首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Using both normal and transformed rat liver epithelial cells to prepare cytoplasmic hybrids (cybrids) we have found evidence to support the theory that the cytoplasm from a normal cell can suppress tumorigenicity. A unique aspect of this study is that all of the cells utilized, both normal and malignantly transformed, were derived from an original cloned cell. We found that fusing cytoplasts from normal cells to malignantly transformed whole cells resulted in cybrid clones which, when injected into newborn rat pups, isogenic with those from which the cell culture was initiated, yielted tumors in 51% of the animals injected compared to 92% of the animals injected with the tumorigenic parent. Those animals that did develop tumors from the cybrid cells survived longer than those injected with cells from the tumorigenic parent. Thus, the cybrid, formed of cytoplasm from both parents, was less tumorigenic than the malignantly transformed parent cell. When reconstituted cells were prepared by fusing cytoplasts from normal cells with karyoplasts from malignantly transformed cells, a situation in which essentially all of the cytoplasm of the reconstituted cell is derived from normal cells, the tumorigenic phenotype was extinguished. This work was supported in part by United States Public Health Service grant CA12056, and grant CA09100 from the National Cancer Institute, Bethesda, MD. This work is partial fulfillment for the degree of Doctor of Philosophy for B.A.I.  相似文献   

2.
Developmentally pluripotent embryonal carcinoma cells isolated from mouse teratocarcinomas were fused to whole cells, to cytoplasts, and to karyoplasts of 3T3 fibroblasts. The cybrids (cell X cytoplast fusion product) retained the developmental potency of the embryonal carcinoma cell parent. On the other hand, the karyobrids (cell X karyoplast fusion product) and the hybrids resembled the fibroblast parent cell and were incapable of differentiation. These experiments, therefore, failed to reveal the presence of cytoplasmic regulators of nuclear gene expression.  相似文献   

3.
The techniques of somatic cell hybridization have provided a valuable means of studying mechanisms of regulation of mammalian cell differentiation and transformation. Most previous studies have indicated that fusions between tumorigenic and nontumorigenic cells result in hybrid cells that are usually tumorigenic. In recent years it has been demonstrated that the phenotypic expression of tumorigenicity is at least partially due to the extensive chromosome loss that occurs in most interspecific and some intraspecific hybrid cells. In the present study we have utilized enucleation techniques that permit cells to be divided into nuclear (karyoplast) and cytoplasmic (cytoplast) cell fragments. Even though these nuclear and cytoplasmic fragments are metabolically stable for short periods of time, in our hands they ultimately degenerate. Viable cells can be reconstructed by PEG-induced fusion of karyoplasts to cytoplasts. Since reconstructed cells apparently do not segregate chromosomes, they may provide a clearer understanding of the interactions between the nucleus and the cytoplasm in the control of the expression of tumorigenicity. We have reconstructed cells using karyoplasts from the tumorigenic Y-1 cell line and cytoplasts from a nontumorigenic cell line, A-MT-BU-A1. In addition we have reconstructed cells containing Y-1 cytoplasts and A-MT-BU-A1 karyoplasts. The reconstructed cells porduced were assayed for tumorigenicity by their ability to grow in soft agar and in nude mice. The results of these experiments indicate that the reconstructed cells containing a tumorigenic nucleus and a nontumorigenic cytoplasm ultimately are tumorigenic and conversely the reconstructed cells containing a nontumorigenic nucleus and a tumorigenic cytoplasm are nontumorigenic. These experiments support the concept that with these cell lines the nucleus (karyoplast) is sufficient to control the phenotypic expression of tumorigenicity.  相似文献   

4.
This study has been directed toward the effect of cytoplasmic transfer on the expression of marker properties in hybrid cell systems. Conventional hybrids between two nucleated cells were constructed between tumorigenic and nontumorigenic cells. Cytoplasmic hybrids, or cybrids, were constructed between enucleated chloramphenicol resistant (CAP R) donor cells (cytoplasts) and nucleated recipient cells. Clear-cut evidence for the cytoplasmic transmission of CAP resistance was obtained. Although cytoplasmic transfer had no effect on tumorigenicity or growth in soft agar, preliminary evidence was found that saturation density of the recipient cells could be altered by cytoplasmic addition in cybrids.  相似文献   

