性检验 Tajima''s D值均为不显著负值,符合中性进化模型。Fu''s Fs值均为显著负值,结合失配分析曲线,推测刺梨种群在小范围内经历过扩张,但总体上维持稳定状态。(4)根据单倍型多样性得出,毕节地区的居群遗传多样性水平较高并且拥有丰富的单倍型,推测可能为冰期避难所,因此应对其实施就地保护。对于拥有特殊性状和特有单倍型的居群也应采取优先保护措施。该文为野生刺梨资源保护和遗传育种提供了一定的参考价值。  相似文献   

12.
刺梨自然发酵过程中非酿酒酵母多样性分析   总被引:2,自引:0,他引:2  
【目的】分析刺梨果实自然发酵过程中非酿酒酵母菌群特征,为筛选优质刺梨非酿酒酵母提供参考。【方法】基于Illumina MiSeq高通量测序技术和WL营养琼脂鉴定培养基纯种分离技术,分析刺梨果实自然发酵1 d(F1)、3 d(F3)、5 d(F5)和15 d(F15)4个阶段及YPD培养基富集培养样本中非酿酒酵母种群组成和多样性。【结果】高通量测序分析结果共获得182个OTUs(operational taxonomic units,OTUs),归属于81个属107个种;物种多样性分析结果表明,刺梨果实自然发酵前期,优势非酿酒酵母为汉逊酵母(Hanseniasporasp.)和伯顿丝孢毕赤酵母(Hyphopichiaburtonii),二者在样本F1中分别占42.59%和26.85%;随着自然发酵的不断进行,二者的比例逐渐降低,在第15天(F15),Hanseniaspora sp.和H.burtonii比例降低至7.73%和0.52%。相反,Pichia sporocuriosa和未培养的酵母,随着自然发酵不断进行所占比例逐渐增大,分别由F1中的0.23%和0.33%增至F15中的37.26%和32.62%。此外,采用WL营养琼脂鉴定培养基纯种分离和鉴定技术,从刺梨上分离到Hanseniasporasp.、H.burtonii、克鲁维毕赤酵母(Pichia kluyveri)、P.sporocuriosa和异常威克汉姆酵母(Wickerhamomyces anomalus)5种类型的可培养非酿酒酵母。【结论】刺梨果实上存在着丰富的非酿酒酵母菌资源,研究刺梨自然发酵过程中非酿酒酵母多样性,为酵母资源开发和利用奠定基础。  相似文献   

13.
李雪宝  王琦  鄢波 《广西植物》2022,42(2):277-285
为探究纤枝短月藓LEA2基因的结构和表达特征,该研究以纤枝短月藓为材料,首次利用PCR克隆技术得到纤枝短月藓BeLEA2基因序列,并对该基因进行分析。结果表明:(1)该基因序列中含有2个外显子和1个内含子,其开放阅读框(ORF)为456 bp,编码151个氨基酸,预测其相对分子质量为16515.96 Da。(2)将纤枝短月藓与其他植物LEA2基因氨基酸序列进行比对,构建系统进化树,结果显示纤枝短月藓与小立碗藓的亲缘关系最近。(3)利用HiTail-PCR技术克隆获得1072 bp的BeLEA2启动子序列,用PlantCARE在线工具对该启动子的顺式作用元件进行预测,结果表明该启动子除了含有核心启动子元件TATA-box和CAAT-box外,还含有ABRE、MYB、MYC、MYB结合位点(MBS)等其他顺式元件。(4)实时荧光定量PCR分析表明,BeLEA2基因在纤枝短月藓不同发育时期和不同组织中都有表达,且对脱水胁迫有响应。以上结果为进一步探究LEA2基因在苔藓植物中的功能及作用机制奠定了基础。  相似文献   

