首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aspartate transcarbamoylases (ATCase, EC 2.1.3.2) of Escherichia coli and Serratia marcescens have similar dodecameric enzyme structures (2(c3):3(r2] but differ in both regulatory and catalytic characteristics. The catalytic cistrons (pyrB) of the ATCases from E. coli and S. marcescens encode polypeptides of 311 and 306 amino acids, respectively; there is a 76% identity between the DNA sequences and an overall amino acid homology of 88% (38 differences). The regulatory cistrons (pyrI) of these ATCases encode polypeptides of 153 and 154 amino acids, respectively, and there is a 75% identity between the DNA sequences and an overall amino acid homology of 77% (36 differences). In both species, the two genes are arranged as a bicistronic operon, with pyrB promoter proximal. A comparison of the deduced amino acid sequences reveals that the active site and the allosteric binding sites, as well as most of the intrasubunit interactions and intersubunit associations, are conserved in the E. coli and the S. marcescens enzymes; however, there are specific differences which undoubtedly contribute to the catalytic and regulatory differences between the enzymes of the two species. These differences include residues that have been implicated in the T-R transition, c1:r1 interface interactions, and the CTP binding site. A hybrid ATCase assembled in vivo with catalytic subunits from E. coli and regulatory subunits from S. marcescens has a 6 mM requirement for aspartate at half-maximal saturation, similar to the 5.5 mM aspartate requirement of the native E. coli holoenzyme at half-maximal saturation. However, the heterotropic response of this hybrid enzyme is characteristic of the heterotropic response of the native S. marcescens holoenzyme: ATP activation and CTP activation. Activation by both allosteric effectors indicates that the heterotropic response of this hybrid holoenzyme (Cec:Rsm) is determined by the associated S. marcescens regulatory subunits.  相似文献   

2.
The Serratia marcescens serine protease (SSP) is one of the extracellular enzymes secreted from this Gram-negative bacterium. When the ssp gene, which encodes a SSP precursor (preproSSP) composed of a typical NH2-terminal signal peptide, a mature enzyme domain, and a large COOH-terminal pro-region, is expressed in Escherichia coli, the mature protease is excreted through the outer membrane into the medium. The COOH-terminal pro-region, which is integrated into the outer membrane, provides the essential function for the export of the mature protein across the outer membrane. This is a very simple pathway, in contrast to the general secretory pathway exemplified by the secretion of a pullulanase from Klebsiella oxytoca, in which many separately encoded accessory proteins are required for the transport through the outer membrane. Moreover, the NH2-terminal region of 71 amino acid residues of the COOH-terminal pro-sequence plays an essential role, as an “intramolecular chaperone,” in the folding of the mature enzyme in the medium. In addition to ssp, the S. marcescens strain contains two ssp homologues encoding proteins similar to SSP in amino acid sequence and size, but with no protease activity. Characterization of the homologue proteins and chimeric proteins between the homologues and SSP, all of which are produced in E. coli, has shown that they are membrane proteins that are localized in the outer membrane in the same manner as for SSP. By use of the COOH-terminal domain of SSP, pseudoazurin was exported to the cell surface of E. coli, which proves the usefulness of the SSP secretory system in the export of foreign proteins across the outer membrane.  相似文献   

3.
4.
Dried Serratia marcescens (ATTC strain 14041) cells were exposed to various partial pressures of oxygen and nitrogen. The colony-forming ability of the organisms was rapidly destroyed during exposure to oxygen but was unimpaired by exposure to purified nitrogen. The degree of inactivation depended upon temperature, time, and the partial pressure of oxygen, regardless of whether pure oxygen or dry air was used. The inactivation by oxygen followed the expression -1nN/N(0) = k[O(2)](1/3)t(1/2), where N(0) and N are the number of viable organisms before and after exposure respectively, [O(2)] is oxygen concentration, t is time, and k is the rate constant. At 25 C, k was 276 +/- 36 moles(-1/3) cc(1/2) hr(-1/3) for oxygen pressures between 5.5 and 258 torr. In the temperature range between -78 and 40 C, the rate constant may be expressed as k = 10(5.95+/-04.2) exp[(-430 +/- 26) cal/RT] moles(-1/3) cc(1/3) hr(-1/2).  相似文献   

5.
Abstract In order to determine whether hydrophobic surface properties of Serratia marcescens can be transferred to Escherichia coli , E. coli DH5α cells were transformed by DNA fragments from S. marcescens RZ. Fifteen-hundred E. coli transformants were screened for adhesion to hexadecane and polystyrene. One transformant exhibited increased adhesion to hexadecane droplets, as well as altered kinetics of aggregation in the presence of ammonium sulfate. Western colony blotting revealed that antibodies raised against S. marcescens RZ recognized components) on the transformant outer surface.  相似文献   

