首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Considerable genetic and pathological evidence has implicated the small, soluble protein alpha-synuclein in the pathogenesis of familial and sporadic forms of Parkinsons disease (PD). However, the precise role of alpha-synuclein in the disease process as well as its normal function remain poorly understood. We recently found that an interaction with lipid rafts is crucial for the normal, pre-synaptic localization of alpha-synuclein. To understand how alpha-synuclein interacts with lipid rafts, we have now developed an in vitro binding assay to rafts purified from native membranes. Recapitulating the specificity observed in vivo, recombinant wild type but not PD-associated A30P mutant alpha-synuclein binds to lipid rafts isolated from cultured cells and purified synaptic vesicles. Proteolytic digestion of the rafts does not disrupt the binding of alpha-synuclein, indicating an interaction with lipid rather than protein components of these membranes. We have also found that alpha-synuclein binds directly to artificial membranes whose lipid composition mimics that of lipid rafts. The binding of alpha-synuclein to these raft-like liposomes requires acidic phospholipids, with a preference for phosphatidylserine (PS). Interestingly, a variety of synthetic PS with defined acyl chains do not support binding when used individually. Rather, the interaction with alpha-synuclein requires a combination of PS with oleic (18:1) and polyunsaturated (either 20:4 or 22:6) fatty acyl chains, suggesting a role for phase separation within the membrane. Furthermore, alpha-synuclein binds with higher affinity to artificial membranes with the PS head group on the polyunsaturated fatty acyl chain rather than on the oleoyl side chain, indicating a stringent combinatorial code for the interaction of alpha-synuclein with membranes.  相似文献   

2.
A combinatorial code for splicing silencing: UAGG and GGGG motifs   总被引:8,自引:2,他引:8       下载免费PDF全文
  相似文献   

3.
A combinatorial H4 tail library for exploring the histone code   总被引:1,自引:0,他引:1  
Garske AL  Craciun G  Denu JM 《Biochemistry》2008,47(31):8094-8102
  相似文献   

4.
5.
Berke B  Keshishian H 《Neuron》2011,70(2):175-177
In this issue of Neuron, Wu et?al. describe a combinatorial code of repulsive Sema-2a and attractive Sema-2b signaling that mediates mechanosensory axonal guidance, fasciculation, and synaptic target selection within the CNS of Drosophila. Their work exemplifies how a detailed, multilevel molecular-genetic analysis (from molecules to behavior) provides fundamental insights into neural circuit development.  相似文献   

6.
The pentatricopeptide repeat (PPR) is a helical repeat motif found in an exceptionally large family of RNA-binding proteins that functions in mitochondrial and chloroplast gene expression. PPR proteins harbor between 2 and 30 repeats and typically bind single-stranded RNA in a sequence-specific fashion. However, the basis for sequence-specific RNA recognition by PPR tracts has been unknown. We used computational methods to infer a code for nucleotide recognition involving two amino acids in each repeat, and we validated this model by recoding a PPR protein to bind novel RNA sequences in vitro. Our results show that PPR tracts bind RNA via a modular recognition mechanism that differs from previously described RNA-protein recognition modes and that underpins a natural library of specific protein/RNA partners of unprecedented size and diversity. These findings provide a significant step toward the prediction of native binding sites of the enormous number of PPR proteins found in nature. Furthermore, the extraordinary evolutionary plasticity of the PPR family suggests that the PPR scaffold will be particularly amenable to redesign for new sequence specificities and functions.  相似文献   

7.
8.
9.
Cell-cycle-dependent translational control   总被引:2,自引:0,他引:2  
Control of translation in eukaryotes occurs mainly at the initiation step. Translation rates in mammals are robust in the G1 phase of the cell cycle but are low during mitosis. These changes correlate with the activity of several canonical translation initiation factors, which is modulated during the cell cycle to regulate translation.  相似文献   

