首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluctuating temperatures are a predominant feature of the natural environment but their effects on ectotherm physiology are not well-understood. The warm periods of fluctuating thermal regimes (FTRs) provide opportunities for repair leading to increased survival, but there are also indications of negative effects of warm exposure. In this study, we examined respiration and oxidative stress in adult Alphitobius diaperinus exposed to FTRs and to constant low temperatures. We hypothesized that cold exposure will cause oxidative stress and that FTRs would reduce the amount of chill injuries, via activation of the antioxidant system. We measured V˙CO2, activities of super oxide dismutase (SOD), amounts of total (GSHt) and oxidized glutathione (GSSG) during cold and warm periods of FTRs. Increased severity of cold exposure caused a decrease in the glutathione pool. SOD levels increased during the recovery period in the more severe FTR. The antioxidant response was sufficient to counter the reactive oxygen species production, as the GSH:GSSG ratio increased. We conclude that cold stress causes oxidative damage in these beetles, and that a warm recovery period activates the antioxidant system allowing repair of cold-induced damage, leading to the increased survival previously noted in beetles exposed to fluctuating versus constant temperatures.  相似文献   

2.
This study examined the impact of fluctuating thermal regimes (FTRs) on cold tolerance of the polyphagous beetle Alphitobius diaperinus. Daily pulses of elevated temperatures can provide breaks in chronic cold stress, potentially allowing for physiological recovery and improving survival. Perturbations in central metabolism appear to be a common physiological response in insects exposed to low temperatures. It has been suggested that energy supplies, which may be depleted during cold exposure, can be regenerated during the warming pulses of FTRs. This study tested the assumption that chronic cold stress may induce ATP depletion and that recovery during FTR warming pulses may allow re-establishment of ATP supplies. In this study, A. diaperinus were exposed to cold stress under different thermal regimes (constant or fluctuating). The results did not confirm the aforementioned assumption. No cold-induced ATP depletion was observed. The lowest ATP levels were repeatedly detected in the untreated controls. The data show that homoeostasis of ATP is lost when adults A. diaperinus are exposed to cold stress, whatever thermal regime (constant or fluctuating). ATP accumulation may be viewed as a symptom of a production/consumption imbalance under cold stress conditions. Periodic short (2-h) warming pulses clearly improved cold survival. Cellular homeostasis, however, probably requires a longer recovery period to be fully restored.  相似文献   

3.
When insects are exposed to fluctuating thermal regimes (FTRs) (i.e., cold exposure alternating with periodic short pulses to high temperature), in contrast to constant low temperature (CLT), mortality due to accumulation of chill injuries is markedly reduced. To investigate the physiological processes behind the positive impact of FTR, based on a holistic approach, two-dimensional electrophoresis (2-DE) analysis were performed with the parasitic wasp Aphidius colemani. Parasitoid proteomes revealed 369 well-distinguishable protein spots, where the overall response to cold exposure was clearly specific to treatments (CLT versus FTR). The reduced mortality under FTR was associated with up-regulation of several proteins playing key roles in energy metabolism (glycolysis, TCA cycle, synthesis and conversion of ATP), protein chaperoning (Hsp70/Hsp90), and protein degradation (proteasome). Our results also support the idea that cytoskeleton components, particularly actin arrangement, could play a role in the higher survival rates of insects under FTR.  相似文献   

4.
When exposed to constant low temperatures (CLTs), insects often suffer from cumulative physiological injuries that can severely compromise their fitness and survival. Yet, mortality can be considerably lowered when the cold stress period is interrupted by periodic warm interruption(s), referred to as fluctuating thermal regimes, FTRs. In this study, we have shown that FTRs strongly promoted cold tolerance of Drosophila melanogaster adults. We then assessed whether this marked phenotypic shift was associated with detectable physiological changes, such as synthesis of cryoprotectants and/or membrane remodeling. To test these hypotheses, we conducted two different time-series Omics analyzes in adult flies submitted to CLTs vs. FTRs: metabolomics (GC/MS) and lipidomics (LC/ESI/MS) targeting membrane phospholipids. We observed increasing levels in several polyhydric alcohols (arabitol, erythritol, sorbitol, mannitol, glycerol), sugars (fructose, mannose) and amino acids (serine, alanine, glutamine) in flies under CLT. Prolonged exposure to low temperature was also associated with a marked deviation of metabolic homeostasis and warm interruptions as short as 2 h were sufficient to periodically return the metabolic system to functionality. Lipidomics revealed an increased relative proportion of phosphatidylethanolamines and a shortening of fatty acyl chains in flies exposed to cold, likely to compensate for the ordering effect of low temperature on membranes. We found a remarkable correspondence in the time-course of changes between the metabolic and phospholipids networks, both suggesting a fast homeostatic regeneration during warm intervals under FTRs. In consequence, we suggest that periodic opportunities to restore system-wide homeostasis contribute to promote cold tolerance under FTRs.  相似文献   

