首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
3-Hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase is the rate-limiting enzyme in the biosynthesis of cholesterol in mammals. Some microbial metabolites have been found to be HMG-CoA reductase inhibitors. Korean soybean paste is a unique food fermented by many microorganisms. The enzymatic method using the catalytic domain of Syrian hamster HMG-CoA reductase was employed for the screening of HMG-CoA reductase inhibitors. Soybean paste extract was fractionated by vacuum liquid chromatography. Fractions showing relatively high HMG-CoA reductase inhibition were further purified through Sephadex LH-20 column chromatography and C18 preparative HPLC, and the inhibitory compounds were identified as genistein, daidzein, and glycitein.  相似文献   

2.
A simple and rapid mixed-phase method for the quantitative assay of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase and a procedure for the efficient reactivation of Mg-ATP-inactivated microsomal HMG-CoA reductase by potato acid phosphatase are described. The mixed-phase assay entails the direct addition of the acidified, deproteinized incubation mixture to a toluene-based scintillation fluor. The enzymatic reaction product [3H]-mevalonolactone partitions into the toluene while unreacted 3H-labeled HMG-CoA substrate remains in the aqueous phase and is not detected on scintillation counting. The accuracy and reproducibility of this method are compared to a thin-layer chromatographic assay for HMG-CoA reductase. Microsomal and solubilized HMG-CoA reductase inactivated by incubation with Mg-ATP is reactivated by purified potato acid phosphatase. Under appropriate conditions quantitative reactivation of HMG-CoA reductase is achieved, indicating that endogenous inhibitory and activating proteins regulate HMG-CoA reductase via a kinase-phosphatase system.  相似文献   

3.
For precise determination of the catalytic activity of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (EC 1.1.1.34), the HMG-CoA employed as substrate must be free of HMG, CoA, and other inhibitors of HMG-CoA reductase activity. The standard purification of HMG-CoA by paper chromatography gives poor resolution of HMG-CoA from CoA and may be accompanied by some decomposition of HMG-CoA. We describe a simplified procedure for synthesis and for isolation from the reaction mixture of homogeneous, high specific activity [3(-14)C]HMG-CoA free of HMG, CoA, or nonpolar contaminants. Isolation of HMG-CoA utilizes ion-exchange chromatography in a gradient of ammonium formate, which is subsequently removed by lyophilization. The methods are proposed for use in the preparation or isolation of HMG0CoA.  相似文献   

4.
3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase catalyzes the first physiologically irreversible step in biosynthesis of isoprenoids and sterols from acetyl-CoA. Inhibition of enzyme activity by β-lactone-containing natural products correlates with substantial diminution of sterol synthesis, identifying HMG-CoA synthase as a potential drug target and suggesting that identification of effective inhibitors would be valuable. A visible wavelength spectrophotometric assay for HMG-CoA synthase has been developed. The assay uses dithiobisnitrobenzoic acid (DTNB) to detect coenzyme A (CoASH) release on acetylation of enzyme by the substrate acetyl-CoA, which precedes condensation with acetoacetyl-CoA to form the HMG-CoA product. The assay method takes advantage of the stability of recombinant enzyme in the absence of a reducing agent. It can be scaled down to a 60 μl volume to allow the use of 384-well microplates, facilitating high-throughput screening of compound libraries. Enzyme activity measured in the microplate assay is comparable to values measured by using conventional scale spectrophotometric assays with the DTNB method (412 nm) for CoASH production or by monitoring the use of a second substrate, acetoacetyl-CoA (300 nm). The high-throughput assay method has been successfully used to screen a library of more than 100,000 drug-like compounds and has identified both reversible and irreversible inhibitors of the human enzyme.  相似文献   

5.
Rat hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase was purified to homogeneity using agarose-HMG-CoA affinity chromatography. Additional protein was isolated from the affinity column with 0.5 M KCl that demonstrated no HMG-CoA reductase activity, yet comigrated with purified HMG-CoA reductase on sodium dodecyl sulfate-polyacrylamide gels. This protein was determined to be an inactive form of HMG-CoA reductase by tryptic peptide mapping, reaction with anti-HMG-CoA reductase antibody, and coelution with purified HMG-CoA reductase from a molecular-sieving high-performance liquid chromatography column. This inactive protein was present in at least fourfold greater concentration than active HMG-CoA reductase, and could not be activated by rat liver cytosolic phosphoprotein phosphatases. Immunotitration studies with microsomal and solubilized HMG-CoA reductase isolated in the presence and absence of proteinase inhibitors suggested that the inactive protein was not generated from active enzyme during isolation of microsomes or freeze-thaw solubilization of HMG CoA reductase.  相似文献   