5.
Cytoplasts prepared from L929 or Hepa-2 cells were separated from whole cells using density gradients of renografin. Using this technique, cytoplasts can be isolated from cell lines which cannot be routinely enucleated with an efficiency of 100%. The purified cytoplasts excluded the vital dye trypan blue and were utilized in nuclear transplantation experiments to reconstruct whole viable cells capable of division. In addition, the renografin gradient technique was used to separate the newly reconstructed cells from any contaminating "non-renucleated" cytoplasts. This will permit immediate biochemical characterization of cytoplasmic-nuclear hybrid cells without interference from contaminating cytoplasts.  相似文献   

6.
J J Lucas  J R Kates 《Cell》1976,7(3):397-405
Using the mouse L-cell line as a model system, a generalized approach is presented for nuclear transplantation in cultured cells resulting in the construction of cytoplasmic-nuclear hybrid cells. Techniques were developed for the preparation of cytoplast and karyoplasts having minimum contamination by parent whole cells. Sendai virusmediated fusion was performed in a manner which maximized the formation of the desired fusion products-cells having one cell equivalent of cytoplasm from one parent and a nucleus from a second parent. The viability of the fusion products was established by examination of photographic records of the developing cultures. Using these techniques, we found that nuclei could be introduced routinely into 10-30% of a cytoplast culture. From determinations of the increase in cell number with time, it was estimated that at least 30% of the reconstructed cells were capable of division. The approach was next applied to the formation of hybrid cells from L-cell cytoplasts and A9 cell karyoplasts. The A9 cell line is an azaguanine-resistant derivative of L cells. Thus any whole cells remaining in the culture of fused cells were readily eliminated by treatment with the purine analogue. The culture of remaining cytoplasmic-nuclear hybrid cells grew to confluence in the presence of azaguanine. The applicability of the approach to the construction of hybrid cells using parent lines from different organisms is briefly discussed.  相似文献   

7.
The expression of the interferon-induced antiviral state was studied in heterokaryons and cytoplasmic hybrids (cybrids). An autoradiographic assay for the antiviral state, in which the percentage of cells containing vaccinia viral DNA factories was determined, was used. The expression of the antiviral state was dominant in homokaryons and heterokaryons formed by fusion of interferon-treated cells with untreated cells. Cytoplasts derived from treated cells conferred resistance to virus growth on cybrids formed by fusing such cytoplasts with untreated cells. Treatment of L cell x HeLa cell heterokaryons with human interferon or mouse interferon was much less effective in inducing a detectable antiviral state than was similar treatment of parental cells with homospecific interferon. The antiviral state was fully induced when heterokaryons were treated simultaneously with both types of interferon. Cybrids formed by fusing L cell cytoplasts with HeLa cells or HeLa cytoplasts with L cells did not enter a detectable antiviral state after treatment with interferon specific for the cell type of the enucleated parent. However, treatment of cybrids with interferon specific for the cell type of the nucleated parent was effective in inducing a detectable antiviral state.  相似文献   

