首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combination of high salt and low ethanol concentration allowed the fractionation of nucleic acids extracted from viroid-infected leaves. By adding 0.4-0.5 vol of ethanol to 1 vol of a solution in 2 M LiCl of nucleic acids (containing mainly DNA, 4S, 5S, 7S, and viroid RNAs), 85% of the DNA and 75% of the 4S RNA remained in solution, from where they could be recovered by increasing the ethanol concentration, whereas almost all 5S, 7S, and viroid RNAs precipitated. When this process was repeated three times a 95% elimination of the initial DNA and 4S RNA was achieved. The method can be of special interest in viroid purification considering that DNA and 4S RNA are the most abundant contaminants in the starting solution of nucleic acids. It is suggested that the highly ordered secondary structure of viroid RNA may be responsible for its particular behavior in the ethanol fractionation of nucleic acids.  相似文献   

2.
反义RNA网络──一种新假说   总被引:1,自引:0,他引:1  
根据核酸的基本特性和最新研究成果,提出了一种新的假说──反义RNA网络:生物体内存在着许许多多小分子的基因组反义RNA以及与之互补的反反义RNA片段,由于机体的自身修饰作用(或其它机理),它们彼此不发生复性或杂交.这种反义RNA网络一方面参与调控特定基因在特定部位、特定时间的启动和关闭,维持机体各种功能活动的相对稳定,另一方面对体内突变核酸和体外侵入核酸发挥特异性识别和排斥作用.  相似文献   

3.
4.
The advent of deep sequencing technology has unexpectedly advanced our structural understanding of molecules composed of nucleic acids. A significant amount of progress has been made recently extrapolating the chemical methods to probe RNA structure into sequencing methods. Herein we review some of the canonical methods to analyze RNA structure, and then we outline how these have been used to probe the structure of many RNAs in parallel. The key is the transformation of structural biology problems into sequencing problems, whereby sequencing power can be interpreted to understand nucleic acid proximity, nucleic acid conformation, or nucleic acid‐protein interactions. Utilizing such technologies in this way has the promise to provide novel structural insights into the mechanisms that control normal cellular physiology and provide insight into how structure could be perturbed in disease.  相似文献   

5.
In this study, phylogenetically conserved structural features of the Ro RNP associated Y RNAs were investigated. The human, iguana, and frog Y3 and Y4 RNA sequences have been determined previously and the respective RNAs were subjected to enzymatic and chemical probing to obtain structural information. For all of the analyzed RNAs, the probing data were used to compose secondary structures, which partly deviate from previously predicted structures. Our results confirm the existence of two stem structures, which are also found at similar positions in hY1 and hY5 RNA. For the remaining parts of hY3 and hY4 RNA the secondary structures differ from those previously proposed based upon computer predictions. What might be more important is that certain parts of the RNAs appear to be flexible, i.e., to adopt several conformations. Another striking feature is that a characteristic pyrimidine-rich region, present in every Y RNA known, is single-stranded in all secondary structures. This may suggest that this region is readily available for base pairing interactions with other cellular nucleic acids, which might be important for the as yet unknown function of the RNAs.  相似文献   

6.
The marine photosynthetic bacterium Rhodovulum sulfidophilum produces extracellular nucleic acids involved in its flocculation. Previously, we showed that the RNA fraction of these extracellular nucleic acids released into the culture medium contains mainly non-aminoacylated fully mature-sized tRNAs and fragments of 16S and 23S rRNAs. Here, we report the characterization of extracellular DNA itself and its production during cultivation. No differences were detected in nucleotide sequence between the intracellular DNA and extracellular soluble DNA on Southern blotting. Whole intracellular DNA seemed to be released from the cell. The bacterial floc was degraded by deoxyribonuclease or ribonuclease treatment, indicating that at least the extracellular DNA and RNAs in the floc are involved in the maintenance of the floc. When cultivated in nutritionally rich medium, the bacteria formed small flocs and produced large amounts of extracellular DNA, which were solubilized in the medium. In nutritionally poor medium, however, huge flocs of cells appeared and almost no extracellular soluble DNA was observed in the medium. As the floc was degraded by deoxyribonuclease treatment, it seems likely that the extracellular soluble DNA observed in the rich medium may be incorporated into the large floc and play a role in floc maintenance in poor medium. Addition of an inhibitor of quorum sensing, α-cyclodextrin, inhibited huge floc maintenance in the nutritionally poor medium. In the presence of α-cyclodextrin, the floc was rapidly degraded and extracellular soluble DNA production increased.  相似文献   

