首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background. IS605, a transposable element-like sequence identified in the virulence-associated cag region of Helicobacter pylori reference strain NCTC11638, is unusual in containing two oppositely-oriented open reading frames whose products are homologues of the single transposases of the unrelated elements, IS200 and IS1341. Methods. One hundred independent H. pylori isolates from different parts of the world were screened by PCR and dot blot hybridization to determine the presence of IS605. For some positive isolates, southern hybridizations and sequence analyses were done. Results. Of the 100 isolates, 31 were found to contain sequences related to each ORF with orientation and spacing matching those in canonical IS605-hybridizing sequences. No isolate containing just one ORF and not the other was found. The frequencies of IS605 carriage were independent of geographical origin (U.S. vs. non-U.S.), and of the probable virulence of the isolate (cag status, toxin production or vacA alleles, patient symptoms). Southern blot hybridization of six IS605-containing strains revealed one to nine IS605 copies per genome. Two types of DNA sequence diversity were found: first, a specific 100 bp deletion in two isolates; second, base substitution divergence of 0.4% to 7.5% in pairwise comparisons among the eight isolates characterized, a level of divergence similar to that seen in other H. pylori chromosomal genes. Conclusions. Based on these findings, we speculate that IS605 is a relatively ancient component of the H. pylori gene pool that has proliferated in this species by horizontal gene transfer, homologous recombination, and transposition.  相似文献   

2.

Background

The prevalence of Helicobacter pylori including strains with putatively virulent genotypes is high, whereas the H. pylori-associated disease burden is low, in Africa compared to developed countries. In this study, we investigated the prevalence of virulence-related H. pylori genotypes and their association with gastroduodenal diseases in The Gambia.

Methods and Findings

DNA extracted from biopsies and H. pylori cultures from 169 subjects with abdominal pain, dyspepsia or other gastroduodenal diseases were tested by PCR for H. pylori. The H. pylori positive samples were further tested for the cagA oncogene and vacA toxin gene.One hundred and twenty one subjects (71.6%) were H. pylori positive. The cagA gene and more toxigenic s1 and m1 alleles of the vacA gene were found in 61.2%, 76.9% and 45.5% respectively of Gambian patients harbouring H. pylori. There was a high prevalence of cagA positive strains in patients with overt gastric diseases than those with non-ulcerative dyspepsia (NUD) (p = 0.05); however, mixed infection by cagA positive and cagA negative strains was more common in patients with NUD compared to patients with gastric disease (24.5% versus 0%; p = 0.002).

Conclusion

This study shows that the prevalence of H. pylori is high in dyspeptic patients in The Gambia and that many strains are of the putatively more virulent cagA+, vacAs1 and vacAm1 genotypes. This study has also shown significantly lower disease burden in Gambians infected with a mixture of cag-positive and cag-negative strains, relative to those containing only cag-positive or only cag-negative strains, which suggests that harbouring both cag-positive and cag-negative strains is protective.  相似文献   

