首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ca2+-dependent regulator protein (CDR) of cyclic nucleotide phosphodiesterase (PDE) was reported to be a Ca2+-dependent regulator of microtubule (MT) assembly in the preceding paper. In this paper, the binding of Ca2+-CDR complex to tubulin dimer was investigated in order to elucidate the Ca2+-dependent inhibitory action of CDR on MT assembly. Purified microtubular proteins (PMPs) isolated from porcine brain did not affect the ability of CDR to activate Ca2+-activatable PDE, and did not include any inhibitory protein of Ca2+-activatable PDE. The binding of CDR to the tubulin dimer was observed on Sephadex G-200 gel filtration and ammonium sulfate fractionation in a Ca2+-dependent manner. CDR did not bind to microtubule associated proteins. We now assume that Ca2+-dependent inhibition of MT assembly by CDR is due to the binding of CDR to tubulin dimer in a Ca2+-dependent manner.  相似文献   

2.
An inhibitor protein of cyclic nucleotide phosphodiesterase is demonstrated in bovine brain extract and separated from modulator binding protein, a recently discovered inhibitory factor of phosphodiesterase. The new inhibitor protein is similar to the cyclic AMP phosphodiesterase inhibitor from bovine retina (Dumler, I. L., and Etingof, F. N. 1976) Biochim. Biophys, Acta 429, 474-484) in its heat stability: it retains full activity upon heating in a boiling water bath for 2 min. The new inhibitor protein counteracts the activation of the Ca2+-activatable cyclic nucleotide phosphodiesterase by the Ca2+-dependent modulator protein without affecting the basal activity of the enzyme. The inhibition of phosphodiesterase by the inhibitor can be reversed by high concentrations of modulator protein but is not influenced by a 20-fold increase in Ca2+ concentration. In contrast, a Ca2+-independent form of cyclic nucleotide phosphodiesterase is not inhibited by the inhibitor protein. These results suggest that the heat-stable inhibitor protein is specific against the action of the Ca2+-dependent modulator protein. Gel filtration analyses on Sephadex G-75 and G-100 columns have shown that the inhibitor protein and the modulator protein may associate in the presence of Ca2+. The molecular weights determined by the gel filtration for the free inhibitor protein and the complex of the inhibitor and modulator protein are about 70,000 and 85,000, respectively.  相似文献   

3.
The calcium-dependent regulatory protein (CDR) purified from bovine brain was iodinated with Na[125I]I using the lactoperoxidase-glucose oxidase system. The iodinated protein retained its ability to stimulate the Ca2+-sensitive CDR-depleted cyclic nucleotide phosphodiesterase from bovine heart. Stimulation of the phosphodiesterase by 125I-CDR was Ca2+-dependent and the labeled protein had a Ka for activation of cyclic nucleotide phosphodiesterase that was 4 times greater than unmodified CDR. 125I-CDR formed a Ca2+-dependent complex with the partially purified cyclic nucleotide phosphodiesterase which was detectable by autorradiography following electrophoresis of the complex on nondenaturing gels. This technique was used to detect CDR binding components in crude homogenates prepared from bovine heart and brain.  相似文献   

4.
A Ca2+-binding protein which is capable of activating mammalian Ca2+-activatable cyclic nucleotide phosphodiesterase has been purified from Lumbricus terrestris and characterized. This protein and the Ca2+-dependent protein modulator from bovine tissues have many similar properties. Both proteins have molecular weights of approximately 18,000, isoelectric points of about pH 4, similar and characteristic ultraviolet spectra, and similar amino acid compositions. Both proteins bind calcium ions with high affinity. However, the protein from Lumbricus terrestris binds 2 mol of calcium ions with equal affinity, Kdiss = 6 X 10(-6) M, whereas the Ca2+-dependent protein modulator from bovine tissues binds 4 mol of calcium ions with differing affinities. Although the Ca2+-binding protein of Lumbricus terrestris activates the Ca2+-activatable cyclic nucleotide phosphodiesterase from mammalian tissues, we have failed to detect the existence of a Ca2+-activatable phosphodiesterase activity in Lumbricus terrestris. The activation of phosphodiesterase by the Ca2+-binding protein from Lumbricus terrestris is inhibited by the recently discovered bovine brain modulator binding protein (Wang, J. H., and Desai, R. (1977) J. Biol. Chem. 252, 4175-4184). Since the modulator binding protein has been shown to associate with the mammalian protein modulator to result in phosphodiesterase inhibition, it can be concluded that the Lumbricus terrestris Ca2+-binding protein also associates with the bovine brain modulator binding protein. Attempts to demonstrate the existence of a similar modulator binding protein in Lumbricus terrestris have been unsuccessful.  相似文献   