10.
11.
We use a modeling approach to examine ideas derived from physiological network analyses, pertaining to the switch of a motor control network between two opposite control modes. We studied the femur–tibia joint control system of the insect leg, and its switch between resistance reflex in posture control and “active reaction” in walking, both elicited by the same sensory input. The femur–tibia network was modeled by fitting the responses of model neurons to those obtained in animals. The strengths of 16 interneuronal pathways that integrate sensory input were then assigned three different values and varied independently, generating a database of more than 43 million network variants. We demonstrate that the same neural network can produce the two different behaviors, depending on the combinatorial code of interneuronal pathways. That is, a switch between behaviors, such as standing to walking, can be brought about by altering the strengths of selected sensory integration pathways. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
13.
Lina Herhaus  Ivan Dikic 《EMBO reports》2015,16(9):1071-1083
Ubiquitylation is among the most prevalent post‐translational modifications (PTMs) and regulates numerous cellular functions. Interestingly, ubiquitin (Ub) can be itself modified by other PTMs, including acetylation and phosphorylation. Acetylation of Ub on K6 and K48 represses the formation and elongation of Ub chains. Phosphorylation of Ub happens on multiple sites, S57 and S65 being the most frequently modified in yeast and mammalian cells, respectively. In mammals, the PINK1 kinase activates ubiquitin ligase Parkin by phosphorylating S65 of Ub and of the Parkin Ubl domain, which in turn promotes the amplification of autophagy signals necessary for the removal of damaged mitochondria. Similarly, TBK1 phosphorylates the autophagy receptors OPTN and p62 to initiate feedback and feedforward programs for Ub‐dependent removal of protein aggregates, mitochondria and pathogens (such as Salmonella and Mycobacterium tuberculosis). The impact of PINK1‐mediated phosphorylation of Ub and TBK1‐dependent phosphorylation of autophagy receptors (OPTN and p62) has been recently linked to the development of Parkinson's disease and amyotrophic lateral sclerosis, respectively. Hence, the post‐translational modification of Ub and its receptors can efficiently expand the Ub code and modulate its functions in health and disease.  相似文献   

14.
Aminoacyl-tRNA synthetases should ensure high accuracy in tRNA aminoacylation. However, the absence of significant structural differences between amino acids always poses a direct challenge for some aminoacyl-tRNA synthetases, such as leucyl-tRNA synthetase (LeuRS), which require editing function to remove mis-activated amino acids. In the cytoplasm of the human pathogen Candida albicans, the CUG codon is translated as both Ser and Leu by a uniquely evolved CatRNASer(CAG). Its cytoplasmic LeuRS (CaLeuRS) is a crucial component for CUG codon ambiguity and harbors only one CUG codon at position 919. Comparison of the activity of CaLeuRS-Ser919 and CaLeuRS-Leu919 revealed yeast LeuRSs have a relaxed tRNA recognition capacity. We also studied the mis-activation and editing of non-cognate amino acids by CaLeuRS. Interestingly, we found that CaLeuRS is naturally deficient in tRNA-dependent pre-transfer editing for non-cognate norvaline while displaying a weak tRNA-dependent pre-transfer editing capacity for non-cognate α-amino butyric acid. We also demonstrated that post-transfer editing of CaLeuRS is not tRNALeu species-specific. In addition, other eukaryotic but not archaeal or bacterial LeuRSs were found to recognize CatRNASer(CAG). Overall, we systematically studied the aminoacylation and editing properties of CaLeuRS and established a characteristic LeuRS model with naturally deficient tRNA-dependent pre-transfer editing, which increases LeuRS types with unique editing patterns.  相似文献   

15.
16.
Translational repression is a key component of the mechanism that establishes segment polarity during early embryonic development in the fruitfly Drosophila melanogaster. Two proteins, Pumilio (Pum) and Nanos, block the translation of hunchback messenger RNA in only the posterior segments, thereby promoting an abdominal fate. More recent studies focusing on postembryonic neuronal function have shown that Pum is also integral to numerous mechanisms that allow neurons to adapt to the changing requirements placed on them in a dynamic nervous system. These mechanisms include those contributing to dendritic structure, synaptic growth, neuronal excitability, and formation of long-term memory. This article describes these new studies and highlights the role of translational repression in regulation of neuronal processes that compensate for change.  相似文献   

17.
18.
A new artificial regulatory system for essential genes in yeast is described. It prevents translation of target mRNAs upon tetracycline (tc) binding to aptamers introduced into their 5′UTRs. Exploiting direct RNA–ligand interaction renders auxiliary protein factors unnecessary. Therefore, our approach is strain independent and not susceptible to interferences by heterologous expressed regulatory proteins. We use a simple PCR-based strategy, which allows easy tagging of any target gene and the level of gene expression can be adjusted due to various tc aptamer-regulated promoters. As proof of concept, five differently expressed genes were targeted, two of which could not be regulated previously. In all cases, adding tc completely prevented growth and, as shown for Nop14p, rapidly abolished de novo protein synthesis providing a powerful tool for conditional regulation of yeast gene expression.  相似文献   

19.
Cytoplasmic polyadenylation and translational control   总被引:1,自引:0,他引:1  
Cytoplasmic polyadenylation is the process by which dormant, translationally inactive mRNAs become activated via the elongation of their poly(A) tails in the cytoplasm. This process is regulated by the conserved cytoplasmic polyadenylation element binding (CPEB) protein family. Recent studies have advanced our understanding of the molecular code that dictates the timing of CPEB-mediated poly(A) tail elongation and the extent of translational activation. In addition, evidence for CPEB-independent mechanisms has accumulated, and the breath of biological circumstances in which cytoplasmic polyadenylation plays a role has expanded. These observations underscore the versatility of CPEB as a translational regulator, and highlight the diversity of cytoplasmic polyadenylation mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号