5.
Megachile rotundata (Hymenoptera: Megachilidae), the primary pollinator used in alfalfa seed production, may need to be exposed to low-temperature storage to slow the insects' development to better match spring emergence with the alfalfa bloom. It has been demonstrated that using a fluctuating thermal regime (FTR) improves the tolerance of pupae to low temperatures. Carbon dioxide emission rates were compared between four different FTRs, all with a base temperature of 6 °C and a daily high-temperature pulse. Four different high-temperature pulses were examined, 15 or 25 °C for 2 h and 20 °C for 1 or 2 h. A subset of pupae at the FTR base temperature of 6 °C exhibited continuous gas exchange and, once ramped to 20 or 25 °C, shifted to cyclic gas exchange. As temperatures were ramped down from the high-temperature pulse to 6 °C, the pupae reverted to continuous gas exchange. The following conclusions about the effect of FTR on the CO2 emissions of M. rotundata pupae exposed to low-temperature storage during the spring incubation were reached: 1) the high temperature component of the FTR was the best predictor of respiratory pattern; 2) neither pupal body mass nor days in FTR significantly affected which respiratory pattern was expressed during FTRs; 3) cyclic gas exchange was induced only in pupae exposed to temperatures greater than 15 °C during the FTR high temperature pulse; and 4) a two hour pulse at 25 °C doubled the number of CO2 peaks observed during the FTR pulse as compared to a two hour pulse at 20 °C.  相似文献   

6.
Environmental stress deleteriously affects every aspect of an ectotherm's biological function. Frequent exposure of terrestrial insects to temperature variation has thus led to the evolution of protective biochemical and physiological mechanisms. However, the physiological mechanisms underlying the positive impact of fluctuating thermal regimes (FTRs) on the fitness and survival of cold-exposed insects have not been studied. We have thus investigated the metabolic changes in adults of the beetle Alphitobius diaperinus in order to determine whether FTRs trigger the initiation of a metabolic response involving synthesis of protective compounds, such as free amino acids (FAAs) and polyols. The metabolic profile was analyzed during constant fluctuating thermal regimes (the beetles had daily pulses at higher temperatures that enabled them to recover) and compared with constant cold exposure and untreated controls. The increase of several essential amino acids (Lys, Iso, Leu, Phe and Trp) in cold-exposed beetles supports the conclusion that it results from the breakdown of proteins. Some FAAs have been shown to have cryoprotective properties in insects, but the relationship between FAAs, cold tolerance and survival has not yet been well defined. Instead of considering FAAs only as a part of the osmo- and cryoprotective arsenal, they should also be regarded as main factors involved in the multiple regulatory pathways activated during cold acclimation. Under FTRs, polyol accumulation probably contributes to the increased duration of survival in A. diaperinus.  相似文献   