5.
The boiled supernatant fraction from rat cerebrum contained factors which inhibited the basal activity of a Ca2+-dependent phosphodiesterase from rat cerebrum. Two inhibitory fractions were isolated by DEAE-cellulose or Sephadex chromatography and were deemed proteins, based on their sensitivity to trypsin digestion. The inhibitory fractions eluted from DEAE-cellulose columns prior to the Ca2+-dependent activator protein. The inhibitory factors, unlike the activator protein, were stable to heat treatment under alkaline conditions. The inhibitory factors caused both an increase in Km for cyclic GMP and a decrease in V. In the presence of calcium ions and purified activator protein, the Ca2+-dependent phosphodiesterase was not inhibited by the factors, but instead was slightly stimulated. The inhibitory factors caused a slight apparent stimulation of a Ca2+-independent phosphodiesterase from rat cerebrum but this proved instead to be a nonspecific stabilizing effect which was minimicked by bovine serum albumin. After prolonged alkaline treatment, the purified activator protein caused a modest Ca2+-independent activation of Ca2+-dependent phosphodiesterase. The inhibitory factors antagonized the activation of Ca2+-dependent phosphodiesterase by alkaline treated activator protein or by lysophosphatidylcholine. The inhibitory factors had no effect on activity of trypsinized Ca2+-dependent phosphodiesterase. Of various other proteins, only casein mimicked the effects of the inhibitory factors on phoshodiesterase activity.  相似文献   

6.
A Ca2+-dependent regulator protein of cyclic 3':5'-nucleotide phosphodiesterase (EC 3.1.4.17) has previously been isolated from rat testis and shown to be a heat-stable, Ca2+-binding protein with a molecular weight of approximately 17,000. The Ca2+-dependent regulator protein is also structurally similar to troponin-C, the Ca2+-binding component of muscle troponin and Ca2+ mediator of muscle contraction. The present report describes a partial amino acid sequence of the Ca2+-dependent regulator. The protein (148 amino acids) is 50% homologous with skeletal muscle troponin-C, but is 11 residues shorter than the muscle protein. The Ca2+-dependent regulator protein has an NH2-terminal sequence of acetyl-Ala-Asp-Glu, a COOH-terminal sequence of Thr-Ala-Lys and 1 residue of epsilon-trimethyllysine located at position 115. All of these properties are distinct from those of other homologous Ca2+-binding proteins. These properties may account for the biological specificities demonstrated by these proteins as compared to the Ca2+-dependent regulator protein. Based on the sequence and a comparison of the Ca2+-dependent regulator protein to other calcium-binding proteins, our data support the view that all of these moecules contain common sequences, especially at their proposed metal-binding sites.  相似文献   

7.
In rabbit skeletal muscle extracts the activity of phosphodiesterase practically insensitive to the increase of Ca2+ concentration from 10(-8) M up to 10(-5) M. The Ca2+-dependent protein regulator is separated from phosphodiesterase at the stage of isolation and purification. The activity of phosphodiesterase devoid of the protein regulator is inhibited by Ca2+ (10(-5)--10(-3) M). An addition of Ca2+-dependent regulator protects the enzyme against inhibition by Ca2+. The Km values for 3',5'-AMP (5 mkM) and 3',5'-GMP (13 mkM) appear to be close; however, the maximal hydrolysis rates for these nucleotides differ considerably (14,0 and 0,25--0,50 nmoles/min/mg of protein). The hydrolysis of 3',5'-AMP is increased 1,6--3,2-fold under the effect of 3',5'-GMP and that of 3',5'-GMP is increased 1,8--2,7-fold under the effect of 3',5'-AMP. Using ion-exchange chromatography it was shown that only 1% of the total activity of skeletal muscle phosphodieterase belongs to the phosphodiesterase sensitive to the activating effect of Ca2+-dependent regulator the activity of this enzymic form is increased 4--5 fold. The Ca2+-dependent regulator of skeletal muscles is inactivated under the effects of trypsin and during gel-filtration is eluted together with the Ca2+-dependent regulator from the heart. The amount of Ca2+-dependent regulator in skeletal muscles is 30 times as low as that in brain and 3 times as low as that in the heart of the rabbit.  相似文献   