6.
7.
Isoflavones identified as inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in soybean paste were assayed using the catalytic portion of Syrian hamster HMG-CoA reductase, and the kinetic values were measured using HMG-CoA and NADPH. The inhibition of HMG-CoA reductase by these inhibitors was competitive with HMG-CoA and noncompetitive with NADPH. Ki values for genistein, daidzein, and glycitein were 27.7, 49.5, and 94.7 microM, respectively.  相似文献   

8.
9.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase, a member of the family of acyl-condensing enzymes, catalyzes the first committed step in the mevalonate pathway and is a potential target for novel antibiotics and cholesterol-lowering agents. The Staphylococcus aureus mvaS gene product (43.2 kDa) was overexpressed in Escherichia coli, purified to homogeneity, and shown biochemically to be an HMG-CoA synthase. The crystal structure of the full-length enzyme was determined at 2.0-A resolution, representing the first structure of an HMG-CoA synthase from any organism. HMG-CoA synthase forms a homodimer. The monomer, however, contains an important core structure of two similar alpha/beta motifs, a fold that is completely conserved among acyl-condensing enzymes. This common fold provides a scaffold for a catalytic triad made up of Cys, His, and Asn required by these enzymes. In addition, a crystal structure of HMG-CoA synthase with acetoacetyl-CoA was determined at 2.5-A resolution. Together, these structures provide the structural basis for an understanding of the mechanism of HMG-CoA synthase.  相似文献   

10.
The effects of glycosylation inhibitors on the proliferation of SV40-transformed 3T3 cells (SV-3T3) were examined in vitro. Whereas swainsonine and castanospermine, which inhibit distal steps in the glycosylational processing, exerted marginal or no effects on cell proliferation, a proximal inhibitor, tunicamycin, efficiently decreased the rate of DNA synthesis and also inhibited the activity of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase. The inhibitory effects of tunicamycin on cell proliferation could be partially reversed by addition of dolichol, a metabolite in the pathway regulated by HMG-CoA reductase. This finding suggests that tunicamycin exerts at least one of its effects on cell proliferation by modulating the activity of HMG-CoA reductase.  相似文献   

11.
Extensively purified rat liver cytosolic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase kinase was used to examine the role of ADP in inactivation of HMG-CoA reductase (EC 1.1.1.34). Solubilized HMG-CoA reductase was a suitable substrate for HMG-CoA reductase kinase. At sufficiently high concentrations of solubilized HMG-CoA reductase, reductase kinase activity approached that measured using microsomal HMG-CoA reductase as substrate. Inactivation of solubilized HMG-CoA reductase by HMG-CoA reductase kinase required both MgATP and ADP. Other nucleoside diphosphates, including alpha, beta-methylene-ADP, could replace ADP. HMG-CoA reductase kinase catalyzed phosphorylation of bovine serum albumin fraction V by [gamma-32P]ATP. This process also required a nucleoside diphosphate (e.g. alpha, beta-methylene-ADP). Nucleoside diphosphates thus act on HMG-CoA reductase kinase, not on HMG-CoA reductase. For inactivation of HMG-CoA reductase, the ability of nucleoside triphosphates to replace ATP decreased in the order ATP greater than dATP greater than GTP greater than ITP, UTP. TTP and CTP did not replace ATP. Both for inactivation of HMG-CoA reductase and for phosphorylation of bovine serum albumin protein, the ability of nucleoside diphosphates to replace ADP decreased in the order ADP greater than CDP, dADP greater than UDP. GDP did not replace ADP. Nucleoside di- and triphosphates thus appear to bind to different sites on HMG-CoA reductase kinase. Nucleoside diphosphates act as allosteric activators of HMG-CoA reductase kinase. For inactivation of HMG-CoA reductase by HMG-CoA reductase kinase, Km for ATP was 140 microM and the activation constant, Ka, for ADP was 1.4 mM. The concentration of ADP required to modulate reductase kinase activity in vitro falls within the physiological range. Modulation of HMG-CoA reductase kinase activity, and hence of HMG-CoA reductase activity, by changes in intracellular ADP concentrations thus may represent a control mechanism of potential physiological significance.  相似文献   