8.
A hybrid cell line, IOSE-Ov29, was created through fusion of cells from the human ovarian adenocarcinoma line OVCAR3 and the non-tumorigenic SV40 Tag-transfected human ovarian surface epithelial line IOSE-29. OVCAR3 cells exhibit a differentiated epithelial phenotype, whereas line IOSE-29 expresses mesenchymal characteristics that were acquired in culture by epithelio-mesenchymal transition. Microsatellite analysis, comparative genomic hybridization (CGH), and MFISH showed the genotype of the IOSE-Ov29 cells to contain components of both parent cell lines, but to be predominantly OVCAR3 derived. IOSE-Ov29 resembled OVCAR3 and differed from IOSE-29 as shown by its unlimited life span, tumorigenicity, epithelial morphology, keratin, occludin, E-cadherin and CA125 expression, increased expression of kinases of the PI3K pathway, and loss of cGMP-dependent protein kinase expression. IOSE-29-derived properties included SV40 Tag expression, growth inhibition by activin, collagen type III secretion, increased adhesion and spreading on tissue culture plastic, and increased growth rate. Proliferation of all three lines was stimulated by FSH and ATP and inhibited by GnRH I and GnRH II. Interestingly, IOSE-Ov29 was more anchorage independent than either parent line and was the only line that invaded Matrigel in Boyden chambers and formed invasive branches in collagen gels. The results indicate that IOSE-Ov29 is an IOSE-29/OVCAR3 hybrid, which differs from both parent lines genetically and phenotypically. Unexpectedly, fusion with the non-tumorigenic IOSE-29 cells enhanced malignancy-associated characteristics of OVCAR3, presumably as a result of the expression of IOSE-29-derived mesenchymal properties that are usually acquired by carcinoma cells through epithelio-mesenchymal transition during metastatic progression.  相似文献   

9.
The hybrid cell line H422 was constructed by fusing embryonal carcinoma (EC) cells of the PCC4AzaRCapR cell line with lymphocytes from a 129-tw32 mouse inbred strain female. An apparently complete extinction of stage-specific gene products of the lymphocyte parent was inferred from comparison of protein maps in two-dimensional PAGE of parental and hybrid cells, and from the reactivity patterns of monoclonal antibodies in radioimmunobinding assays. Furthermore, the hybrid cells display a true EC phenotype and EC functions, tumorigenicity and pluripotency. Taken together, the available evidence suggests either that the lymphocyte genome is a 'silent passenger' as far as the differentiated functions of hybrid cells are concerned, or that the developmentally restricted lymphocyte genome is reprogrammed in the hybrid cells back to a non-determined stage and both genomes thus act in a concerted manner.  相似文献   

10.
A general procedure for identifying viable hybrid cells was developed. One cell type was labeled by a brief incubation in the Kodak laser dye rhodamine 123, which accumulates in the mitochondria; a second cell type was labeled by a brief incubation in the Hoechst fluorochrome 33258, which binds to chromatin. The substances which are eventually lost from the organelles, appeared to be nontoxic; the plating efficiencies of numerous cell lines tested was unaffected. Either whole cells or cytoplasts labeled with rhodomine 123 were fused, using inactivated Sendai virus, to whole cells or karyoplasts labeled with Hoechst 33258. When living cells were illuminated with ultraviolet light, individual whole cell hybrids, cybrids or cytoplasmic- nuclear hybrid cells could be rapidly identified by the appropriate staining pattern.  相似文献   

11.
The establishment of permanent T-lymphocyte cell lines by transformation with DNA viruses has not yet been achieved. This paper reports the successful transfer of polyoma virus genome into T-lymphocyte cells by somatic hybridization. A T-lymphocyte clone, HB1, derived from (DBA/ 2J×AKR) spleen cells, isolated in vitro by cloning in semi-solid agar, was fused with a polyoma (Py) virus-transformed fibroblast C3HPy, clone 1. The authenticity of the hybrid C3H/HB was established by chromosome and histocompatibility antigen studies. This initial population and the various clones retained T-lymphocyte characteristics such as morphological appearance, growth properties (suspension culture) and differentiation antigen (Thy 1–2). The hybrid cell line and the various clones presented all the characteristics of Py transformation. Namely, they carried the Py genome originating from the fibroblastic parent and maintained Py virus tumour-associated antigens (TSTA, TSSA and T antigens). In most respects, this hybrid population resembled the C3HPy/C11 parent and exhibited the same tumorigenicity.  相似文献   