8.
A major protein constituent of a rat islet cell tumour that exhibited Ca2+-dependent changes in electrophoretic mobility has been purified to homogeneity and compared in its physicochemical and biological properties with bovine brain and rat brain calmodulin (synonymous with phosphodiesterase activator protein, calcium-dependent regulator, troponin C-like protein and modulator protein). The protein, like these calmodulins, contained trimethyl-lysine, exhibited a blocked N-terminus and had an identical amino-acid composition and molecular weight on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Peptide "maps' prepared after digestion of the three proteins with trypsin, papain or Staphylococcus V-8 proteinase were virtually superimposable. Ca2+ altered the electrophoretic mobilities the enhanced the native protein fluorescence in an equivalent manner with all three proteins. Equilibrium dialysis experiments demonstrated in each case the binding of 4g-atoms of calcium/mol of protein; the binding sites were equivalent and showed Kd 0.8 microM. Tumour and brain proteins were equipotent as Ca2+-dependent activators of partially purified rat brain cyclic nucleotide phosphodiesterase, and in this action were inhibited in an identical manner by trifluoperazine. The proteins also exhibited the common property of Ca2+-dependent binding to troponin I, histone H2B and myelin basic protein. The estimated tumour content of calmodulin was 450 mg/kg fresh wt., a value similar to that reported in islets of Langerhans. These results further document the validity of the islet cell tumour as an experimental model of Ca2+-mediated molecular events associated with insulin secretion. They also suggest that brain calmodulin may be substituted for endogenous calmodulin in experimental investigations into the mechanism of insulin secretion.  相似文献   

9.
Two forms of cyclic nucleotide phosphodiesterase (ES 3.1.4.17)--PDE-I and PDE-II--sensitive and resistant to Ca-dependent protein regulator, were isolated from the soluble fraction of rabbit heart by chromatography on DEAE-cellulose. Both forms of enzyme are inhibited by 30--50% by Ca2+ (10(-4) M). Addition of Ca-dependent protein regulator activates PDE-I and eliminates Ca2+-induced inhibition of PDE-II. In heart extract Ca2+ increases the phosphodiesterase activity 1.5-fold. The amount of PDE-I makes up to about 10% of total phosphodiesterase activity of the heart; that of PDE-II is about 90%. In the presence of Ca-dependent protein regulator the rate of 3', 5'-AMP hydrolysis by PDE-I is increased 5--15-fold, while that of 3', 5'-GMP hydrolysis only 2.5-fold. Both PDE-I and PDE-II have close Km values for substrates--(3.5--4.0).10(-6) M for 3', 5'-AMP and 14.10(-6) M for 3', 5'-GMP. Inhibition by Ca2+ and effect of Ca-dependent protein regulator manifest themselves in changes in V for cyclic nucleotide hydrolysis and do not alter the Km value for the enzyme.  相似文献   