3.
Analyses of the cag pathogenicity island of Helicobacter pylori   总被引:26,自引:0,他引:26  
Most strains of Helicobacter pylori from patients with peptic ulcer disease or intestinal-type gastric cancer carry cagA, a gene that encodes an immunodominant protein of unknown function, whereas many of the strains from asymptomatically infected persons lack this gene. Recent studies showed that the cagA gene lies near the right end of a ≈37 kb DNA segment (a pathogenicity island, or PAI) that is unique to cagA+ strains and that the cag PAI was split in half by a transposable element insertion in the reference strain NCTC11638. In complementary experiments reported here, we also found the same cag PAI, and sequenced a 39 kb cosmid clone containing the left ‘cagII’ half of this PAI. Encoded in cagII were four proteins each with homology to four components of multiprotein complexes of Bordetella pertussis (‘Ptl’), Agrobacterium tumefaciens (‘Vir’), and conjugative plasmids (‘Tra’) that help deliver pertussis toxin and T (tumour inducing) and plasmid DNA, respectively, to target eukaryotic or prokaryotic cells, and also homologues of eukaryotic proteins that are involved in cytoskeletal structure. To the left of cagII in this cosmid were genes for homologues of HslU (heat-shock protein) and Era (essential GTPase); to the right of cagII were homologues of genes for a type I restriction endonuclease and ion transport functions. Deletion of the cag PAI had no effect on synthesis of the vacuolating cytotoxin, but this deletion and several cag insertion mutations blocked induction of synthesis of proinflammatory cytokine IL-8 in gastric epithelial cells. Comparisons among H. pylori strains indicated that cag PAI gene content and arrangement are rather well conserved. We also identified two genome rearrangements with end-points in the cag PAI. One, in reference strain NCTC11638, involved IS605, a recently described transposable element (as also found by others). Another rearrangement, in 3 of 10 strains tested (including type strain NCTC11637), separated the normally adjacent cagA and picA genes and did not involve IS605. Our results are discussed in terms of how cag-encoded proteins might help trigger the damaging inflammatory responses in the gastric epithelium and possible contributions of DNA rearrangements to genome evolution.  相似文献   

4.
The aim of this study was to investigate the Lewis antigen expression in Helicobacter pylori gastric MALT lymphoma associated strains in comparison to chronic gastritis only strains. Forty MALT strains (19 cagPAI (−) and 21 cagPAI (+)) and 39 cagPAI frequency-matched gastritis strains (17 cagPAI (−) and 22 cagPAI (+)) were included in this study. The lipopolyssacharide for each strain was extracted using a hot phenol method and the expression of Lex and Ley were investigated using Western Blot. The data were analyzed according to the strains'' cagPAI status and vacA genotype. Lex was identified in 21 (52.5%) MALT strains and 29 (74.3%) gastritis strains. Ley was identified in 30 (75%) MALT strains and 31 (79.5%) gastritis strains. There was an association between cagPAI positivity and Lex expression among MALT strains (p<0.0001), but not in gastritis strains (p = 0.64). Among cagPAI (−) strains, isolates expressing solely Ley were associated with MALT with an odds ratio of 64.2 (95% CI 4.9–841.0) when compared to strains expressing both Lex and Ley. vacA genotypes did not modify the association between Lewis antigen expression and disease status. In conclusion, cagPAI (−) MALT strains have a particular Lewis antigen profile which could represent an adaptive mechanism to the host response or participate in MALT lymphomagenesis.  相似文献   

5.
Background. The cag pathogenicity island (cag PAI) is a major virulence factor. The ability of Helicobacter pylori to adhere to gastric epithelial cells is an important initial step for virulence. The aim of this study was to evaluate the relationship between genetic variations of cag PAI in Japanese clinical isolates and the ability of H. pylori to adhere to gastric epithelial cells. Materials and Methods. The polymerase chain reaction and Southern blot analysis were used to verify the presence or absence of cagA, cagE, cagG, cagI and cagM in the cag PAI in 236 Japanese clinical isolates. The ability of H. pylori to adhere to KATOIII cells was examined by flow cytometry. Results. Seven (3.0%) cag PAI partial‐deleted strains were found in 236 clinical isolates, and these strains showed three patterns in the deleted region within the cag PAI. All of the cagG‐deleted strains showed decreased adherence to KATOIII cells, in comparison with cagG‐positive strains. These strains had abolished IL‐8 induction despite the presence of cagE, which is essential for IL‐8 induction. Conclusions. Our results suggest that cagG or surrounding genes in the cag PAI has a function related to adhesion to epithelial cells.  相似文献   

