首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Schizosaccharomyces pombe cloned with the xylose isomerase gene from E. coli is able to grow on YNB and YMP broths containing xylose as the sole carbon source. This yeast can ferment D-xylose to ethanol directly; however, the ethanol production rate and the yield were dependent on the nitrogen source. With the YMP broth as a nitrogen source, the final ethanol concentration can reach 3.7% (w/v), and the ethanol yield was 80% of the theoretical value based on the amount of xylose that was metabolized. The ethanol production is slow, and the xylitol production is still very active; apparently, the limiting step is the isomerization of xylose to xylulose.  相似文献   

2.
Summary Enhanced rates of continuous ethanol production by a flocculent strain ofPichia stipitis from a sugar mixture (xylose 75%, glucose 20%, arabinose 5%) were attained using a single-stage gas lift tower fermentor. With a substrate feed of 50g/l, the biomass accumulated at a level near 50g/l, showed a maximum and stable ethanol productivity of 10.7 g/l.h, with a substrate conversion of 80%; the ethanol yield reached 0.41g/g. In these operating conditions, similar performances were obtained when D.xylose alone was supplied.  相似文献   

3.
Summary Synergistic coculture of an amylolytic yeast (Saccharomycopsis fibuligera) andS. cerevisiae, a non-amylolytic yeast, fermented unhydrolyzed starch to ethanol with conversion efficiencies over 90% of the theoretical maximum. Fermentation was optimal between pH 5.0 to 6.0. Using a starch concentration of 10% (w/v) and a 5% (v/v) inoculum ofS. fibuligera, increasingS. cerevisiae inoculum from 4% to 12% (w/v) resulted in 35–40% (w/v) increase in ethanol yields. Anaerobic or limited aerobic incubation almost doubled ethanol yields.  相似文献   

4.
Summary Various ion exchange resins were tested for their ability to adsorb cells of Saccharomyces cerivisiae with the ultimate intention of developing a packed bed immobilized cell reactor for the continuous production of ethanol. The resins varied greatly in their ability to adsorb cells - the least effective resins retained less than 1 mg S. cerivisiae cells (dry weight)/g of resin (dry weight), and the most effective, 130–140 mg cells/g of resin. A column reactor packed with adsorbed yeast cells was operated continuously for over 200 hours using a 12% (w/v) glucose medium at dilution rates of 1.1 h-1 and 1.44 h-1 (based on void volume). High ethanol productivities of 53.1 and 62.0 g ethanol/l-h were obtained.  相似文献   

5.
Maximum growth of Acetivibrio cellulolyticus in 1% cellobiose (w/v, added as filter sterilized solution) medium was observed after about 24h of incubation at 35°C. The metabolic end products of growth were H2, CO2, acetic acid, ethanol and glucose. Growth was adversely affected if cellobiose was autoclaved with the rest of the media ingredients. In the presence of an excess of cellobiose, the cells accumulated large quantities of an iodophilic polysaccharide (IPS). The maximum IPS accumulation (about 37% of the cell dry weight) was observed after about 12h growth under nitrogen-limiting conditions. Starvation of these cells anaerobically, in a pH 7.0 phosphate buffer for 10 h at 35°C, resulted in about 50% drop in the IPS. The results also indicated that A. cellulolyticus accumulated this iodophilic polysaccharide during growth on cellobiose but not during cultivation on cellulose.Abbreviation IPS iodophilic polysaccharide Issued as NRCC No. 19386  相似文献   

6.
Summary Cassava and sago starch were evaluated for their feasibilities as substrates for ethanol production using Zymomonas mobilis ZM4 strain. Before fermentation, the starch materials were pretreated employing two commercial enzymes, Termamyl (thermostable -amylase) and AMG (amyloglucosidase). Using 2 l/g of Termamyl and 4 l/g of AMG, effective conversion of both cassava and sago starch into glucose was found with substrate concentration up to 30%(w/v) dry substances. Fermentation study performed using these starch hydrolysates as substrates resulted in ethanol yield at an average of 0.48g/g by Z. Mobilis ZM4.  相似文献   

7.
Summary Recombinant E. coli B (pLOI297) grows in Luria broth with mannose at a rate that is only about one-half of the rate with xylose and about one-quarter of the rate with glucose as carbon source. For a sugar concentration of about 2 % (w/v), the corresponding specific ethanol productivities (qp) are 0.22, 0.45 and 0.70 g ethanol/g cell/h for mannose, xylose and glucose. At higher sugar concentrations (8–11 %), the sp. productivities are 0.12, 0.33 and 0.35 g ethanol/g cell/h for mannose, xylose and glucose. Using a synthetic softwood prehydrolysate medium, in which the mass ratio of mannose:xylose:glucose was approx. 1.0:0.6:0.4 (total sugar conc'n 4.5 %), the sp. productivities associated with glucose and xylose metabolism were decreased by about 50 % and 75 % respectively, whereas mannose metabolism appeared unaffected by the presence of the other sugars. In all cases, the sugar-to-ethanol conversion efficiency was >90 % of theoretical maximum  相似文献   