10.
T Tanaka  M Ito  T Ohmura  H Hidaka 《Biochemistry》1985,24(19):5281-5284
Ca2+-dependent cyclic nucleotide phosphodiesterase (Ca2+-PDE) activity was stimulated by poly(L-aspartic acid) but not by poly(L-glutamic acid), poly(L-arginine), poly(L-lysine), and poly(L-proline). This activation was Ca2+ independent and did not further enhance the activation of Ca2+-PDE by Ca2+-calmodulin (CaM). Poly(L-aspartic acid) produced an increase in the Vmax of the phosphodiesterase, associated with a decrease in the apparent Km for the substrate, such being similar to results obtained with Ca2+-CaM. Poly(L-aspartic acid) did not significantly stimulate myosin light chain kinase and other types of cyclic nucleotide phosphodiesterase. CaM antagonists such as N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), trifluoperazine, and chlorpromazine selectively antagonized activation of the enzyme by poly(L-aspartic acid). Kinetic analysis of W-7-induced inhibition of activation of phosphodiesterase by poly(L-aspartic acid) was in a competitive fashion, and the Ki value was 0.19 mM. On the other hand, prenylamine, another type of calmodulin antagonist that binds to CaM at sites different from the W-7 binding sites, did not inhibit the poly(L-aspartic acid)-induced activation of Ca2+-dependent cyclic nucleotide phosphodiesterase. These results imply that poly(L-aspartic acid) is a calcium-independent activator of Ca2+-dependent phosphodiesterase and that aspartic acids in the CaM molecule may play an important role in the activation of Ca2+-PDE.  相似文献   

11.
Cyclic nucleotide phosphodiesterase [EC 3.1.4.17] was examined in tetrahymena pyriformis strain NT-1. Enzymic activity was associated with the soluble and the particulate fractions, whereas most of the cyclic GMP phosphodiesterase activity was localized in the soluble fraction; the activities were optimal at pH 8.0-9.0. Although very low activities were detected in the absence of divalent cations, they were significantly increased by the addition of either Mg2+ or Mn2+. A kinetic analysis of the properties of the enzymes yielded 2 apparent K(m) values ranging in concentration from 0.5 to 50 micron and from 0.1 to 62 micron for cyclic AMP and GMP, respectively. A Ca2+ -dependent activating factor for cyclic nucleotide phosphodiesterase was extracted from Tetrahymena cells, but this factor did not stimulate guanylate cyclase [EC 4.6.1.2] activity in this organism. On the other hand, tetrahymena also contained a protein activator which stimulated guanylate cyclase in the presence of Ca2+, although this activator did not stimulate the phosphodiesterase. The results suggested that Tetrahymena might contain 2 types of Ca2+ -dependent activators, one specific for phosphodiesterase and the other for guanylate cyclase.  相似文献   

12.
C B Klee  M H Krinks 《Biochemistry》1978,17(1):120-126
The Ca2+-dependent, reversible, interaction of cyclic adenosine 3',5'-monophosphate (cAMP) phosphodiesterase with its activator has been used to purify the enzyme by affinity chromatography. Activator-dependent cAMP phosphodiesterase is only a minor component of the proteins specifically adsorbed in the presence of Ca2+ by the Ca2+-dependent activator protein coupled to Sepharose and subsequently released by [ethylenebis(oxyethylenenitrilo)]tetraacetic acid. The major protein component can be partially resolved from the enzyme by gel filtration on Sephadex G-200. This protein has been purified to apparent homogeneity and shown to be composed of two polypeptide chains with molecular weights of 61,000 and 15,000 respectively. This protein is, by itself, devoid of phosphodiesterase activity and inhibits the activation of cAMP phosphodiesterase by its activator without affecting the basal activity. Thus, activation of cAMP phosphodiesteriase by the Ca2+-dependent activator protein may be controlled by interactions with yet a third component of the enzyme complex.  相似文献   

13.
T Tanaka  E Yamada  T Sone  H Hidaka 《Biochemistry》1983,22(5):1030-1034
Quinazolinesulfonamides are synthetic compounds which calcium-independently stimulate Ca2+-dependent cyclic nucleotide phosphodiesterase. As this activation was observed with 2,4-dipiperidino-6-quinazolinesulfonamides but not with 4-piperidino-6-quinazolinesulfonamides, the activation seems to be dependent on the piperidine residue at the 2 and 4 position of the quinazoline ring, and the extent of hydrophobicity of each compound was thus enhanced. 2,4-Dipiperidino-6-quinazolinesulfonamide activates Ca2+-dependent phosphodiesterase in the absence of Ca2+-calmodulin (CaM). These quinazolinesulfonamides did not further enhance the activity of Ca2+-dependent phosphodiesterase activated by the Ca2+-CaM complex. These compounds are also potent inhibitors of cyclic AMP and GMP phosphodiesterases. CaM antagonists such as N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), its derivatives, and chlorpromazine and prenylamine inhibited selectively the quinazolinesulfonamide-induced activations of the phosphodiesterase. These quinazolinesulfonamides, in a high concentration, had only a slight stimulatory effect on myosin light chain kinase activity. All these findings suggest that the quinazolinesulfonamides are calcium-independent activators of Ca2+-dependent phosphodiesterase and they are proving to be useful tools for the study of CaM and phosphodiesterase, in vitro.  相似文献   