12.
13.
Rat liver 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase catalyzes, in addition to its normal biosynthetic or forward reaction (HMG-CoA + 2 NADPH + 2H+----mevalonate + 2 NAD+ + CoASH), the reverse reaction (mevalonate + CoASH + 2 NADP+----HMG-CoA + 2 NADPH + 2H+) and two "half-reactions" that involve the presumed intermediate mevaldate (mevaldate + CoASH + NADP+----HMG-CoA + NADPH + H+ and mevaldate + NADPH + H+----mevalonate + NADP+). These reactions were studied using both enzyme solubilized by the traditional freeze-thaw method and enzyme solubilized with a nonionic detergent in the presence of inhibitors of proteolysis. All four reactions were inhibited by mevinolin, a known inhibitor of the forward (biosynthetic) reaction catalyzed by HMG-CoA reductase. When the enzyme was inactivated by ATP and a cytosolic, ADP-dependent HMG-CoA reductase kinase, the rates of both the forward reaction and the half-reactions decreased to comparable extents. Although coenzyme A is not a stoichiometric participant in the second half-reaction (mevaldate + NADPH + H+----mevalonate + NADP+), it was required as an activator of this reaction. This observation implies that coenzyme A may remain bound to the enzyme throughout the normal catalytic cycle of HMG-CoA reductase.  相似文献   

14.
We studied the molecular mechanism through which the fungal beta-lactone, hymeglusin, potently and specifically inhibits 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase. [(14)C]Hymeglusin covalently bound to purified rat liver and to recombinant hamster cytosolic HMG-CoA synthases. The enzyme activity was completely inhibited at a binding ratio of 1.6-2.0 mol [(14)C]hymeglusin/mol HMG-CoA synthase. Incubating the enzyme with 2 mM iodoacetamide (IAA) or 2 mM N-ethylmaleimide (NEM) but not with 1.0 mM diisopropyl fluorophosphates (DFP) completely inhibited the binding, suggesting that hymeglusin binds to a Cys residue of HMG-CoA synthase. Recombinant hamster HMG-CoA synthase labeled with [(3)H]hymeglusin was digested with V8 protease, and the [(3)H]peptide was purified by high performance liquid chromatography (HPLC). The sequence of the peptide was Ser-Gly-Asn-Thr-Asp-Ile-Glu-Gly-Ile-Asp-Thr-Thr-Asn-Ala-[(3)H]hymeglusyl Cys-Tyr-Gly-Gly-Thr-Ala-Ala-Val-Phe-Asn-Ala-Val-Asn-, which corresponds to the active site sequence (from Ser 115 to Asn 141) of hamster HMG-CoA synthase. These findings showed that hymeglusin inhibits hamster cytosolic HMG-CoA synthase by covalently modifying the active Cys 129 residue of the enzyme.  相似文献   

15.
In this paper, we assess the relative degree of regulation of the rate-limiting enzyme of isoprenoid biosynthesis, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, by sterol and nonsterol products of mevalonate by utilizing cultured Chinese hamster ovary cells blocked in sterol synthesis. We also examine the two other enzymes of mevalonate biosynthesis, acetoacetyl-CoA thiolase and HMG-CoA synthase, for regulation by mevalonate supplements. These studies indicate that in proliferating fibroblasts, treatment with mevalonic acid can produce a suppression of HMG-CoA reductase activity similar to magnitude to that caused by oxygenated sterols. In contrast, HMG-CoA synthase and acetoacetyl-CoA thiolase are only weakly regulated by mevalonate when compared with 25-hydroxycholesterol. Furthermore, neither HMG-CoA synthase nor acetoacetyl-CoA thiolase exhibits the multivalent control response by sterol and mevalonate supplements in the absence of endogenous mevalonate synthesis which is characteristic of nonsterol regulation of HMG-CoA reductase. These observations suggest that nonsterol regulation of HMG-CoA reductase is specific to that enzyme in contrast to the pleiotropic regulation of enzymes of sterol biosynthesis observed with oxygenated sterols. In Chinese hamster ovary cells supplemented with mevalonate at concentrations that are inhibitory to reductase activity, at least 80% of the inhibition appears to be mediated by nonsterol products of mevalonate. In addition, feed-back regulation of HMG-CoA reductase by endogenously synthesized nonsterol isoprenoids in the absence of exogenous sterol or mevalonate supplements also produces a 70% inhibition of the enzyme activity.  相似文献   

16.
3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) has been isolated from human liver utilizing HMG-CoA affinity chromatography. The apparent monomer molecular weight of purified human HMG-CoA reductase by SDS-gel electrophoresis was 53,000, and the oligomeric molecular weight determined by sucrose density centrifugation was 104,000. A monospecific antibody prepared against rat liver HMG-CoA reductase inhibited the enzymic activity of microsomal and purified human liver enzyme and formed a single immunoprecipitin line by radial immunodiffusion. These results represent the initial isolation and characterization of human liver HMG-CoA reductase.  相似文献   