6.
Irradiation of aerosols of either Escherichia coli or Serratia marcescens with simulated solar (xenon) radiation caused a significant decrease in viability. When sodium fluorescein was employed to determine the physical loss of organisms from the aerosol, an additional adverse effect upon survival was noted. The decay curves indicated that at least two mechanisms of inactivation were operative, one due to aerosolization, the other to irradiation. After collection from aerosols, both species of microorganisms grew better on blood agar base than on Casitone agar, but this finding did not appear to be related to the effect of irradiation.  相似文献   

7.
The secretion of a Serratia marcescens nuclease was followed by fermentation with Escherichia coli. A plasmid, p403-SD2, carrying a 1.3-kilobase-pair insert with a 0.4-kilobase-pair region upstream of the nuclease gene caused a growth-phase-regulated expression of nuclease in E. coli in the same way as that seen in S. marcescens. Deletion of the regulatory gene generating plasmid p403-Rsa1 resulted in a constitutive expression of the nuclease. Anaerobiosis stimulated the expression from p403-SD2 in stationary growth phase by a factor of 10 compared with expression stimulated by cultivation in aerobic conditions; no such effect was found for plasmid p403-Rsa1. Different nutritional factors caused the expression level and the amount of extracellular nuclease to vary more when nuclease was expressed from plasmid p403-SD2 than when it was expressed from plasmid p403-Rsa1. A correlation between the regulatory gene and the extracellular secretion of nuclease is proposed.  相似文献   

8.
Prodigiosin, the bright red pigment produced by many strains of Serratia marcescens, is synthesized by a bifurcated pathway that terminates in the enzymatic condensation of the two final products, a monopyrrole and a bipyrrole . Sau3A fragments of S. marcescens ( Nima ) DNA were introduced into a strain of Escherichia coli K-12 by use of the cosmid vector pHC79 , and transformed clones were selected based on resistance to ampicillin. Among 879 transformants screened, 2 could be induced to synthesize prodigiosin when supplied with either one or both terminal products of the bifurcated pathway. Data are presented to support the idea that production of prodigiosin is not usually mediated by a plasmid.  相似文献   

9.
T K Ball  P N Saurugger  M J Benedik 《Gene》1987,57(2-3):183-192
We are studying exoproteins of the enteric bacterium Serratia marcescens as a model system for the release of extracellular proteins from the cell. In this work we report the cloning of the gene for a secreted nuclease from S. marcescens and its complete nucleotide sequence. Following expression of the nuclease gene in both S. marcescens and Escherichia coli we were able to demonstrate the presence of the nuclease extracellularly in both organisms. Cell lysis did not occur and there was no concurrent release of cytoplasmic or periplasmic proteins. No accessory genes appeared to be required for extracellular secretion of the nuclease from E. coli. We can conclude that E. coli is capable of secreting certain proteins extracellularly, and may be a suitable host organism for the genetic analysis of extracellular protein secretion when provided with a suitable protein to export.  相似文献   

10.
11.
The secretion of a Serratia marcescens nuclease was followed by fermentation with Escherichia coli. A plasmid, p403-SD2, carrying a 1.3-kilobase-pair insert with a 0.4-kilobase-pair region upstream of the nuclease gene caused a growth-phase-regulated expression of nuclease in E. coli in the same way as that seen in S. marcescens. Deletion of the regulatory gene generating plasmid p403-Rsa1 resulted in a constitutive expression of the nuclease. Anaerobiosis stimulated the expression from p403-SD2 in stationary growth phase by a factor of 10 compared with expression stimulated by cultivation in aerobic conditions; no such effect was found for plasmid p403-Rsa1. Different nutritional factors caused the expression level and the amount of extracellular nuclease to vary more when nuclease was expressed from plasmid p403-SD2 than when it was expressed from plasmid p403-Rsa1. A correlation between the regulatory gene and the extracellular secretion of nuclease is proposed.  相似文献   

12.
Abstract The gene encoding an extracellular nuclease of Serratia marcescens was cloned in Escherichia coli using the vector pBR322. Transformants were selected by their ability to grow in the presence of ampicillin, and nuclease-positive clones were detected on a commercially available DNase test agar. The production of a nuclease could be detected in recombinant strains and enzyme activity was found in culture supernatants of such strains. Deletion derivatives of the parental recombinant plasmid were constructed to define the region of DNA encoding the expression of the nuclease. The smallest DNA fragment found to produce the nuclease was determined to be 2.2 kb in length, although a somewhat smaller fragment appeared to be partially active.  相似文献   