6.
Isolates of Helicobacter pylori can be classified phylogeographically. High genetic diversity and rapid microevolution are a hallmark of H. pylori genomes, a phenomenon that is proposed to play a functional role in persistence and colonization of diverse human populations. To provide further genomic evidence in the lineage of H. pylori and to further characterize diverse strains of this pathogen in different human populations, we report the finished genome sequence of Sahul64, an H. pylori strain isolated from an indigenous Australian. Our analysis identified genes that were highly divergent compared to the 38 publically available genomes, which include genes involved in the biosynthesis and modification of lipopolysaccharide, putative prophage genes, restriction modification components, and hypothetical genes. Furthermore, the virulence-associated vacA locus is a pseudogene and the cag pathogenicity island (cagPAI) is not present. However, the genome does contain a gene cluster associated with pathogenicity, including dupA. Our analysis found that with the addition of Sahul64 to the 38 genomes, the core genome content of H. pylori is reduced by approximately 14% (∼170 genes) and the pan-genome has expanded from 2,070 to 2,238 genes. We have identified three putative horizontally acquired regions, including one that is likely to have been acquired from the closely related Helicobacter cetorum prior to speciation. Our results suggest that Sahul64, with the absence of cagPAI, highly divergent cell envelope proteins, and a predicted nontransportable VacA protein, could be more highly adapted to ancient indigenous Australian people but with lower virulence potential compared to other sequenced and cagPAI-positive H. pylori strains.  相似文献   

7.
The Helicobacter pylori cag pathogenicity island (cagPAI) encodes a type IV secretion system. Humans infected with cagPAI–carrying H. pylori are at increased risk for sequelae such as gastric cancer. Housekeeping genes in H. pylori show considerable genetic diversity; but the diversity of virulence factors such as the cagPAI, which transports the bacterial oncogene CagA into host cells, has not been systematically investigated. Here we compared the complete cagPAI sequences for 38 representative isolates from all known H. pylori biogeographic populations. Their gene content and gene order were highly conserved. The phylogeny of most cagPAI genes was similar to that of housekeeping genes, indicating that the cagPAI was probably acquired only once by H. pylori, and its genetic diversity reflects the isolation by distance that has shaped this bacterial species since modern humans migrated out of Africa. Most isolates induced IL-8 release in gastric epithelial cells, indicating that the function of the Cag secretion system has been conserved despite some genetic rearrangements. More than one third of cagPAI genes, in particular those encoding cell-surface exposed proteins, showed signatures of diversifying (Darwinian) selection at more than 5% of codons. Several unknown gene products predicted to be under Darwinian selection are also likely to be secreted proteins (e.g. HP0522, HP0535). One of these, HP0535, is predicted to code for either a new secreted candidate effector protein or a protein which interacts with CagA because it contains two genetic lineages, similar to cagA. Our study provides a resource that can guide future research on the biological roles and host interactions of cagPAI proteins, including several whose function is still unknown.  相似文献   

8.

Background  

Genomic diversity of H. pylori from many different human populations is largely unknown. We compared genomes of 65 H. pylori strains from Nottingham, England. Molecular analysis was carried out to identify rearrangements within and outside the cag-pathogenicity-island (cag PAI) and DNA sequence divergence in candidate genes. Phylogenetic analysis was carried out based on various high-resolution genotyping techniques.  相似文献   

9.
Helicobacter pylori infection has been proposed to be associated with various diseases of the hepatobiliary tract, including cancer of the bile duct epithelial cells (cholangiocarcinoma, CCA). The ability of H. pylori bacteria to cause pathogenic effects in these cells has, however, yet to be investigated. Given that the cag pathogenicity island (cagPAI) is required for H. pylori pathogenesis in gastric epithelial cells, we investigated wild-type and cag mutant strains for their ability to adhere, be internalized and induce pro-inflammatory responses in two bile duct epithelial cell lines derived from cases of CCA. The findings from these experiments were compared to results obtained with the well-characterized AGS gastric cancer cell line. We showed that the cagPAI encodes factors involved in H. pylori internalization in CCA cells, but not for adhesion to these cells. Consistent with previous studies in hepatocytes, actin polymerization and α5β1 integrin may be involved in H. pylori internalization in CCA cells. As for AGS cells, we observed significantly reduced levels of NF-κB activation and IL-8 production in CCA cells stimulated with either cagA, cagL or cagPAI bacteria, when compared with wild-type bacteria. Importantly, these IL-8 responses could be inhibited via either pre-treatment of cells with antibodies to α5β1 integrins, or via siRNA-mediated knockdown of the innate immune signaling molecules, nucleotide oligomerization domain 1 (NOD1) and myeloid differentiation response gene 88 (MyD88). Taken together, the data demonstrate that the cagPAI is critical for H. pylori pathogenesis in bile duct cells, thus providing a potential causal link for H. pylori in biliary tract disease.  相似文献   