17.
Initiation of uterine DNA synthesis and mitosis in response to estrogen appears to depend upon the stimulation of protein synthesis. 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase could have a key function in controlling uterine mitosis through its control of mevalonic acid and cholesterol synthesis as the rate-limiting enzyme in their synthetic pathways. These studies were initiated to examine the kinetics of the uterine increases in HMG-CoA reductase activity in response to estradiol. In the uterus of the ovariectomized mature rat, estradiol increased levels of enzyme activity in both the luminal epithelium and stroma-myometrium up to 12 h after estradiol treatment. Levels of HMG-CoA reductase activity decreased after 12 h in the luminal epithelium and further increased in the stroma-myometrium. Previous studies have shown that estradiol does not increase DNA synthesis and mitosis in the stroma-myometrium of the uterus of the ovariectomized mature rat. Since estradiol increased HMG-CoA reductase activity in both the luminal epithelium and stroma-myometrium, we conclude that even though increased HMG-CoA reductase activity may be a prerequisite for increased DNA synthesis, increases in uterine HMG-CoA reductase activity are not necessarily followed by increased DNA synthesis.  相似文献   

18.
Bochar DA  Stauffacher CV  Rodwell VW 《Biochemistry》1999,38(48):15848-15852
Sequence analysis has revealed two classes of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Crystal structures of ternary complexes of the Class II enzyme from Pseudomonas mevalonii revealed lysine 267 critically positioned at the active site. This observation suggested a revised catalytic mechanism in which lysine 267 facilitates hydride transfer from reduced coenzyme by polarizing the carbonyl group of HMG-CoA and subsequently of bound mevaldehyde, an inference supported by mutagenesis of lysine 267 to aminoethylcysteine. For this mechanism to be general, Class I HMG-CoA reductases ought also to possess an active site lysine. Three lysines are conserved among all Class I HMG-CoA reductases. The three conserved lysines of Syrian hamster HMG-CoA reductase were mutated to alanine. All three mutant enzymes had reduced but detectable activity. Of the three conserved lysines, sequence alignments implicate lysine 734 of the hamster enzyme as the most likely cognate of P. mevalonii lysine 267. Low activity of enzyme K734A did not reflect an altered structure. Substrate recognition was essentially normal, and both circular dichroism spectroscopy and analytical ultracentrifugation implied a native structure. Enzyme K734A also formed an active heterodimer when coexpressed with inactive mutant enzyme D766N. We infer that a lysine is indeed essential for catalysis by the Class I HMG-CoA reductases and that the revised mechanism for catalysis is general for all HMG-CoA reductases.  相似文献   

19.
In the ovary of adult Blattella germanica, the enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) is highly expressed in mid-late vitellogenesis, suggesting a functional link of the mevalonate pathway with choriogenesis. The inhibitor of HMG-CoA reductase, fluvastatin, applied in females in late vitellogenesis, inhibits the activity of the enzyme in the ovary and in the developing embryos within the ootheca. This does not affect choriogenesis or ootheca formation but reduces the number of larvae per ootheca. Our results suggest that fluvastatin is incorporated into the oocytes and has delayed inhibitory effects on the oviposited eggs. HMG-CoA reductase is essential for embryogenesis, but not for chorion formation.  相似文献   

20.
The properties and developmental change in the activity of cytosolic 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) synthase in brain was examined and whether or not HMG-CoA lyase is present in cytosol and mitochondria from brain was determined. Although mitochondrial fractions contained significant HMG-CoA lyase activity, the enzyme activity was not detected in brain cytosol. The synthase activity was present in both mitochondrial and cytosolic fraction. The HMG-CoA synthesis by brain cytosol was optimal at pH 8.0 and did not require Mg2+ or exogenous acetoacetyl CoA. This indicates that brain cytosol can synthesize sufficient quantity of acetoacetyl CoA from acetyl CoA to be utilized for HMG-CoA synthesis. Our results also showed that the specific activity (nmol acetyl CoA incorporated/mg protein) of HMG-CoA synthase in brain cytosol was high (between 2–11 days of postnatal age) when the cholesterol content of brain is increasing rapidly, and the activity declined slowly thereafter. This suggests that in brain, cytosolic enzyme HMG-CoA synthase plays a role in the regulation of cholesterol synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号