7.
Exposing insects to a fluctuating thermal regime (FTR) compared with constant low temperature (CLT) significantly reduces cold-induced mortality. The beneficial effects of FTR result from physiological repair during warming intervals. The duration and the temperature experienced during the recovery period are supposed to strongly impact the resulting cold survival; however, disentangling the effects of both recovery variables had not been broadly investigated. In this study, we investigate cold tolerance (lethal time, Lt50) of the polyphagous beetle Alphitobius diaperinus. We examined adult survival under various CLTs (0, 5, 10 and 15 °C), and under 20 different FTR conditions, where the 0 °C exposure alternated with various recovery temperatures (Rt) (5, 10, 15 and 20 °C) combined with various recovery durations (Rds) (0.5, 1, 2, 3 and 4 h). Under CLTs, Lt50 increased with temperature until no mortality occurred above the upper limit of cold injury zone (ULCIZ). Under FTRs, Lt50 increased with both Rt and Rd. The magnitude of the survival gain was clearly boosted when Rt was above the ULCIZ (at 20 °C). Based on a data matrix of lethal times with multiple Rt×Rd combinations, a predictive model showed that cold survival increased exponentially with Rt and Rd. This model was subsequently validated with additional survival tests. We suggest that increasing recovery durations associated with optimal recovery temperatures eventually leads to a progressive chilling compensation.  相似文献   

8.
Bactrocera latifrons (Hendel) is believed to have originated in Southeast Asia but has invaded Hawaii and most recently East Africa. This insect has also been recorded on Okinawa Island, the far south of Kyushu Island, Japan. To assess the overwintering ability of B. latifrons adults, survival at constant temperatures (8, 10, 12, 14, 15 °C) and under fluctuating thermal regimes (FTRs) was investigated. At 14 or 15 °C, more than 30 % of females survived for 90 days. Time required to kill 95 % of B. latifrons at 8 °C was estimated to be 13 days; at 10 °C, 29 days; and at 12 °C, 38 days for females, and 8, 17, and 24 days at the same above temperatures, respectively, for males, suggesting low cold tolerance of this species. The results show that females survive cold temperatures better than males. Under an FTR of 11 °C (22 h)/20 °C (2 h) (average 11.8 °C) survival of females drastically increased compared to that at a constant temperature of 12 °C, whereas the survival of males increased slightly. Survival under FTRs indicates that adult B. latifrons may not overwinter in the north of Tanegashima Island, located 30 km south of Kyushu Island, Japan.  相似文献   

9.
Drosophila suzukii is an invasive pest causing severe damages to a large panel of cultivated crops.To facili tate its biocontrol with stratcgies such as sterile or incompatible insect techniques,D.suzukid must be mass-produced and then stored and transported under low temperature.Prolonged cold exposure induces chill injuries that can be mitigated if the cold period is interrupted with short warming intervals,referred to as fluctuating thermal regimes(FTR).In this study,we tested how to optimally use FTR to extend the shelf life of D.suzukii under cold storage.Several FTR parameters were asessed:temperature(15,20,25℃),duration(0.5,1,2,3 h),and frequency(every 12,24,36,48 h)of warming intervals,in two wild-type lines and in two developmental stages(pupac and adults).Generally,FTR improved cold storage tolerance with respect to constant low temperatures(CLT).Cold mortality was lower when recovery temperature was 20℃ or higher,when duration was 2 h per day or longer,and when warming interruptions occurred frequently(every 12 or 24 h).Applying an optimized FTR protocol to adults greatly reduced cold mortality over long-term storage(up to 130 d).Consequences of FTR on fitness-related traits were also investigated.For adults,poststorage survival was unaffected by FTR,as was the case for female fecundity and male mating capacity.On the other hand,when cold storage occurred at pupal stage,postorage survival and male mating capacity were altered under CLT,but not under FTR.After storage of pupae,female fecundity was lower under FTR compared to CLT,suggesting an energy trade-off between repair of chill damages and C22 production.This study provides detailed information on the application and optimization of an FTR-based protocol for cold storage of D.suzuki that could be useful for the biocontrol of this pest.  相似文献   

