首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mucosal candidiasis is extremely common in immunocompromised patients. However, the prevalence of site-specific infection (i.e., oropharyngeal, vaginal, and esophageal candidiasis) can be quite variable depending on the immune status of the host. While vulvovaginal candidiasis is common in normal healthy women, oropharyngeal and esophageal candidiasis are more frequently encountered under immunocompromised states. Candida albicans, the causative agent in most cases of candidiasis, is a commensal organism of the gastrointestinal and lower female reproductive tracts. Thus, most healthy individuals have demonstrable Candida-specific immunity in the peripheral circulation. The pathogenic state is often precipitated by a deficiency or dysfunction in this immunity. Studies from animal models, women with recurrent vulvovaginal candidiasis, and HIV-infected individuals, however, suggest that distinct host defense mechanisms may function against oropharyngeal and vulvovaginal candidiasis. While cell-mediated immunity (CMI) appears important for protection against oropharyngeal candidiasis (OPC), there is little evidence to indicate that T cell-mediated immunity is protective against vulvovaginal candidiasis (VVC). Furthermore, whereas both local and systemically derived immune defenses appear important for protection against OPC, host defenses that protect against VVC appear limited to the local tissue and possibly restricted to innate mechanisms. Thus, current evidence suggests that VVC, unlike OPC, may not represent a strict opportunistic infection.  相似文献   

2.
Groups of lethally X-irradiated NIH mice were injected with either glass wool-filtered (g.w.) immune spleen cells or nylon wool enriched immune T cells from syngeneic mice immune to Plasmodium chabaudi, or g.w. normal spleen cells. After cell recipients were infected with P. chabaudi the three groups reached similar mean peak parasitaemias on Day 11. In passive transfer tests serum obtained from mice sacrificed at this time gave little protection compared to normal serum. On Day 14 g.w. immune spleen cell recipients had subpatent infections and enriched immune T-cell recipients had a lower mean parasitaemia than g.w. normal spleen cell recipients. Serum obtained on Day 14 from g.w. immune spleen cell recipients gave better protection after passive transfer than sera from enriched immune T-cell or g.w. normal spleen cell recipients. Day 14 serum from enriched immune T-cell recipients, but not from g.w. normal spleen cell recipients, produced some initial protection after passive transfer. These results suggest that the transferred immune spleen cells contributed to the observed humoral immunity in lethally irradiated recipient mice.  相似文献   

3.
Spleen cells at various times after inoculation of W/Fu rats with a syngeneic Gross virus-induced lymphoma, (C58NT)D, were tested for their in vivo activity in adoptive transfer experiments and for their in vitro reactivity in a 4-hr 51Cr release cytotoxicity assay and in a mixed lymphocyte-tumor cell interaction assay. In adoptive transfer, the best protection against tumor growth was observed with immune spleen cells taken at 30 days after tumor cell inoculation (the peak of reactivity in the mixed lymphocyte-tumor cell interaction assay) whereas cells taken at 10 days (the peak reactivity in the 51Cr release cytotoxicity assay) gave only partial protection. The protection detected in the adoptive transfer experiments was specific for (C58NT)D associated antigens, and this correlated well with the specificity observed in the in vitro cell-mediated immunity assays. T cells, but not complement receptor-bearing cells or macrophages, were essential for the protection against tumor growth in vivo, and also for the in vitro reactivity in the 51Cr release cytotoxicity and the mixed lymphocyte-tumor cell interaction assays.  相似文献   