8.
Mutants of Pichia stipitis NRRL Y‐7124 able to tolerate and produce ethanol from hardwood spent sulfite liquor (HW SSL) were obtained by UV mutagenesis. P. stipitis cells were subjected to three successive rounds of UV mutagenesis, each followed by screening first on HW SSL gradient plates and then in diluted liquid HW SSL. Six third generation mutants with greater tolerance to HW SSL as compared to the wild type (WT) were isolated. The WT strain could not grow in HW SSL unless it was diluted to 65% (v/v). In contrast, the third generation mutants were able to grow in HW SSL diluted to 75% (v/v). Mutants PS301 and PS302 survived even in 80% (v/v) HW SSL, although there was no increase in cell number. All the third generation mutants exhibited higher growth rates but significantly lower growth yields on xylose or glucose compared to the WT. The mutants fermented 4% (w/v) glucose as efficiently as the WT and fermented 4% (w/v) xylose more efficiently with a higher ethanol yield than the WT. In a medium containing 4% (w/v) each of xylose and glucose, all the third generation mutants utilized glucose as efficiently and xylose more efficiently than the WT. This resulted in higher ethanol yield by the mutants. The mutants retained the ability to utilize galactose and mannose and ferment them to ethanol. Arabinose was consumed slowly by both the mutants and WT with no ethanol production. In 60% (v/v) HW SSL, the mutants utilized and fermented glucose, mannose, galactose and xylose while the WT could not ferment any of these sugars. Biotechnol. Bioeng. 2009; 104: 892–900. © 2009 Wiley Periodicals, Inc.  相似文献   

9.
Corn hulls and corn germ meal were both evaluated as feedstocks for production of ethanol for biofuel. Currently, these fibrous co-products are combined with corn steep liquor and the fermentation bottoms (if available) and marketed as cattle feed. Samples were obtained from wet and dry corn mills. The corn hulls and germ meal were evaluated for starch and hemicellulose compositions. Starch contents were 12 to 32% w/w and hemicellulose (arabinoxylans) contents were 23 to 64% w/w. Corn fibrous samples were hydrolysed, using dilute sulphuric acid, into mixed sugar streams containing arabinose, glucose and xylose. Total sugar concentrations in the hydrolysate varied from 8.4 to 10.8% w/v. The hydrolysates were fermented to ethanol using recombinant E. coli strains K011 and SL40. Ethanol yields were 0.38 to 0.41g ethanol produced/g total sugars consumed and fermentations were completed in 60h or less. However, residual xylose was detected for each hydrolysate fermentation and was especially significant for fermentations using strain SL40. Strain K011 was a superior ethanologenic strain compared with strain SL40 in terms of both ethanol yield and maximum productivity.  相似文献   

10.
Production of ethanol and xylitol from lignocellulosic hydrolysates is an alternative to the traditional production of ethanol in utilizing biomass. However, the conversion efficiency of xylose to xylitol is restricted by glucose repression, causing a low xylitol titer. To this end, we cloned genes CDT-1 (encoding a cellodextrin transporter) and gh1-1 (encoding an intracellular β-glucosidase) from Neurospora crassa and XYL1 (encoding a xylose reductase that converts xylose into xylitol) from Scheffersomyces stipitis into Saccharomyces cerevisiae, enabling simultaneous production of ethanol and xylitol from a mixture of cellobiose and xylose (main components of lignocellulosic hydrolysates). We further optimized the expression levels of CDT-1 and XYL1 by manipulating their promoters and copy-numbers, and constructed an engineered S. cerevisiae strain (carrying one copy of PGK1p-CDT1 and two copies of TDH3p-XYL1), which showed an 85.7% increase in xylitol production from the mixture of cellobiose and xylose than that from the mixture of glucose and xylose. Thus, we achieved a balanced co-fermentation of cellobiose (0.165 g/L/h) and xylose (0.162 g/L/h) at similar rates to co-produce ethanol (0.36 g/g) and xylitol (1.00 g/g).  相似文献   

11.
Summary D-Xylose was fermented to ethanol by a strain ofPachysolen tannophilus in yields greater than 0.3g ethanol per g xylose consumed. Ethanol production was influenced by xylose concentration and was at a maximum at 10%, w/v. Ethanol formation occurred at pH 2.75-2.50 but the yeast would not grow at this pH when the initial pH of the medium was less than 3.0. Ethanol was consumed by the yeast when the xylose concentration became limiting. L-Arabinose, D-glucose, D-fructose, cellobiose, D-glucuronic acid, but not sucrose,were also fermented to ethanol byPachysolen tannophilus. Kinetic studies on xylose fermentation established various parameters involved in growth, substrate utilization and ethanol formation when the yeast was fermenter grown.  相似文献   