10.
Cold storage of natural enemies usually involves placing insects under constant subambient temperatures. Even at non-freezing temperatures, a reduction in survival is the norm. Using fluctuating thermal regimes (FTR) instead of constant low temperature (CLT) has shown that mortality due to accumulation of chilling injuries was significantly reduced in Aphidius colemani . Whether this phenomenon can be generalised to other parasitoid species is not known. The aim of this study was to analyse interspecific variation in the ability to tolerate cold storage under CLT (continuous 2°C) versus FTR (daily cycle: 2°C for 22 h and 20°C for 2 h) for various durations (0–20 days). Survival, sex ratio and development of five different Aphidiine parasitoids were analysed: A. colemani , Aphidius ervi , Aphidius matricariae , Ephedrus cerasicola and Praon volucre. A marked interspecific variation in the ability to tolerate cold storage was observed: A. matricariae and A. ervi were most chill tolerant, P. volucre and E. cerasicola had an intermediate chill sensitivity and A. colemani was most chill sensitive. In all species tested, FTR significantly reduced cold-induced mortality. This phenomenon was manifested more in chill-sensitive species as they probably accumulate chilling injuries more rapidly. The sex ratio remained unaffected in all the species. Interspecific variation was also observed in developmental responses to cold storage. Under CLT, time to adult emergence of A. matricariae, A. colemani, A. ervi and P. volucre was temporarily stopped and in E. cerasicola it increased. Under FTR, the short daily intervals at 20°C for 2 h allowed parasitoids to continue development in all the species. Interspecific differences are discussed. This study suggests that positive impact of FTR may apply to a wide range of species.  相似文献   

11.
The effects of temperature (8–10 or 20°C) on regulation of haemolymph osmotic and ionic concentrations were investigated over a range of salinities (0–25‰) in fifth-instar larvae of the Death Valley caddisfly Limnephilus assimilis. At low temperatures, levels of chloride and sodium in the haemolymph are regulated over a wide range of salinities corresponding to the salinities at which larvae occur in nature and at which they can complete development into adults. In contrast, haemolymph osmolality is constant at low salinities (<14‰) but approaches conformity with the medium at higher salinities. High temperature reduces the larva's ability to maintain low chloride concentrations in its haemolymph and also leads to a reduction in haemolymph osmotic pressure; thus, at high temperatures ions account for more of the haemolymph osmotic concentration than at low temperatures. These data suggest that the absence of larvae from thermal pools and from all Death Valley waters in summer can be explained by the effects of high water temperatures on hydromineral regulation.  相似文献   

12.
Ectotherms commonly adjust their lipid composition to ambient temperature to counteract detrimental thermal effects on lipid fluidity. However, the extent of lipid remodeling and the associated fitness consequences under continuous temperature fluctuations are not well-described. The objective of this study was to investigate the effect of repeated temperature fluctuations on fatty acid composition and thermal tolerance. We exposed the springtail Orchesella cincta to two constant temperatures of 5 and 20 °C, and a continuously fluctuating treatment between 5 and 20 °C every 2 days. Fatty acid composition differed significantly between constant low and high temperatures. As expected, animals were most cold tolerant in the low temperature treatment, while heat tolerance was highest under high temperature. Under fluctuating temperatures, fatty acid composition changed with temperature initially, but later in the experiment fatty acid composition stabilized and closely resembled that found under constant warm temperatures. Consistent with this, heat tolerance in the fluctuating temperature treatment was comparable to the constant warm treatment. Cold tolerance in the fluctuating temperature treatment was intermediate compared to animals acclimated to constant cold or warmth, despite the fact that fatty acid composition was adjusted to warm conditions. This unexpected finding suggests that in animals acclimated to fluctuating temperatures an additional underlying mechanism is involved in the cold shock response. Other aspects of homeoviscous adaptation may protect animals during extreme cold. This paper forms a next step to fully understand the functioning of ectotherms in more thermally variable environments.  相似文献   

13.
1. Temperature- and time-dependent mortalities were studied and modelled in insects exposed in regimes with constant and alternating temperatures. In these experiments, freezing was not a cause of death.
2. Survival rates at a range of constant low temperatures (– 5 to + 1 °C) and for different exposure periods (1–14 days) were measured in the summer acclimated springtail Orchesella cincta .
3. Daily interruptions of the cold exposure with short intervals at high temperature reduced mortality or slowed the increase of mortality. This effect was stronger at higher temperature (19 vs 5 and 12 °C) and increased with the duration of the interruption (0·25–2 h).
4. The injury was reversible when the cold exposure was limited to 2 days.
5. Survival in desiccated animals (14% water loss) was reduced.
6. It is suggested that the mortality of summer acclimated springtails is caused by a complex metabolic disorder and membrane changes at low temperatures.  相似文献   