4.
Passive immunization protects guinea pigs from lethal toxoplasma infection   总被引:2,自引:0,他引:2  
Abstract The cellular and humoral interactions that contribute to protective immunity in toxoplasmosis were studied by adoptive transfer of selective cell populations or immune serum and its fractions into normal syngeneic strain 2 guinea pigs. The results of this study with the RH strain of Toxoplasma gondii confirm and extend the findings of previous studies by showing that the passive transfer of parasite-sensitized T cells or of immune serum from previously infected donors protected recipient guinea pigs against lethal toxoplasmosis. An additional key finding was that similar levels of complete protection against lethal infection occurred in guinea pigs receiving partially purified anti- Toxoplasma immunoglobulins or immune cells that had been enriched for B cells prior to transfer. Cells residing in the spleen, lymph nodes and peritoneal cavity, but not the thymus, were equally effective in conferring immunity to challenged recipients. In addition, cell titration experiments revealed that guinea pigs could survive T. gondii infection by infusing them with as little as 2 × 107 sensitized T cells or B cells. Unlike protection mediated by T cells, protection against lethal disease occurring in the B cell recipients was associated with the formation of Toxoplasma antibodies. These findings illustrate the major role of both humoral and cell-mediated immunity in affording protection against toxoplasmosis based on a guinea pig model of the human disease.  相似文献   

5.
Candida albicans causes mucosal and disseminated candidiasis, which represent serious problems for the rapidly expanding immunocompromised population. Until recently, Th1-mediated immunity was thought to confer the primary protection, particularly for oral candidiasis. However, emerging data indicate that the newly-defined Th17 compartment appears to play the predominant role in mucosal candidiasis.  相似文献   

6.
We have previously demonstrated a genetic predisposition among mice regarding their ability to be protected against vaginal candidiasis after peripheral immunization. Both BALB/c and (BALB/cx C57BL/6) F1 mice are protected against vaginal candidiasis after subcutaneous immunization with Candida albicans extract and C57BL/6 mice are not protected by this immunization. In the present study, the ability of F1-derived immune cells to transfer protection to naive parental strains was observed in BALB/c recipient mice, but not apparent in B6 recipient mice. This result is highly suggestive that the microenvironment of the B6 mouse is responsible for the susceptible phenotype. Genetic studies using (BALB/cx C57BL/6)F1x C57BL/6 backcross mice demonstrated that two genes appeared to regulate the protective effect of peripheral immunization to vaginal challenge. Microsatellite mapping indicated that candidate loci involved in controlling the immune response to vaginal candidiasis after peripheral immunization included the intercellular adhesion molecule-1 (ICAM-1), the Icam-1 related sequence 1, and the Fc epsilon RII (P<0.01). Thus, the ability of cells to bind to vaginal endothelial cells may play an important role in protection against vaginal candidiasis mediated by peripheral immunization.  相似文献   

7.
BALB/c mice develop specific and relatively long lasting immunity after exposure to sublethal numbers of viable Listeria monocytogenes. This immunity can be passively transferred to naive recipients with maximal protection conferred by spleen cells obtained from donors 6 days after immunization. Immunity that can be directly transferred to syngeneic recipients is surprisingly short lived. Cell recipients lose immunity as early as 72 hr after transfer, and recipients express no detectable immunity after 1 wk. This short lived immunity requires both L3T4+ and Lyt-2+ T cell populations for full expression. Both the level of immunity transferred and the duration of the protective response expressed in recipients are dramatically increased if the spleen cell population is cultured in vitro with concanavalin A before cell transfer. Recipients of concanavalin A-activated cells express antigen-specific levels of immunity increased 100- to 1000-fold compared with syngeneic recipients of directly transferred immune spleen cells. In addition, this elevated level of adoptively transferred immunity remains constant for at least 8 wk. Transfer of this culture-enhanced immunity requires only an Lyt-2+ T cell population and is not influenced by cells of the L3T4+T cell subpopulation. Both direct as well as culture-enhanced transfer of immunity require major histocompatibility complex-compatible recipients. These findings suggest that two phenotypically distinct T cell subpopulations function in the development of the immune response to L. monocytogenes and that only one cell subpopulation is required for expression of immunity to this intracellular parasite.  相似文献   