12.
Intraspecific somatic cell hybrids between T-lymphoma cells and lymphocytes are highly tumorigenic whereas fusion of T-lymphoma cells with normal fibroblasts leads to reduced or even completely suppressed tumorigenicity of the hybrid cells. A particular cytogenetic phenomenon defines these two classes of hybrids. DNA replication analysis via bromodeoxyuridine pulse labelling reveals an aberrant banding pattern in the c-myc chromosomal domain in tumour cells and highly tumorigenic hybrids. In hybrids with suppressed tumorigenicity the tumour parent derived chromosomes have reverted to normal DNA replication banding. Aberrant DNA replication in tumour cells and highly tumorigenic hybrids coincides with enhanced c-myc expression. In hybrids with suppressed tumorigenicity and with normal DNA replication banding c-myc expression is also reduced. Thus, a correlation between aberrant DNA replication and enhanced expression of a gene located in the same chromosomal domain is observed. Reversion of aberrant DNA replication and reduction of c-myc expression to normal in hybrid cells may be due to a site-specific trans effect which overrides the control brought about in cis by retroviral insertion near the c-myc gene.  相似文献   

13.
In mammalian cells, terminal differentiation is mutually exclusive with proliferation. However, resistance to differentiation-inducing therapy requires alternative strategies to control poorly responsive tumors. We now show that retroviral transfer of the antisense cyclin D1 gene to differentiation-refractory K1735 melanoma leads to loss of in vivo tumorigenicity, shortened replicative ability, induction of the tumor suppressor p53 protein and of the cdk-inhibitor p21WAF1, increased beta-galactosidase pH 6.0 activity, and elevation in the ratio of superoxide dismutases to peroxidases, all properties associated with replicative senescence. However, pigmentation and tyrosinase expression, characteristic of differentiated melanocytic cells or apoptosis-associated PARP cleavage, were not increased by antisense cyclin D1 transduction. Our data suggests that targetting cyclin D1 inhibition suppresses melanoma tumorigenicity by promoting a cytostatic differentiation-independent pathway, mediated by activation of p53 and anti-oxidant functions.  相似文献   

14.
Long-term survivors of reconstituted human-mouse cells have been isolated and characterized by utilizing nuclear and cytoplasmic genetic markers. Karyoplasts were derived from the human SV40-transformed fetal lung fibroblast strain WI38 VA13, while cytoplasts were obtained from the mouse fibroblast A9 cell line which was both hypoxanthine-aminopterin-thymidine-sensitive (HATs; nuclear marker) and chloramphenicol-resistant (CAPr; cytoplasmic marker). The fusion products were isolated in medium containing HAT and CAP. Clones initially showed a growth pattern different from either human or mouse parental cell, but after repeated subculturing, morphologically resembled the nuclear donor cell. The human and mouse components in these cells were identified from other possible fusion combinations by karyotypic, enzymatic and mitochondrial DNA (mDNA) analyses. The karyotype, using both Q-banding and C-banding revealed only human chromosomes. Electrophoretic mobility of the enzyme malate dehydrogenase, a nuclear controlled enzyme, confirmed the human nucleus. Buoyant density centrifugation of radioactive labelled isolated mitochondrial DNA from the reconstituted cells provided evidence that the cytoplasm was of mouse origin.  相似文献   

15.
Cytoplasmic regulation of two G1-specific temperature-sensitive functions   总被引:4,自引:0,他引:4  
G J Jonak  R Baserga 《Cell》1979,18(1):117-123
tsAF8 and ts13 cells are temperature-sensitive (ts) mutants of BHK cells that specifically arrest, at nonpermissive temperature, in the G1 phase of the cell cycle. These two mutants can complement each other. Both cell lines can be made quiescent by serum deprivation (G0). When subsequently stimulated by serum, they can enter S phase at 34 degrees C but not at 39.5 degrees-40.6 degrees C. We have used these mutants to determine whether the nucleus is needed during the G0 leads to S transition for the expression of the G1 ts functions. For this purpose, we fused cytoplasts of G0-tsAF8 with whole ts13 cells in G0, and cytoplasts of G0-ts13 with whole tsAF8 cells in G0. Serum stimulation at the nonpermissive temperature induced DNA synthesis in both types of such fusion products. No DNA synthesis was induced by serum stimulation at the nonpermissive temperature in fusion products constructed between either G0-tsAF8 cytoplasts and whole G0-tsAF8 cells or G0-ts13 cytoplasts and whole G0-ts13 cells. These results demonstrate that the information for these two ts functions, which are required for entry of serum-stimulated cells into the S phase, are already present in the cytoplasm of G0 cells--that is, before serum stimulation commits them to the transition from the nonproliferating to the proliferating state.  相似文献   