10.
Helicobacter pylori infection is common in Iran as in other developing countries. Certain genotypes of H. pylori have been associated with increased occurrence of chronic gastritis, peptic ulcers, and gastric adenocarcinoma. The aim of this study was to investigate the clinical relevance of cagL gene and other virulence genotypes of H. pylori isolates with clinical outcomes in Iranian patients. Totally, 126 symptomatic patients who underwent gastroduodenal endoscopy were enrolled in the study. Sixty-one H. pylori strains were isolated from the patients studied. The presence of the cagL, cagA, vacA, iceA, babA2 and sabA genes in the corresponding H. pylori isolates were determined by polymerase chain reaction and the results were compared with clinical outcomes and histopathology. The cagL, cagA, vacA s1, vacA s2, vacA m1, vacA m2, iceA1, iceA2, babA 2 , and sabA genotypes were detected in 96.7, 85.2, 75.4, 24.6, 29.5, 70.5, 42.6, 23, 96.7, and 83.6 % of the isolates, respectively. The three genotypic combinations, cagL/cagA/vacAs1m1/iceA1/babA2/sabA, cagL/cagA/vacAs1m2/iceA1/babA2/sabA, and cagL/cagA/vacAs1m2/iceA2/babA2/sabA were determined as the most prevalent combined genotypes. There was a significant correlation between the presence of cagL gene and cagA positivity (P = 0.02). No significant correlation was found between the various genotypes and clinical outcomes (P > 0.05). The present study showed a very high prevalence of cagL genotype among the H. pylori isolates from Iranian patients. Our results demonstrated that neither single genotype nor combination genotypes of virulence-associated genes was significantly helpful markers for predicting the severity of gastroduodenal disease associated with H. pylori infection in Iranian patients.  相似文献   

11.
Helicobacter pylori cagPAI genes play an important role in pathogenesis, however little is known about their functions in isolates from Turkish patients. We aimed to evaluate the intactness and the effect of the cagPAI genes (cagT, cagM, cagE, cagA) and cagA EPIYA motifs on the AGS morphological changes and IL-8 induction. Of 53 patients 38 were found infected with H. pylori. PCR amplification of the cagPAI genes showed 42.1 % intact, 39.5 % partially deleted and 18.4 % with complete deletions. Isolates from gastritis, duodenal and gastric ulcer patients with intact and partially deleted cagPAI genes induced higher IL-8 secretion than those with complete deletions. Isolates from gastritis patients had higher deletion frequencies of the cagT and cagM genes than the other two genes. Infection of AGS cells with isolates that possess intact cagPAI and EPIYA-ABC resulted in the formation of the hummingbird phenotype. The cagA positive isolates induced higher IL-8 secretion than cagA negative isolates. Isolates from DU patients with more than one EPIYA-C motif induced higher concentrations of IL-8 than those with EPIYA-ABC. In conclusion, the intactness of the cagPAI in our isolates from different patients was not conserved. An intact cagPAI was found to play an important role in the pathogenesis of DU but not GU or gastritis. The cagA gene, but not other cagPAI genes, was associated with the induction of IL-8 and the morphological changes of the AGS cells. An increase in the number of EPIYA-C motifs had noticeable effect on the formation of the hummingbird phenotype.  相似文献   

12.

Background

Helicobacter pylori is associated with chronic gastritis, peptic ulcers, and gastric cancer. The aim of this study was to assess the topographical distribution of H. pylori in the stomach as well as the vacA and cagA genotypes in patients with and without gastric cancer.