8.
9.
Antibody-mediated neutralization of viruses has been extensively studied in vitro, but the precise mechanisms that account for antibody-mediated protection against viral infection in vivo still remain largely uncharacterized. The two points under discussion are antibodies conferring sterilizing immunity by neutralizing the virus inoculum or protection against the development of disease without complete inhibition of virus replication. For tick-borne encephalitis virus (TBEV), a flavivirus, transfer of neutralizing antibodies specific for envelope glycoprotein E protected mice from subsequent TBEV challenge. Nevertheless, short-term, low-level virus replication was detected in these mice. Furthermore, mice that were exposed to replicating but not to inactivated virus while passively protected developed active immunity to TBEV rechallenge. Despite the priming of TBEV-specific cytotoxic T cells, adoptive transfer of serum but not of T cells conferred immunity upon naive recipient mice. These transferred sera were not neutralizing and were predominantly specific for NS1, a nonstructural TBEV protein which is expressed in and on infected cells and which is also secreted from these cells. Results of these experiments showed that despite passive protection by neutralizing antibodies, limited virus replication occurs, indicating protection from disease rather than sterilizing immunity. The protective immunity induced by replicating virus is surprisingly not T-cell mediated but is due to antibodies against a nonstructural virus protein absent from the virion.  相似文献   

10.
Mice immunized with viable C. albicans cells demonstrated a high incidence of cell-mediated and a low incidence of humoral immune response. There was good agreement between the final survival rate of C. albicans infected mice and the rate of simultaneous cell-mediated and humoral immune response acquisition. Immunized mice with positive delayed hypersensitivity (DTH) against C. albicans crude antigen showed significant protection against intravenous challenge with C. albicans. Furthermore, the transfer of immunoglobulins from rabbit anti-C. albicans serum to DTH-positive mice enhanced protection, while it did not protect control mice against a subsequent challenge with C. albicans. These results suggest that cell-mediated immunity plays a major role and humoral immunity a side role in the defense mechanism(s) of C. albicans infected mice.  相似文献   

11.
BACKGROUND: Transfer factors are small proteins that "transfer" the ability to express cell-mediated immunity from immune donors to non-immune recipients. We developed a process for purifying specific transfer factors to apparent homogeneity. This allowed us to separate individual transfer factors from mixtures containing several transfer factors and to demonstrate the antigen-specificity of transfer factors. Transfer factors have been shown to be an effective means for correction of deficient cellular immunity in patients with opportunistic infections, such as candidiasis or recurrent Herpes simplex and to provide prophylactic immunity against varicella-zoster in patients with acute leukemia. MATERIALS AND METHODS: Transfer factors of bovine and murine origin were purified by affinity chromatography and high performance liquid chromatography. Cyanogen bromide digests were sequenced. The properties of an apparently conserved sequence on expression of delayed-type hypersensitivity by transfer factor recipients were assessed. RESULTS: A novel amino acid sequence, LLYAQDL/VEDN, was identified in each of seven transfer factor preparations. These peptides would not transfer expression of delayed-type hypersensitivity to recipients, which indicates that they are not sufficient for expression of the specificity or immunological properties of native transfer factors. However, administration of the peptides to recipients of native transfer factors blocked expression of delayed-type hypersensitivity by the recipients. The peptides were not immunosuppressive. CONCLUSIONS: These findings suggest that the peptides may represent the portion of transfer factors that binds to the "target cells" for transfer factors. Identification of these cells will be helpful in defining the mechanisms of action of transfer factors.  相似文献   

12.
Protective immunity to the fungus Candida albicans is mediated by Ag-specific Th1 cells. Paradoxically, some Th2 cytokines are required for the maintenance of Th1-mediated immune resistance to the fungus. Therefore, in addition to the Th1/Th2 balance, other mechanisms seem to be involved in the regulation of Th1 immunity to the fungus. Here we show that CD4(+)CD25(+) T cells, negatively regulating antifungal Th1 reactivity, are generated in mice with candidiasis. CD4(+)CD25(+) T cells were not generated in B7-2- or CD28-deficient mice or in condition of IL-10 signaling deficiency. Accordingly, although capable of efficiently restricting the fungal growth, these mice experienced inflammatory pathology and were incapable of resistance to reinfection. CD4(+)CD25(+) T cells poorly proliferated in vitro; were highly enriched for cells producing IL-4, IL-10, and TGF-beta; and required IL-10-producing, Candida hypha-activated dendritic cells for generation. Adoptive transfer of CD4(+)CD25(+) T cells or IL-10-producing dendritic cells restored resistance to reinfection and decreased inflammation in B7-2-deficient mice. These results show that oral tolerance induced by Candida hyphae is required for the occurrence of long-lasting protective immunity after yeast priming. The implication is that preventing reactivation rather than favoring sterilizing immunity to ubiquitous fungal pathogens may represent the ultimate expectation of vaccine-based strategies.  相似文献   