16.
To study the role of the centrosome in microtubule organization in interphase cells, we developed a method for obtaining cytoplasts (cells lacking a nucleus) that did or did not contain centrosomes. After drug- induced microtubule depolymerization, cytoplasts with centrosomes made from sparsely plated cells reconstituted a microtubule array typical of normal cells. Under these conditions cytoplasts without centrosomes formed only a few scattered microtubules. This difference in degree of polymerization suggests that centrosomes affect not only the distribution but the amount of microtubules in cells. To our surprise, the extent of microtubules assembled increased with the cell density of the original culture. At confluent density, cytoplasts without centrosomes had many microtubules, equivalent to cytoplasts with centrosomes. The additional microtubules were arranged peripherally and differed from the centrosomal microtubules in their sensitivity to nocodazole. These and other results suggest that the centrosome stabilizes microtubules in the cell, perhaps by capping one end. Microtubules with greater sensitivity to nocodazole arise by virtue of change in the growth state of the cell and may represent free or uncapped polymers. These experiments suggest that the spatial arrangement of microtubules may change by shifting the total tubulin concentration or the critical concentration for assembly.  相似文献   

17.
Summary Normal, proliferating cells are interconnected at their junctions by membrane channels through which molecules can pass from cell to cell (Loewenstein, W.R. 1966.Ann. N.Y. Acad. Sci. 137:708). A channel-competent, normally growing cell (human fibroblast) was hybridized with a channel-incompetent cancer cell (mouse L-1d cell), and the segregant hybrid clones were analyzed in a genetic approach to the question of whether the junctional membrane channels are instrumental in transmission of growth-controlling molecular signals. The channel competence of the human parent was characterized by the ability to transfer small inorganic ions (electrical coupling) and fluorescein, and the growth patterns of this cell, by growthin vitro to low saturation densities and nontumorigenicity in immuno-suppressed hosts. The mouse parent cell had the opposite characteristics. The early hybrid generations (which still had a large part of each parent chromosome complement) were of two classes: one class resembled the human parent cell in channel competence,in vitro growth pattern, and low tumorigenicity within 26 days; the other class presented an intermediate expression of channel competence characterized by transfer of small inorganic ions but not of fluorescein. As the hybrid generations lost human chromosomes, there was segregation of several biochemical and morphological traits, but no segregation of channel competence and normal growth traits. Among the segregants were 22 clones which had reverted to the channel-incompetent trait of the mouse parent. In every case, reversion to the channel defect went hand in hand with reversion to the growth defect, just as, in the early-generation hybrids, correction of the channel defect went hand in hand with correction of the growth defect. Thus, the human genetic factor that corrects the channel defect of the mouse parent cell seems closely linked, if not identical, with that correcting the growth defect. This genetic correlation encourages us in the belief that the channel defect may be an etiological factor in this particular cancer form.  相似文献   