14.
Adults of warm- and cold-acclimated tropical cockroaches, Nauphoeta cinerea were exposed to low temperatures of 0 or 5 degrees C for various time intervals (hours to days). Development of chilling-injury (defects in crawling and uncoordinated movements) and mortality during the exposure were assessed and correlated with the changes in concentrations of metal ions (Na(+), K(+) and Mg(2+)) in the haemolymph and coxal muscle tissue. Warm-acclimated insects entered chill-coma at both low temperatures. In their haemolymph, the [Na(+)] and [Mg(2+)] linearly decreased and [K(+)] increased with the increasing time of exposure. The rate of concentration changes was higher at 0 than at 5 degrees C. The concentration changes resulted in gradually dissipating equilibrium potentials across the muscle cell membranes. For instance, E(K) decreased from -49.8 to -20.7 mV during 7 days at 5 degrees C. Such a disturbance of ion homeostasis was paralleled by the gradual development of chilling-injury and mortality. Most of the cockroaches showed chilling-injury when the molar ratio of [Na(+)]/[K(+)] in their haemolymph decreased from an initial of 4.4 to 2.1-2.5. In contrast, the cold-acclimated cockroaches did not enter chill-coma. They maintained constant concentrations of ions in their haemolymph, constant equilibrium potentials across muscle cell membranes and the development of chilling-injury was significantly suppressed at 5 degrees C for 7 days.  相似文献   

15.
Tolerance of ectotherm species to cold stress is highly plastic according to thermal conditions experienced prior to cold stress. In this study, we investigated how cold tolerance varies with developmental temperature (at 17, 25 and 30 °C) and whether developmental temperature induces different metabolic profiles. Experiments were conducted on the two populations of the parasitoid wasp, Venturia canescens, undergoing contrasting thermal regimes in their respective preferential habitat (thermally variable vs. buffered). We predicted the following: i) development at low temperatures improves the cold tolerance of parasitoid wasps, ii) the shape of the cold tolerance reaction norm differs between the two populations, and iii) these phenotypic variations are correlated with their metabolic profiles. Our results showed that habitat origin and developmental acclimation interact to determine cold tolerance and metabolic profiles of the parasitoid wasps. Cold tolerance was promoted when developmental temperatures declined and population originating from variable habitat presented a higher cold tolerance. Cold tolerance increases through the accumulation of metabolites with an assumed cryoprotective function and the depression of metabolites involved in energy metabolism. Our data provide an original example of how intraspecific cold acclimation variations correlate with metabolic response to developmental temperature.  相似文献   

16.
Natural selection alters the distribution of a trait in a population and indirectly alters the distribution of genetically correlated traits. Long‐standing models of thermal adaptation assume that trade‐offs exist between fitness at different temperatures; however, experimental evolution often fails to reveal such trade‐offs. Here, we show that adaptation to benign temperatures in experimental populations of Drosophila melanogaster resulted in correlated responses at the boundaries of the thermal niche. Specifically, adaptation to fluctuating temperatures (16–25°C) decreased tolerance of extreme heat. Surprisingly, flies adapted to a constant temperature of 25°C had greater cold tolerance than did flies adapted to other thermal conditions, including a constant temperature of 16°C. As our populations were never exposed to extreme temperatures during selection, divergence of thermal tolerance likely reflects indirect selection of standing genetic variation via linkage or pleiotropy. We found no relationship between heat and cold tolerances in these populations. Our results show that the thermal niche evolves by direct and indirect selection, in ways that are more complicated than assumed by theoretical models.  相似文献   