Methodology/Principal Findings

Three gastric biopsies, from predetermined regions, were evaluated in 16 patients with gastric cancer and 14 patients with dyspeptic symptoms. From cancer patients, additional biopsy specimens were obtained from tumor centers and margins; among these samples, the presence of H. pylori vacA and cagA genotypes was evaluated. Positive H. pylori was 38% and 26% in biopsies obtained from the gastric cancer and non-cancer groups, respectively (p = 0.008), and 36% in tumor sites. In cancer patients, we found a preferential distribution of H. pylori in the fundus and corpus, whereas, in the non-cancer group, the distribution was uniform (p = 0.003). A majority of the biopsies were simultaneously cagA gene-positive and -negative. The fundus and corpus demonstrated a higher positivity rate for the cagA gene in the non-cancer group (p = 0.036). A mixture of cagA gene sizes was also significantly more frequent in this group (p = 0.003). Ninety-two percent of all the subjects showed more than one vacA gene genotype; s1b and m1 vacA genotypes were predominantly found in the gastric cancer group. The highest vacA-genotype signal-sequence diversity was found in the corpus and 5 cm from tumor margins.

Conclusion/Significance

High H. pylori colonization diversity, along with the cagA gene, was found predominantly in the fundus and corpus of patients with gastric cancer. The genotype diversity observed across systematic whole-organ and tumor sampling was remarkable. We find that there is insufficient evidence to support the association of one isolate with a specific disease, due to the multistrain nature of H. pylori infection shown in this work.  相似文献   

13.

Background

Analysis of the evolutionary dynamics of Helicobacter pylori allowed tracing the spread of infection through populations on different continents but transmission pathways between individual humans have not been clearly described.

Materials and Methods

To investigate person-to-person transmission, we studied three families each including one child with persistence of symptoms after antibiotic treatment. Ten isolates from the antrum and corpus of stomach of each family member were analyzed both by sequencing of two housekeeping genes and macroarray tests.

Results

A total of 134 (8.4%) out of the 1590 coding sequences (CDSs) tested, including cag PAI and insertion sequences, were present in some but not all isolates (and are therefore defined as variable CDSs). Most of the variable CDSs encoded proteins of unknown function (76/134) or were selfish DNA including that encoding restriction/modification enzymes (13/134). Isolates colonizing the stomach of one individual can vary by point mutations, as seen in hspA, or by the gain or loss of one to five CDSs. They were considered as (genetic) variants. The phylogenetic clustering of gene profiles obtained on macro-arrays allowed identifying the different strains infecting families. Two to five strains circulated within a family. Identical strains were present in at least two members of all three families supporting the accepted model of intrafamilial transmission. Surprisingly, the mother was not implicated in the transmission of H. pylori in the two French families. Sibling-to-sibling transmission and acquisition of H. pylori from outside the family appeared to be probable in the transmission pathways.

Conclusion

Macroarray analysis based on previously selected CDSs gives a comprehensive view of the genome diversity of a pathogen. This approach combined with information on the origin of the hspA and glmM alleles revealed that Helicobacter pylori infection may be acquired by more diverse routes than previously expected.  相似文献   

14.
The human gastric pathogen, Helicobacter pylori, has co-evolved with its host and established itself in the human stomach possibly millions of years ago. Therefore, the diversity of this bacterium is important in its clinical manifestations. Our aim has been to evaluate the genetic diversity of 40 H. pylori clinical isolates from four different parts of China. The methods of multi-locus sequence typing and vacA allele genotyping were used to assess their genetic diversity. To discriminate MLST, the vacA genotype method was used to identify strains. Patients from the northern, eastern, southern, and southwestern parts of China were recruited randomly from the cities of Beijing, Shanghai, Guangzhou, and Chongqing, respectively. Most of the sequence types are new and have never been reported in the database of the H. pylori multi-locus sequence typing system. The most prevalent vacA genotype in patients was s1a/m2 (80.0%), followed by s1b/m2 (17.5%). In contrast, the s1a/m1 genotype was scarcely represented (2.5%). The vacA genotype varied for each ST. These results showed that the MLST method offers high resolution of the H. pylori isolates in China when compared to vacA genotyping. The vacA allelic s1a has been correlated with the peptic ulcer. Because of the paucity of data on human isolates due to the absence of systematic investigations of H. pylori in China, the data provide useful information for understanding the epidemiology of H. pylori in China from the viewpoint of nucleotide sequence databases.  相似文献   