14.
为有效脱除刺梨果汁(Rosa roxburghii juice)中的单宁,降低其涩味改善口感,该研究以刺梨果汁为对象,采用化学沉淀法,以姜蛋白为单宁脱除剂,并以单宁脱除率和维生素C(VC)保留率为考察指标,采用单因素实验和正交试验优化姜蛋白脱除单宁工艺确定最优工艺。结果表明:(1)姜蛋白脱除刺梨果汁单宁的最优工艺条件为液固比30:1.2(mL:g),刺梨果汁pH 3.0,搅拌温度5 ℃,搅拌时间30 min。(2)由正交试验分析可知,各因素对刺梨果汁脱除单宁的影响程度依次为液固比>搅拌温度>刺梨果汁pH>搅拌时间。(3)在最优工艺条件下,单宁脱除率为(47.451±0.608)%,VC保留率为(75.904±1.244)%。(4)在最优工艺条件下,果汁透光率从(8.44±0.662)%提高到(92.47±0.397)%,涩味明显改善,同时丰富了刺梨果汁风味。该研究结果为解决刺梨果汁深加工行业面临的共性关键技术问题提供了一个新思路和新工艺技术路线基础,也为拓展生姜资源的综合利用奠定了一定技术基础。  相似文献   

15.
AP2/ERF是广泛存在于植物中一类重要的转录因子,调控一些参与非生物胁迫相关基因的表达,帮助植物提高逆境胁迫能力。为了深入探讨LaAP2在独行菜耐受低温萌发及幼苗耐受低温生长中的功能,该研究基于前期对独行菜(Lepidium apetalum)转录组数据库分析,克隆获得一个显著上调表达的AP2/ERF家族序列LaAP2。该基因cDNA全长为1 005 bp,编码氨基酸序列包含一个AP2和一个B3结构域,属于AP2/ERF转录因子RAV亚家族。推定的LaAP2蛋白分子量为37.744 67 kD,等电点为9.49。该蛋白氨基酸序列同亚麻荠、拟南芥、油菜等物种显示出较高同源性,系统进化分析结果表明与拟南芥亲缘关系较近。氨基酸序列分析预测表明,LaAP2基因所编码的蛋白不具备信号肽区段,无跨膜区,不属于分泌蛋白,可能为亲水性蛋白;定位于细胞质的可能性为56.5%,定位于细胞核的可能性为21.7%;其主要二级结构元件为无规则卷曲、延伸链、α-螺旋。Real-time PCR分析独行菜幼苗中LaAP2在低温4℃处理下的表达,显示LaAP2表达受低温胁迫呈先下降后升高趋势。这表明LaAP2在独行菜幼苗抵抗低温胁迫中起调控作用。  相似文献   

16.
CPP(cystein-richpolycomb-likeproteinor Tesmin/TOS1-like)家族属于成员数目较少的一类转录因子基因家族,含有保守的富含Cystein的CRC结构域,在植物发育进程中,主要参与花发育、细胞分裂、分子进化等。为了探索CPP转录因子家族在北美鹅掌楸花发育中的作用,该文以北美鹅掌楸(Liriodendron tulipifera)为材料,采用RACE技术克隆出1个CPP-like家族基因,命名为LtTCX2,全长2 866 bp。通过NCBI网站在线分析,ORF长2 424 bp,编码了807个氨基酸,含2个保守的TSO1-like CXC结构域,分子量为88 699.25 Da,理论等电点为5.83,不稳定系数为62.38,疏水性平均值为-0.619,预测为亲水性蛋白、非跨膜蛋白、核蛋白,不含信号肽及切割位点。氨基酸比对及系统进化分析结果显示,LtTCX2与其他物种的CPP家族TCX蛋白具有较高的同源性,与亚洲莲(Nelumbo nucifera)的NnTCX2、胡杨(Populus euphratica)的PeTCX2进化关系最近。荧光定量PCR结果显示,LtTCX2基因在叶片中表达量最高,在萼片、花瓣中几乎不表达,表达量由高至低如下:叶片、花芽、雌蕊、雄蕊、茎、根、花瓣、萼片。以上结果说明,LtTCX2属于较古老、保守的一类基因,可为从分子生物学层面研究鹅掌楸属植物系统进化提供一定的理论依据。  相似文献   