17.
Thermal tolerance is one of the major determinants of successful establishment and spread of invasive aliens. Merizodus soledadinus (Coleoptera, Carabidae) was accidentally introduced to Kerguelen from the Falkland Islands in 1913. On Kerguelen, the climate is cooler than the Falklands Islands but has been getting warmer since the 1990s, in synchrony with the rapid expansion of M. soledadinus. We aimed to investigate the thermal sensitivity in adults of M. soledadinus and hypothesised that climate warming has assisted the colonisation process of M. soledadinus. We examined (1) survival of constant low temperatures and at fluctuating thermal regimes, (2) the critical thermal limits (CTmin and CTmax) of acclimated individuals (4, 8 and 16°C), (3) the metabolic rates of acclimated adults at temperatures from 0 to 16°C. The FTRs moderately increased the duration of survival compared to constant cold exposure. M. soledadinus exhibited an activity window ranged from −5.5 ± 0.3 to 38 ± 0.5°C. The Q 10 after acclimation to temperatures ranging from 0 to 16°C was 2.49. Our work shows that this species is only moderately cold tolerant with little thermal plasticity. The CTmin of M. soledadinus are close to the low temperatures experienced in winter on Kerguelen Islands, but the CTmax are well above summer conditions, suggesting that this species has abundant scope to deal with current climate change.  相似文献   

18.
Despite the widespread recognition of the importance of temperature in the population dynamics and distribution of Pacific sardine (Sardinops sagax caeruleus), few studies have examined the species’ physiological response to temperature under controlled conditions. The effect of fluctuating thermal regimes on blood plasma cortisol, glucose, aspartate aminotransferase (ALT), alanine aminotransferase (AST) and red blood cell (RBC) counts of Pacific sardine was evaluated to monitor physiological response. Sardines from the southern subpopulation that inhabits waters off Baja California, Mexico, were collected during fall 2008. Acclimation to four fluctuating temperature regimes (two symmetric and two asymmetric) and a constant, optimal temperature occurred over 20 d. Symmetric and asymmetric regimes were designed to simulate regional summer (18–23°C) and winter (13–18°C) temperature ranges within 24 h. In the optimal regime (OR), sardines were acclimated to 18°C. In symmetric regimes, sardines were exposed for 7 h to the high and low temperatures, while in asymmetric regimes exposure to the high temperature was shorter (4 vs.10 h). Blood sampling took place during the low and high temperature exposure, and we tested for differences in blood parameters compared to OR. Plasma cortisol and glucose concentration of sardines from summer regimes were only significantly higher at 23°C. AST activities were significantly higher than OR during the high and low temperatures of both summer treatments. No differences were found in individuals exposed to the winter regimes. ALT activities were significantly higher than OR only during the high and low temperature of the symmetric summer regime. RBC were significantly higher than OR for both summer regimes. Sardines from southern subpopulation exhibit a negative physiological response to high temperatures, yet they can acclimate to the lower (≤18°C) temperatures typical of the California Current System. Temperatures ≥23°C may be considered a detrimental sublethal temperature, particularly for long exposure periods.  相似文献   

19.
20.
变温贮藏僵蚜对烟蚜茧蜂耐寒能力的影响   总被引:3,自引:0,他引:3  
为明确变温贮藏以麦二叉蚜为寄主的僵蚜对烟蚜茧蜂耐寒能力的影响,探究其体内的生化物质变化规律,测定了变温处理后羽化的烟蚜茧蜂雌雄成虫过冷却点、结冰点、体内含水量、脂肪、蛋白质和总糖含量的变化.结果表明:与对照(20℃)相比,经4℃22 h/20℃2h和4 ℃ 46 h/20℃2h处理1周后烟蚜茧蜂的耐寒能力显著增强.经变温处理后,烟蚜茧蜂雌雄个体的过冷却点、结冰点均出现不同程度的下降,雌蜂经4℃22 h/20℃2h处理后过冷却点和结冰点最低,分别为-26.38和-25.51 ℃;雄蜂经4 ℃ 46 h/20℃2h处理后过冷却点和结冰点最低,分别为-26.82和-26.38℃.经变温处理后烟蚜茧蜂僵蚜雌雄个体体内糖和蛋白质含量上升而脂肪和体内含水量下降,尤以经4℃22 h/20 ℃ 2 h和4℃46h/20℃2h处理后的变化最为明显.变温可以提高烟蚜茧蜂僵蚜的低温抵抗能力,且其耐寒能力的增加与其体内生化物质含量的变化密切相关.僵蚜经4℃22h/20℃2h和4℃46h/20℃2h贮藏1周后更有利于烟蚜茧蜂的生存和实践应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号