15.
16.
Helicobacter pylori (H. pylori) is a human gastric pathogen that colonizes the stomach in more than 50 % of the world’s human population. Infection with this bacterium can induce several gastric diseases ranging from gastritis to peptic ulcer and gastric cancer. Virulent H. pylori isolates harboring the cag pathogenicity island (cag PAI), which encodes a Type IV Secretion System (T4SS), form a pilus for the injection of its major virulence protein CagA into gastric cells. Several cag PAI genes have been identified as homologues of T4SS genes from Agrobacterium tumefaciens, while the other members in cag PAI still have no known function. We studied one of such proteins with unknown function, CagM, which was predicted to have a putative N-terminal signal sequence and at least three transmembrane helices. To determine the subcellular localization of CagM, we performed a cell fractionation procedure and produced rabbit anti-CagM polyclonal antibodies for immunoblotting assays. Furthermore, we generated an isogenic ΔcagM mutant to investigate the ability of CagA translocation compared with the wild-type NCTC 11637 strain using GES-1 and MKN-45 cell infection experiments. Our results indicated that CagM was mainly located in the bacterial membrane, partially located in the periplasm, and essential for CagA translocation both in GES-1 and MKN-45 cells, which suggested that CagM was one of the core members of Cag T4SS and localized in the transmembrane channel.  相似文献   

17.

Background

The Mongolian gerbils are a good model to mimic the Helicobacter pylori -associated pathogenesis of the human stomach. In the current study the gerbil-adapted strain B8 was completely sequenced, annotated and compared to previous genomes, including the 73 supercontigs of the parental strain B128.

Results

The complete genome of H. pylori B8 was manually curated gene by gene, to assign as much function as possible. It consists of a circular chromosome of 1,673,997 bp and of a small plasmid of 6,032 bp carrying nine putative genes. The chromosome contains 1,711 coding sequences, 293 of which are strain-specific, coding mainly for hypothetical proteins, and a large plasticity zone containing a putative type-IV-secretion system and coding sequences with unknown function. The cag -pathogenicity island is rearranged such that the cag A-gene is located 13,730 bp downstream of the inverted gene cluster cag B- cag 1. Directly adjacent to the cag A-gene, there are four hypothetical genes and one variable gene with a different codon usage compared to the rest of the H. pylori B8-genome. This indicates that these coding sequences might be acquired via horizontal gene transfer. The genome comparison of strain B8 to its parental strain B128 delivers 425 unique B8-proteins. Due to the fact that strain B128 was not fully sequenced and only automatically annotated, only 12 of these proteins are definitive singletons that might have been acquired during the gerbil-adaptation process of strain B128.

Conclusion

Our sequence data and its analysis provide new insight into the high genetic diversity of H. pylori -strains. We have shown that the gerbil-adapted strain B8 has the potential to build, possibly by a high rate of mutation and recombination, a dynamic pool of genetic variants (e.g. fragmented genes and repetitive regions) required for the adaptation-processes. We hypothesize that these variants are essential for the colonization and persistence of strain B8 in the gerbil stomach during inflammation.  相似文献   

18.

Background and Objectives

Strains of Helicobacter cetorum have been cultured from several marine mammals and have been found to be closely related in 16 S rDNA sequence to the human gastric pathogen H. pylori, but their genomes were not characterized further.

Methods

The genomes of H. cetorum strains from a dolphin and a whale were sequenced completely using 454 technology and PCR and capillary sequencing.