14.
The 31-residue neuropeptide porcine beta-endorphin was shown to inhibit the Ca2+-dependent calmodulin activation of highly purified bovine brain cyclic nucleotide phosphodiesterase (3',5'-cyclic AMP 5'-nucleotidohydrolase, EC 3.1.4.17). Using a series of deletion peptides, the minimal inhibitory peptide sequence was found to correspond to beta-endorphin residues 14-25, confirming previously reported results for crude enzyme preparations. A correlation was found between the relative inhibitory potency of a particular beta-endorphin deletion peptide and the efficacy of cross-linking that peptide to calmodulin with bis(sulfosuccinimidyl) suberate, strongly implicating peptide binding to calmodulin as the mechanism of the observed inhibition. We found that relatively modest concentrations of chlorpromazine significantly reduced the efficiency of cross-linking beta-endorphin 14-31 to calmodulin. Chlorpromazine-Sepharose affinity chromatography of peptide/calmodulin adducts showed that a significant portion of the cross-linked beta-endorphin 14-31/calmodulin complex (stoichiometry of 1 mol/mol) retained the ability to interact with the immobilized phenothiazine in a Ca2+-dependent and calmodulin-displaceable manner. In contrast, the 2:1 (peptide:protein) product exhibited no affinity for the immobilized phenothiazine. The use of this affinity chromatographic step allowed preparation of homogeneous populations of both 1:1 and 2:1 beta-endorphin 13-31/calmodulin complexes and assessment of their functional characteristics. Equilibrium binding studies with chlorpromazine revealed that the covalent attachment of one peptide molecule to calmodulin perturbed all phases of Ca2+-dependent drug binding, but the adduct still bound significant quantities of chlorpromazine. The 2:1 complex, however, showed little detectable binding of the phenothiazine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Isolated male germ cells of the mouse possess a heat-stable stimulatory activity of Ca2+-dependent, calmodulin-free phosphodiesterase. Ionic exchange chromatography allowed partial purification of the activator and the isolation of multiple forms of phosphodiesterase stimulation inhibitor. The activator has been identified as calmodulin on the basis of chromatographic behaviour and electrophoretic mobility. Quantitative analysis showed variations of calmodulin levels at different stages of spermatogenesis. Quantitative analysis of cyclic nucleotide hydrolysis in germ cell cytosol showed that the activity of Ca2+-dependent phosphodiesterase is different in meiotic and post-meiotic mouse male germ cells. These data suggest that calcium-dependent pathway and a Ca2+-dependent regulation of cyclic nucleotides are present in developing germ cells.  相似文献   

16.
A heat-stable, non-dialyzable inhibitory factor of cyclic nucleotide phosphodieterase was detected in and partially purified from bovine retina. The factor appears to be a protein, since the inhibitory activity was abolished by trypsin digestion but not by DNAase or RNAase treatment. The protein inhibitor from bovine retina effectively inhibits the Ca2+-independent phosphodiesterase from several sources, including bovine retina, bovine rod outer segment, and a human lymphoblastic leukemia cell line, indicating lack of tissue and species specificity.  相似文献   