12.
Commercial-scale cellulosic ethanol production has been hindered by high costs associated with cellulose-to-glucose conversion and hexose and pentose co-fermentation. Simultaneous saccharification and fermentation (SSF) with a yeast strain capable of xylose and cellobiose co-utilization has been proposed as a possible avenue to reduce these costs. The recently developed DA24-16 strain of Saccharomyces cerevisiae incorporates a xylose assimilation pathway and a cellodextrin transporter (CDT) that permit rapid growth on xylose and cellobiose. In the current work, a mechanistic kinetic model of cellulase-catalyzed hydrolysis of cellulose was combined with a multi-substrate model of microbial growth to investigate the ability of DA24-16 and improved cellobiose-consuming strains to obviate the need for exogenously added β-glucosidase and to assess the impact of cellobiose utilization on SSF and separate hydrolysis and fermentation (SHF). Results indicate that improved CDT-containing strains capable of growing on cellobiose as rapidly as on glucose produced ethanol nearly as rapidly as non-CDT-containing yeast supplemented with β-glucosidase. In producing 75 g/L ethanol, SSF with any strain did not result in shorter residence times than SHF with a 12 h saccharification step. Strains with improved cellobiose utilization are therefore unlikely to allow higher titers to be reached more quickly in SSF than in SHF.  相似文献   

13.
Summary The study shows that the yeastSaccharomyces cerevisiae ATCC 36859 can be successfully used for the production of fructose syrup from glucose-fructose mixtures or from Jerusalem artichoke juice by the conversion of glucose to ethanol. During these processes fructose concentration was unchanged.Ethanol yield (YP/S), based on glucose consumed in Jerusalem artichoke juice, and ethanol concentration were 0.428 g/g and 1.7% (w/v) respectively. When the juice was supplemented with glucose higher ethanol concentrations were attained but with lower ethanol yields.  相似文献   

14.
The co-utilization of sugars, particularly xylose and glucose, during industrial fermentation is essential for economically feasible processes with high ethanol productivity. However, the major problem encountered during xylose/glucose co-fermentation is the lower consumption rate of xylose compared with that of glucose fermentation. Here, we therefore attempted to construct high xylose assimilation yeast by using industrial yeast strain with high β-glucosidase activity on the cell surface. We first constructed the triple auxotrophic industrial strain OC2-HUT and introduced four copies of the cell-surface-displaying β-glucosidase (BGL) gene and two copies of a xylose-assimilating gene into its genome to generate strain OC2-ABGL4Xyl2. It was confirmed that the introduction of multiple copies of the BGL gene increased the cell-surface BGL activity, which was also correlated to the observed increase in xylose-assimilating ability. The strain OC2-ABGL4Xyl2 was able to consume xylose during cellobiose/xylose co-fermentation (0.38 g/h/g-DW) more rapidly than during glucose/xylose co-fermentation (0.18 g/h/g-DW). After 48 h, 5.77% of the xylose was consumed despite the co-fermentation conditions, and the observed ethanol yield was 0.39 g-ethanol/g-total sugar. Our results demonstrate that a BGL-displaying and xylose-assimilating industrial yeast strain is capable of efficient xylose consumption during the co-fermentation with cellobiose. Due to its high performance for fermentation of mixtures of cellobiose and xylose, OC2-ABGL4Xyl2 does not require the addition of β-glucosidase and is therefore a promising yeast strain for cost-effective ethanol production from lignocellulosic biomass.  相似文献   

15.
Conidia of the cellulolytic strain Trichoderma reesei F522 were mutagenized with UV irradiation and N-methyl|-N'-nitro-N-nitrosoguanidine (NTG). A visual agar plate detection system was developed, using esculin and ferric ions, to identify mutants of T. reesei with increased beta-glucosidase activity. Selected mutants were tested for production of extracellular cellulases in shake flasks on autohydrolyzed wheat straw as carbon source. The most active mutant V-7 showed about 6-times higher activity of beta-glucosidase than the parent strain F-522, whereas the filter paper degrading and endo-1,4-beta-D-glucanase activities increased by 45% and by almost 31%, respectively. Cellulase preparations obtained from the parent and mutant strains were then used along with Kluyveromyces fragilis cells for ethanol production from ethanol-alkali pulped straw in the simultaneous saccharification and fermentation (SSF) process. From 10% (w/v) of straw pulp (dry matter), 2.5% (w/v) ethanol was obtained at 43 degrees C after 48 h using cellulase derived from the parent strain of T. reesei. When the beta-glucosidase-hyperproducing mutant V-7 was employed, the ethanol yield in the SSF process increased to 3.4% (w/v), the reaction time was shortened to 24 h and no cellobiose was detected in straw hydrolyzates.  相似文献   