13.
A cosmid bank of Serratia marcescens was established from which DNA fragments were cloned into the plasmid pBR322, which conferred the chromosomally encoded hemolytic activity to Escherichia coli K-12. By transposon mutagenesis with Tn1000 and Tn5 IS50L::phoA (TnphoA), the coding region was assigned to a DNA fragment, designated hly, comprising approximately 7 kilobases. Two proteins with molecular weights of 61,000 (61K protein) and 160,000 (160K protein) were expressed by the pBR322 derivatives and by a plasmid which contained the hly genes under the control of a phage T7 promoter and the T7 RNA polymerase. When strongly overexpressed the 160K protein was released by E. coli cells into the extracellular medium concomitant with hemolytic activity. The genes encoding the 61K and the 160K proteins were transcribed in the same direction. Mutants expressing a 160K protein truncated at the carboxy-terminal end were partially hemolytic. Hemolysis was progressively inhibited by saccharides with increasing molecular weights from maltotriose (Mr 504) to maltoheptaose (Mr 1,152) and was totally abolished by dextran 4 (Mr 4,000). This result and the observed influx of [14C]sucrose into erythrocytes in the presence of hemolytic E. coli transformants under osmotically protective conditions suggest the formation of defined transmembrane channels by the hemolysin.  相似文献   

14.
15.
Homologs of the dimeric HU protein of Escherichia coli can be found in every prokaryotic organism that has been analyzed. In this work, we demonstrate that Serratia marcescens synthesizes two distinct HU subunits, like E. coli and Salmonella typhimurium, suggesting that the heterodimeric HU protein could be a common feature of enteric bacteria. A phylogenetic analysis of the HU-type proteins (HU and IHF) is presented, and a scheme for the origin of the hup genes and the onset of HU heterodimericity is suggested.  相似文献   

16.
Rabbit antisera against highly purified L-asparaginase from Serratia marcescens and from Escherichia coli showed up to 60% inhibition of the catalytic amidohydrolysis of L-asparagine when combined with the homologous enzyme. This inhibition was diminished somewhat against the heterologous enzyme. Kinetic studies in the presence of these antisera showed an increased Kmapp for both homologous and heterologous enzymes using L-asparagine as substrate. In contrast, kinetic studies employing the poor substrate, L-glutamine, showed activation attributable to specific antibodies. This was seen in lower Kmapp values and up to twofold increases in the Vmax over the normal rabbit serum controls. The high degree of cross-inhibition (approximately 80%) and the low degree of cross-reactivity in the quantitative precipitin test (approximately 34%) suggest that these two enzymes possess structural similarities located mainly in the regions of the catalytic sites.  相似文献   

17.
A DNA fragment of Serratia marcescens directing an extracellular serine protease (Mr, 41,000) was cloned in Escherichia coli. The cloned fragment caused specific excretion of the protease into the extracellular medium through the outer membrane of E. coli host cells in parallel with their growth. No excretion of the periplasmic enzymes of host cells occurred. The cloned fragment contained a single open reading frame of 3,135 base pairs coding a protein of 1,045 amino acids (Mr 112,000). Comparison of the 5' nucleotide sequence with the N-terminal amino acid sequence of the protease indicated the presence of a typical signal sequence. The C-terminal amino acid of the enzyme was found at position 408, as deduced from the nucleotide sequence. Artificial frameshift mutations introduced into the coding sequence for the assumed distal polypeptide after the C terminus of the protease caused complete loss of the enzyme production. It was concluded that the Serratia serine protease is produced as a 112-kilodalton proenzyme and that its N-terminal signal peptide and a large C-terminal part are processed to cause excretion of the mature protease through the outer membrane of E. coli cells.  相似文献   

18.
Serratia marcescens produces an abundant extracellular metalloprotease. The gene for this protease had previously been cloned and expressed in Escherichia coli, in which no functional protease could be found. However, the protease gene carries the LXGGXGND repeat motif found in alpha-hemolysin and other proteins secreted by homologous systems. Using a dual-plasmid complementation system, we show that the alpha-hemolysin hlyB and hlyD transport determinants are sufficient to allow secretion and activation of a functional metalloprotease species from E. coli, as are the comparable protease secretion functions of Erwinia chrysanthemi. However, strains expressing protease with the hlyBD transport system are unstable and rapidly lose the ability to produce functional protease.  相似文献   

19.
The synthesis of the OmpF porin in Escherichia coli K-12 was highly and reversibly inhibited by 5 mM salicylate in the bacterial growth medium, and salicylate also inhibited the OmpC porin synthesis, although only weakly. The full expression of the salicylate effect was presumed to require the ompB gene product on comparison between the wild type and ompB mutant strains. The salicylate effect was also observed for the porin protein synthesis in Klebsiella pneumoniae and Serratia marcescens, although an ompB-like gene remains to be identified in both species.  相似文献   

20.
The dnaA genes of Salmonella typhimurium and Serratia marcescens, which complemented the temperature-sensitive dnaA46 mutation of Escherichia coli, were cloned and sequenced. They were very homologous to the dnaA gene of E. coli. The 63 N-terminal amino acids and the 333 C-terminal amino acids of the corresponding DnaA proteins were identical. The region in between, corresponding to 71 amino acids in E. coli, exhibited a number of changes. This variable region coincided with a nonhomologous region found in the comparison of E. coli dnaA and Bacillus subtilis "dnaA" genes. The regions upstream of the genes were also homologous. The ribosome-binding area, one of the promoters, the DnaA protein-binding site, and many GATC sites (Dam methyltransferase-recognition sequence) were conserved in these three enteric bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号