18.
Adenovirus type 2 protein expression was measured by indirect immunofluorescence in monkey-human hybrids and in cells reconstructed from monkey and human cell karyoplasts and cytoplasts. Monkey-human hybrid clones infected with adenovirus type 2 expressed fiber protein, whereas infected monkey cells alone did not. Hybrids constructed after the parental monkey cells were infected with adenovirus type 2 demonstrated that fiber synthesis in these cells could be rescued by fusion to uninfected human cells. Thus, human cells contain a dominant factor that acts in trans and overcomes the inability of monkey cells to synthesize fiber. Cells reconstructed from infected human karyoplasts and monkey cytoplasts expressed fiber, whereas cells reconstructed from infected monkey karyoplasts and human cytoplasts did not. These results are consistent with the hypothesis that the block to adenovirus replication in monkey cells involves a nuclear event that prevents the formation of functional mRNA for some late viral proteins including fiber polypeptide. Furthermore, they suggest that the translational apparatus of monkey cells is competent to translate functional fiber mRNA synthesized in human cells.  相似文献   

19.
Microtubules take part in various cell processes, including cell polarization, migration, intercellular transport, and some others. Therefore, the spatial organization of microtubules is crucial for normal cell behavior. Fibroblasts have radial microtubule arrays that consist of microtubules that run from the centrosome. Two components compose this microtubule array, i.e., (1) minus ends attached to the centrosome microtubules with their plus ends radiating to the cell periphery and (2) free microtubules with ends not attached to the centrosome. Distinctions in the dynamic properties, intercellular organization, and structure of centrosome-attached and free microtubules allow us to assume that their cellular functions are also different. To study centrosome-attached and free microtubules functions, we used cytoplasts, i.e., nucleus-lacking cellular fragments that, under certain conditions, also lose their centrosomes. In these cytoplasts, there are only free microtubules. The shape, general morphology, and size of cytoplasts that retain their centrosomes differ only slightly from whole cells. Cytoplasts who have lost their centrosomes have an extremely thin network of microtubules located in their central region; furthermore, they lose the shape that is typical for fibroblast and become rough lamellae with protrusions. The internal architecture of the cytoplasm and organoid arrangement are also broken. Saltatory movements in cytoplasts with centrosomes are similar to those in whole cells; in cytoplasts without centrosomes, saltatory movements occur with velocities that are twofold less and by shorter distances. Saltatory movements of granules in centrosome-lacking cytoplasts took place basically in the central region of cytoplast and were less ordered than in whole cells and in cytoplasts with centrosomes. We believe that radial organized microtubules ensure the effective transport and dynamical interaction of microtubule plus ends with cellular cortical structures, which is sufficient to support the common fibroblast-like shape, whereas the disorganized free microtubules are not able to maintain the external fibroblast shape and its intercellular organization.  相似文献   

20.
Quantitative expression of a specific 55,000 (55K)-molecular-weight cellular protein was studied in two groups of mouse embryo fibroblast (clonal) cells originating from two parent clones, one of which possessed high tumorigenicity and the other of which possessed very low tumorigenicity. From the clone with low tumorigenicity, tumor lines and clones were obtained by selecting rare spontaneously transformed highly tumorigenic (mutant) cells. Cells were labeled during exponential growth for 3 h at 37 degrees C, with [35S]methionine, and the cellular 55K protein was immunoprecipitated with a monoclonal antibody and quantitated. There were low and approximately equal amounts of 55K protein in cells (clones) with both low and high tumorigenicity from both groups of cells, and there was no correlation at all between quantitative expression of 55K protein and of cellular tumorigenicity. There was approximately 10- to 20-fold more 55K protein in all simian virus 40-transformed T antigen-positive derivative clones, as shown previously. The T antigen-negative revertant tumor lines and clones obtained by an immunological in vivo selection method had low amounts of 55K protein, similar to the parent cell before simian virus 40 transformation. In all of the T antigen-negative cells, including the highly tumorigenic cells, degradation (turnover?) of the 55K protein was rapid, and a half-life of 15 to 60 min was estimated from pulse-chase experiments. In all of the T antigen-positive cells the 55K protein was stable (half-life greater than 10 h). In primary cells established from the tumors induced by highly tumorigenic cells there was a very low or no detectable amount of the 55K protein. This is in contrast to the primary cells obtained from early murine embryos in which we have reported high amounts of (stable) 55K proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号