17.
杜波  蔡传涛  张霁 《广西植物》2021,41(6):1004-1013
龙胆苦苷(gentiopicroside)是中药龙胆中的主要药效成分,属于萜类化合物的衍生物。1-羟基-2-甲基-2-(E)-丁烯基-4-二磷酸还原酶[1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase,HDR]是萜类物质合成途径中的关键酶。为探讨不同光照条件下滇龙胆HDR(GrHDR)基因的表达与龙胆苦苷含量之间的关系,该文以滇龙胆叶片cDNA为模板,采用PCR和TA克隆技术获得GrHDR基因序列,对该序列进行生物信息学分析和表达分析,并采用高效液相色谱法测定龙胆苦苷含量,对该基因表达与龙胆苦苷含量进行比较。结果表明:(1)GrHDR基因(GenBank登录号: KJ917165.1)全长1 398 bp,编码465个氨基酸,推定GrHDR蛋白是亲水且稳定的,相对分子质量是52 281.25 Da,理论等电点是5.32;(2)该蛋白属于LYTB蛋白家族,可能定位于叶绿体上,无信号肽,二级结构主要由α-螺旋(45.16%)、β-转角(6.24%)、无规卷曲(33.98%)、延伸链(14.62%)构成;(3)GrHDR蛋白序列与同属植物秦艽的HDR蛋白相似性最高(95.71%);(4)实时荧光定量PCR结果显示GrHDR基因在滇龙胆中的表达量为根 > 叶 > 茎,而在10%、30%、100%全光光照条件下各组织的表达量有很大差异;(5)高效液相色谱法结果显示,不同光照条件下龙胆苦苷含量一致,均为根 > 叶 > 茎,其中100%全光光照下,药用部位根中龙胆苦苷含量达到7.141%,约是30%、10%全光光照条件的两倍,但该结果与同一光照条件下GrHDR基因表达规律不完全一致。该研究为阐述HDR基因功能及其与龙胆苦苷含量的关系提供参考。  相似文献   

18.
柠条锦鸡儿为豆科灌木,对各种环境胁迫具有较强的适应能力,类黄酮是天然的抗氧化剂,花青素属类黄酮化合物,逆境胁迫会影响植物体内花青素的合成,而黄烷酮3-羟化酶(F3H)是花青素生物合成所必需的一种关键酶。该研究成功分离克隆了柠条锦鸡儿的F3H基因,命名为CkF3H。CkF3H基因的开放阅读框(ORF)为1095 bp,编码364个氨基酸,推测的蛋白质分子量为41.3 kDa,理论等电点为5.9。生物信息学分析发现,CkF3H基因序列与其它植物F3H有较高的一致性,推测CkF3H蛋白与其它植物F3H蛋白具有相似的功能。利用染色体步移法克隆得到CkF3H起始密码子ATG上游468 bp的启动子序列,PlantCARE软件分析表明,该序列具有启动子的基本元件CAAT-box和TATA-box以及多种与逆境胁迫相关的顺式调控元件。实时荧光定量PCR分析表明,CkF3H在柠条的根、茎和叶中均有表达,没有组织特异性;CkF3H的表达受低温、高盐、干旱和高温胁迫的诱导,并且在低温胁迫下,CkF3H的表达还受到光周期的影响。综上所述,研究结果表明CkF3H基因在柠条锦鸡儿适应低温、高盐、干旱和高温胁迫的过程中发挥作用。  相似文献   

19.
刺梨果实是优质膳食纤维的良好来源。该研究以‘贵农5号’刺梨果实为材料,测定了果实发育过程中膳食纤维的含量、组分变化及其对光照的响应特征。结果表明:(1)在刺梨果实的整个发育过程中,总膳食纤维和不溶性膳食纤维含量在花后40 d之前的幼果期更高,并随着果实的快速发育持续下降,至成熟时分别约占果实干重的24%和16%,而可溶性膳食纤维含量在果实发育过程中变化平稳,一直维持在干重的8%左右。(2)果胶在花后20 d之前有一快速积累过程,至果实成熟时纤维素和半纤维素为膳食纤维主要组分,约占总膳食纤维的60%;花后60 d之前是刺梨果实膳食纤维积累的主要时期。(3)刺梨果实总膳食纤维、不溶性膳食纤维中单糖组分主要以半乳糖、葡萄糖为主,而可溶性膳食纤维中单糖组分主要为甘露糖,两类膳食纤维间表现出较大差异。(4)果实套袋遮光不同程度促进了刺梨果实总膳食纤维、可溶性膳食纤维、总果胶、原果胶的积累,尤其是100%遮光的效应更明显,但对果实中不溶性膳食纤维、纤维素、木质素、可溶性果胶的积累影响并不显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号