16.
Summary To improve single step conversion of sugar mixtures containing cellobiose, glucose, and xylose to ethanol by a coculture of Zymomonas anaerobia and Clostridium saccharolyticum, an ethanol tolerant mutant of C. saccharolyticum was obtained. The mutant obtained by the enrichment procedure was able to grow in the presence of 75 g·l-1 ethanol, with improved ability to utilize cellobiose, and little or no change in its ability to convert xylose to ethanol. This mutant in coculture with Zymomonas anaerobia produced over 50 g·l-1 ethanol in media containing 130 g·l-1 total sugars comprising of 60% glucose, 20% cellobiose, and 20% xylose.Issued as NRCC No. 23936  相似文献   

17.
Summary A data acquisition/control microcomputer system was interfaced to a commercial HPLC data transmission module. Control of substrate (ethanol) levels for four 7.5 L fermenters containing 100 g/L wet weight of the yeastCandida norvegensis was accomplished by employing intermittent, automated HPLC monitoring and a BASIC-encoded proportional integral policy for controlling substrate feed rates. Ethanol levels were maintained at 0.25, 0.50, 0.75 and 1.00% w/v.  相似文献   

18.
Efficient bioconversion of rice straw to ethanol with TiO2/UV pretreatment   总被引:1,自引:0,他引:1  
Rice straw is a lignocellulosic biomass that constitutes a renewable organic substance and alternative source of energy; however, its structure confounds the liberation of monosaccharides. Pretreating rice straw using a TiO(2)/UV system facilitated its hydrolysis with Accellerase 1000(?), suggesting that hydroxyl radicals (OH·) from the TiO(2)/UV system could degrade lignin and carbohydrates. TiO(2)/UV pretreatment was an essential step for conversion of hemicellulose to xylose; optimal conditions for this conversion were a TiO(2) concentration of 0.1% (w/v) and an irradiation time of 2 h with a UV-C lamp at 254 nm. After enzymatic hydrolysis, the sugar yields from rice straw pretreated with these parameters were 59.8 ± 0.7% of the theoretical for glucose (339 ± 13 mg/g rice straw) and 50.3 ± 2.8% for xylose (64 ± 3 mg/g rice straw). The fermentation of enzymatic hydrolysates containing 10.5 g glucose/L and 3.2 g xylose/L with Pichia stipitis produced 3.9 g ethanol/L with a corresponding yield of 0.39 g/g rice straw. The maximum possible ethanol conversion rate is 76.47%. TiO(2)/UV pretreatment can be performed at room temperature and atmospheric pressure and demonstrates potential in large-scale production of fermentable sugars.  相似文献   

19.
Autohydrolysis and ethanol-alkali pulping were used as pretreatment methods of wheat straw for its subsequent saccharification by Trichoderma reesei cellulase. The basic hydrolysis parameters, i.e., reaction time, pH, temperature, and enzyme and substrate concentration, were optimized to maximize sugar yields from ethanol-alkali modified straw. Thus, a 93% conversion of 2.5% straw material to sugar syrup containing 73% glucose was reached in 48 h using 40 filter paper units/g hydrolyzed substrate. The pretreated wheat straw was then fermented to ethanol at 43 degrees C in the simultaneous saccharification and fermentation (SSF) process using T. reesei cellulase and Kluyveromyces fragilis cells. From 10% (w/v) of chemically treated straw (dry matter), 2.4% (w/v) ethanol was obtained after 48 h. When the T. reesei cellulase system was supplemented with beta-glucosidase from Aspergillus niger, the ethanol yield in the SSF process increased to 3% (w/v) and the reaction time was shortened to 24 h.  相似文献   

20.
Microbial biocatalysts capable of cellobiose assimilation are of interest in bioconversion of cellulosic materials. This study provides a careful comparison in the two mechanisms of cellobiose assimilation, hydrolysis versus phosphorolysis, between two otherwise isogenic E. coli strains. Relative to cells assimilating cellobiose hydrolytically, phosphorolysis cells tolerated common inhibitors better under both anaerobic and aerobic conditions. Additionally, phosphorolysis cells were able to direct the favorable energy metabolism to recombinant protein production, resulting in up to five fold more recombinant proteins. In a mixed sugar fermentation (5% (w/v) cellobiose+5.0% (w/v) xylose), however, xylose utilization in phosphorolysis cells came to a complete halt after only about 60% consumption whereas the hydrolysis cells were able to ferment both sugars to near completion. These results provide insights into the new metabolic engineering strategy. To our best knowledge, this is the first comparison study in E. coli on the two cellobiose assimilation mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号