Results

These genomes are 1.8 and 1.95 mb in size, some 7–26% larger than H. pylori genomes, and differ markedly from one another in gene content, and sequences and arrangements of shared genes. However, each strain is more related overall to H. pylori and its descendant H. acinonychis than to other known species. These H. cetorum strains lack cag pathogenicity islands, but contain novel alleles of the virulence-associated vacuolating cytotoxin (vacA) gene. Of particular note are (i) an extra triplet of vacA genes with ≤50% protein-level identity to each other in the 5′ two-thirds of the gene needed for host factor interaction; (ii) divergent sets of outer membrane protein genes; (iii) several metabolic genes distinct from those of H. pylori; (iv) genes for an iron-cofactored urease related to those of Helicobacter species from terrestrial carnivores, in addition to genes for a nickel co-factored urease; and (v) members of the slr multigene family, some of which modulate host responses to infection and improve Helicobacter growth with mammalian cells.

Conclusions

Our genome sequence data provide a glimpse into the novelty and great genetic diversity of marine helicobacters. These data should aid further analyses of microbial genome diversity and evolution and infection and disease mechanisms in vast and often fragile ocean ecosystems.  相似文献   

19.
Helicobacter pylori is a common pathogen correlated with several severe digestive diseases. It has been reported that isolates associated with different geographic areas, different diseases and different individuals might have variable genomic features. Here, we describe draft genomic sequences of H. pylori strains YN4-84 and YN1-91 isolated from patients with gastritis from the Naxi and Han populations of Yunnan, China, respectively. The draft sequences were compared to 45 other publically available genomes, and a total of 1059 core genes were identified. Genes involved in restriction modification systems, type four secretion system three (TFS3) and type four secretion system four (TFS4), were identified as highly divergent. Both YN4-84 and YN1-91 harbor intact cag pathogenicity island (cagPAI) and have EPIYA-A/B/D type at the carboxyl terminal of cagA. The vacA gene type is s1m2i1. Another major finding was a 32.5-kb prophage integrated in the YN4-84 genome. The prophage shares most of its genes (30/33) with Helicobacter pylori prophage KHP30. Moreover, a 1,886 bp transposable sequence (IS605) was found in the prophage. Our results imply that the Naxi ethnic minority isolate YN4-84 and Han isolate YN1-91 belong to the hspEAsia subgroup and have diverse genome structure. The genome has been extensively modified in several regions involved in horizontal DNA transfer. The important roles played by phages in the ecology and microevolution of H. pylori were further emphasized. The current data will provide valuable information regarding the H. pylori genome based on historic human migrations and population structure.  相似文献   

20.
In order to better understand pathogenicity of Helicobacter pylori, particularly in the context of its carcinogenic activity, we analysed expression of virulence genes: cagA, virB/D complex (virB4, virB7, virB8, virB9, virB10, virB11, virD4) and vacA in strains of the pathogen originating from persons with gastric diseases. The studies were conducted on 42 strains of H. pylori isolated from patients with histological diagnosis of non-atrophic gastritis—NAG (group 1, including subgroup 1 containing cagA+ isolates and subgroup 2 containing cagA- strains), multifocal atrophic gastritis—MAG (group 2) and gastric adenocarcinoma—GC (group 3). Expression of H. pylori genes was studied using microarray technology. In group 1, in all strains of H. pylori cagA+ (subgroup 1) high expression of the gene as well as of virB/D was disclosed, accompanied by moderate expression of vacA. In strains of subgroup 2 a moderate expression of vacA was detected. All strains in groups 2 and 3 carried cagA gene but they differed in its expression: a high expression was detected in isolates of group 2 and its hyperexpression in strains of group 3 (hypervirulent strains). In both groups high expression of virB/D and vacA was disclosed. Our results indicate that chronic active gastritis may be induced by both cagA+ strains of H. pylori, manifesting high expression of virB/D complex but moderate activity of vacA, and cagA- strains with moderate expression of vacA gene. On the other hand, in progression of gastric pathology and carcinogenesis linked to H. pylori a significant role was played by hypervirulent strains, manifesting a very high expression of cagA and high activity of virB/D and vacA genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号