13.
Hybrid cells derived from fusion of a BALB/c plasmacytoma (TEPC-15) and L cells (C3H origin) were used to stimulate tumor-specific immunity against the parental plasmacytoma cells. Live hybrid cells induced tumor-specific immunity against TEPC-15 more effectively than mitomycin-treated hybrid or TEPC-15 tumor cells. Adoptive transfer of immunity with spleen cells of mice immunized with hybrid cells was also more effective than that with mitomycin-treated tumor cells. The immunity induced by the hybrid cells was specific to the TEPC-15 tumor because the mice that received immune spleen cells were not protected against challenge with either HOPC-8 or McPC-603 plasmacytomas. T cell populations were primarily responsible for the transfer of specific immunity based on the sensitivity of immune cells to anti-Thy 1.2 and complement. Mice that had established solid tumors were treated with 5 x 10(7) spleen cells to evaluate the therapeutic value of the hybrid-induced immune cells. Tumors in the mice that received immune cells gradually regressed over a 40-day period, whereas tumors on the control mice continued to grow. These results suggest that a rearrangement of tumor-specific antigens on allogeneic hybrid cells can enhance their immunogenicity.  相似文献   

14.
The relative role of thymus-derived (T-) lymphocytes and bone marrow-derived (B-) cells in acquired immunity to salmonellosis was examined in mice. The results demonstrate that the protective capacity of the donor immunized mice could be passively transferred to the recipient mice by spleen cells but not with peritoneal exudate cells or sera. A high cell number of spleen cells (2 X 10(8)/mouse) were required before passive transfer of immunity could be obtained. Of the T-lymphocytes and B-cell populations of spleen cells, T-cells from immune mice were effective in conferring protection to the recipient mice.  相似文献   

15.
We studied immunity to the blood stage of the rodent malaria, Plasmodium vinckei vinckei, which is uniformly lethal to mice. BALB/c mice develop solid immunity after two infections and drug cure. The following experiments define the basis of this immunity. Transfer of pooled serum from such immune mice renders very limited protection to BALB/c mice and no protection to athymic nu/nu mice. Moreover, B cell-deficient C3H/HeN mice develop immunity to P. vinckei reinfection in the same manner as immunologically intact mice, an observation made earlier. In vivo depletion of CD4+ T cells in immune mice abrogates their immunity. This loss of immunity could be reversed through reconstitution of in vivo CD4-depleted mice with fractionated B-, CD8-, CD4+ immune spleen cells; however, adoptive transfer of fractionated CD4+ T cells from immune spleen into naive BALB/c or histocompatible BALB/c nude mice does not render recipients immune. In vivo depletion of CD8+ T cells did not influence the parasitemia in nonimmune or immune mice. Splenectomy of immune mice completely reverses their immunity. Repletion of splenectomized mice with their own spleen cells does not reconstitute their immunity. We conclude that some feature of the malaria-modified spleen acts in concert with the effector/inducer function of CD4+ T cells to provide protection from P. vinckei. To be consistent with this finding, a malaria vaccine may require a combination of malaria Ag to induce immune CD4+ T cells and an adjuvant or other vaccine vehicle to alter the spleen.  相似文献   