17.
Bovine brain contains calmodulin-dependent cyclic nucleotide phosphodiesterase isozymes which are composed of two distinct subunits: Mr 60,000 and 63,000. The 60-kDa but not the 63-kDa subunit-containing isozyme can be phosphorylated by cAMP-dependent protein kinase resulting in decreased affinity of this subunit toward calmodulin (Sharma, R. K., and Wang, J. H. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 2603-2607). In contrast, purified 63-kDa subunit-containing isozyme has been found to be phosphorylated by a preparation of bovine brain calmodulin-binding proteins in the presence of Ca2+ and calmodulin. The phosphorylation resulted in the maximal incorporation of 2 mol of phosphate/mol of the phosphodiesterase subunit with a 50% decrease in the enzyme affinity toward calmodulin. At a constant calmodulin concentration of 6 nM, the phosphorylated isozyme required a higher concentration of Ca2+ for activation than the nonphosphorylated phosphodiesterase. The Ca2+ concentrations at 50% activation by calmodulin of the nonphosphorylated and phosphorylated isozymes were 1.1 and 1.9 microM, respectively. Phosphorylation can be reversed by the calmodulin-dependent phosphatase, calcineurin, but not by phosphoprotein phosphatase 1. The results suggest that the Ca2+ sensitivities of brain calmodulin-dependent cyclic nucleotide phosphodiesterase isozymes can be modulated by protein phosphorylation and dephosphorylation mechanisms in response to different second messengers.  相似文献   

18.
Several bovine brain proteins have been found to interact with a hydrophobic chromatography resin (phenyl-Sepharose CL-4B) in a Ca2+-dependent manner. These include calmodulin, the Ca2+/phospholipid-dependent protein kinase (protein kinase C) and a novel Ca2+-binding protein that has now been purified to electrophoretic homogeneity. This latter protein is acidic (pI 5.1) and, like calmodulin and some other high-affinity Ca2+-binding proteins, exhibits a Ca2+-dependent mobility shift on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, with an apparent Mr of 22 000 in the absence of Ca2+ and Mr 21 000 in the presence of Ca2+. This novel calciprotein is distinct from known Ca2+-binding proteins on the basis of Mr under denaturing conditions, Cleveland peptide mapping and amino acid composition analysis. It may be a member of the calmodulin superfamily of Ca2+-binding proteins. This calciprotein does not activate two calmodulin-dependent enzymes, namely cyclic nucleotide phosphodiesterase and myosin light-chain kinase, nor does it have any effect on protein kinase C. It may be a Ca2+-dependent regulatory protein of an as-yet-undefined enzymic activity. The Ca2+/phospholipid-dependent protein kinase is also readily purified by Ca2+-dependent hydrophobic-interaction chromatography followed by ion-exchange chromatography, during which it is easily separated from calmodulin. A preparation of protein kinase C that lacks contaminating kinase or phosphatase activities is thereby obtained rapidly and simply. Such a preparation is ideal for the study of phosphorylation reactions catalysed in vitro by protein kinase C.  相似文献   

19.
M Walsh  F C Stevens 《Biochemistry》1978,17(19):3924-3928
Methionine residues have been implicated in the activation of cyclic nucleotide phosphodiesterase by the Ca2+-dependent protein modulator [Walsh, M., & Stevens, F.C. (1977) Biochemistry 16,2742-2749]. Treatment of the modulator with N-chlorosuccinimide in the presence of Ca2+ resulted in selective oxidation of methionine residues at positions 71,72, 76, and, possibly, 109 in the modulator sequence. These residues lie on the surface of the molecule exposed to solvent. This modification has several effects on the modulator protein: (1) the Ca2+-binding properties of the oxidized modulator are changed with apparent loss of high-affinity binding sites, (2) the oxidized protein no longer interacts with phosphodiesterase, and (3) troponin C like activities, viz., Ca2+-dependent change in mobility on urea-polyacrylamide gel electrophoresis and formation of a urea-stable complex with troponin I, are lost upon oxidation of the modulator. The phosphodiesterase binding domain of the modulator protein appears to be located between the second and third Ca2+-binding loops, a region of the molecule known from previous partial proteolysis studies [Walsh, M., Stevens, F.C., Kuznicki, J., & Drabikowski, W.(1977), J. Biol. Chem. 252, 7440-7443] to be exposed in the presence of Ca2+.  相似文献   

20.
Ca2+-binding protein with the properties of brain modulator protein of 3,5-cyclic nucleotide phosphodiesterase was identified in Physarum polycephalum plasmodia and in Euglena gracilis and Amoeba proteus cells by urea polyacrylamide gel electrophoresis and activation of cyclic nucleotide phosphodiesterase and of myosin light chain kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号