16.
17.
The effector cells responsible for protection to Salmonella typhimurium in C3H/HeJ mice, conferred by L-form S. typhimurium, were determined by cell transfer test. Nonfractionated spleen cells from 6-week immune mice but not from 24-week immune animals transferred anti-S. typhimurium immunity. Treatment with anti-macrophage antiserum and complement most effectively abolished protective capacity in 6-week immune cells, while anti-T cell monoclonal antibody plus complement reduced it to a lesser extent. However, adoptive protection was achieved only by transfer of immune macrophages along with Lyt-2+ T cells selected from 6-week immune spleen cells. These Lyt-2+ T cells were cytotoxic to Kupffer cells from C3H/HeJ mice which had been infected 48 hr previously and from the mice which had been immunized 1 week previously, but not to the cells from 6-week immune mice and from normal animals. Moreover, protective capacity in immune macrophages seemed to be correlated to the degree of colonization by the L forms, and the inability to transfer immunity of 24-week immune spleen cells may be due to the decrease in the L form-colonization. These results suggest that cooperation between the L form-colonized macrophages and L form-induced cytotoxic Lyt-2+ T cells contributes to anti-S. typhimurium immunity, and might imply the immunological difference between the 6-week immune phagocytes and the cells at an early stage of infection or immunization.  相似文献   

18.
Several studies have shown that immunization with DNA, which encodes the idiotypic determinants of a B cell lymphoma, generates tumor-specific immunity. Although induction of antiidiotypic Abs has correlated with tumor protection, the effector mechanisms that contribute to tumor protection have not been clearly identified. This study evaluated the tumor protective effects of humoral and cellular immune mechanisms recruited by idiotype-directed DNA vaccines in the 38C13 murine B cell lymphoma model. Antiidiotypic Abs induced by DNA vaccination supported in vitro complement-mediated cytotoxicity of tumor cells, and simultaneous transfer of tumor cells and hyperimmune sera protected naive animals against tumor growth. However, in vitro stimulation of immune splenocytes with tumor cells failed to induce idiotype-specific cytotoxicity, and following vaccination, depletion of CD4 or CD8 T cell subsets did not compromise protection. Furthermore, protection of naive recipients against tumor challenge could not be demonstrated either by a Winn assay approach or by adoptive transfer of spleen and lymph node cells. Thus, in this experimental model, current evidence suggests that the tumor-protective effects of DNA vaccination can be largely attributed to idiotype-specific humoral immunity.  相似文献   

19.
Immunity against TEPC-15 tumor cells was induced in BALB/c mice by injecting semi-allogeneic hybrid cells derived from fusion of TEPC-15 tumor cells with LM(TK?) cells of the C3H origin. Adoptive transfer of spleen cells from the immune mice into normal BALB/ c recipients rendered them free from tumors following tumor challenge; the recipients were most significantly protected from the tumor when tumor cells were injected 7–14 days after the adoptive transfer of immune cells. Such immunity following adoptive transfer appeared to persist in the recipients for at least 60 days. Moreover, the tumor-specific immunity was consecutively transferable (more than nine passages) into normal BALB/c recipients by serially passing spleen cells from the recipients every 14 days, without further stimulation with the hybrid cells or inactivated TEPC-15 tumor cells. Such consecutive transfer of the immune spleen cells induced splenomegaly in the recipients: a two- to five-fold increase over normal spleen cell recipients. The ability of spleen cells to transfer immunity, but not splenomegaly, was abrogated by treatment with mitomycin C. These results suggest that proliferation of donor cells is necessary to transfer immunity, and that splenomegaly alone does not manifest such immunity in the recipients.  相似文献   

20.
A girl with chronic mucocutaneous candidiasis and recurrent staphylococcal infections had abnormal cellular immunity and defective granulocyte chemotaxis. Administration of dialyzable transfer factor caused conversion of the candida skin test and MIF production by candida-stimulated lymphocytes but had no effect on granulocyte chemotaxis and produced no clinical benefit.Nine months later, while her cellular immunity was still intact, she received four additional doses of dialyzable transfer factor. Following these injections, the delayed skin tests and antigen-induced lymphocyte transformation and lymphokine production temporarily became negative. There were no effects on granulocyte chemotaxis.These observations suggest that transfer factor may have both suppressive and activating immunologic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号