7.
A series of V- and Y-shaped nucleic acids, related to the splicing intermediates derived from S. cerevisiae actin pre-mRNA, were prepared. The effects of such branched nucleic acids (bNAs) on the efficiency of in vitro pre-mRNA splicing in yeast were studied. The exogenous bNAs each effect the efficiency of splicing, yet to different degrees, depending on the sugar composition and topology of the molecules. Y-shaped RNAs inhibited the formation of mRNA (i.e. RNA splicing) to the greatest extent.  相似文献   

8.
9.
Autoimmune diseases are frequently characterized by the presence of autoantibodies directed against nucleic acid-protein complexes present in the nucleus of the cell. The mechanisms by which these autoantigenic molecules escape immunological tolerance are largely unknown, although a number of recent observations suggest that modified self-proteins generated during apoptosis may play an important role in the development of autoimmunity. It has been hypothesized that the recognition of these modified self-proteins by the immune system may promote autoantibody production. While apoptosis is specifically characterized by posttranslational modification of proteins, recent findings also show that nucleic acids are modified. This review summarizes the specific cleavages of some of these key nucleic acids, i.e. chromosomal DNA, ribosomal RNA and small structural RNAs (U1 snRNA, Y RNA), in apoptotic cells.  相似文献   

10.
The milk feeding is the most essential process laying the foundation of human health at the postnatal development. However little is known about nucleic acids secreted into mother's milk during lactation. In order to investigate the composition and abundance of human milk NA we adapted the conventional isolation method to achieve high yield of total nucleic acids from milk samples. Concentration of total NA in milk samples of different donors varies from 20 to 68 mkg/ml at early stages of lactation. The average concentration tends to fall down to the end of lactation. The chain length of the major forms of NA varies from mononucleotides up to approximately 100 bases. Compositions of milk oligonucleotides are similar in samples of different donors. Major milk oligonucleotides are formed of RNA. Human milk contains the set of long‐chain oligonucleotides with a developed secondary structure. Sequences of some oligo‐RNAs correspond to the 3′‐part of 5.8 S human ribosomal RNA and to the 3′‐parts of tRNAVal and tRNATyr Primary structures of some others oligo‐RNAs were related to fragments of human 18S and 28S rRNAs.  相似文献   

11.
A Malhotra  R K Tan    S C Harvey 《Biophysical journal》1994,66(6):1777-1795
There is a growing body of low-resolution structural data that can be utilized to devise structural models for large RNAs and ribonucleoproteins. These models are routinely built manually. We introduce an automated refinement protocol to utilize such data for building low-resolution three-dimensional models using the tools of molecular mechanics. In addition to specifying the positions of each nucleotide, the protocol provides quantitative estimates of the uncertainties in those positions, i.e., the resolution of the model. In typical applications, the resolution of the models is about 10-20 A. Our method uses reduced representations and allows us to refine three-dimensional structures of systems as big as the 16S and 23S ribosomal RNAs, which are about one to two orders of magnitude larger than nucleic acids that can be examined by traditional all-atom modeling methods. Nonatomic resolution structural data--secondary structure, chemical cross-links, chemical and enzymatic footprinting patterns, protein positions, solvent accessibility, and so on--are combined with known motifs in RNA structure to predict low-resolution models of large RNAs. These structural constraints are imposed on the RNA chain using molecular mechanics-type potential functions with parameters based on the quality of experimental data. Surface potential functions are used to incorporate shape and positional data from electron microscopy image reconstruction experiments into our models. The structures are optimized using techniques of energy refinement to get RNA folding patterns. In addition to providing a consensus model, the method finds the range of models consistent with the data, which allows quantitative evaluation of the resolution of the model. The method also identifies conflicts in the experimental data. Although our protocol is aimed at much larger RNAs, we illustrate these techniques using the tRNA structure as an example and test-bed.  相似文献   

12.
我们采用植物叶与热缓冲液、苯酚直接混合(约65℃)匀浆,离心抽提和乙醇沉淀后,得到植物叶总RNA。经聚丙烯酰胺凝胶电泳分离、纯化,即可得到叶绿体4.5S rRNA,此法不仅操作简单,而且得率高。 同时,经过对同一植物的不同组织或不同细胞组分,如根、细胞质、叶绿体和叶绿体核糖体小分子RNA的提取与鉴定,以简便的方法证明了4.5S rRNA是叶绿体核糖体成份,也证明了我们所采用的提取、纯化4.5SrRNA方法的可靠性。  相似文献   

13.
A series of V- and Y-shaped nucleic acids, related to the splicing intermediates derived from S. cerevisiae actin pre-mRNA, were prepared. The effects of such branched nucleic acids (bNAs) on the efficiency of in vitro pre-mRNA splicing in yeast were studied. The exogenous bNAs each effect the efficiency of splicing, yet to different degrees, depending on the sugar composition and topology of the molecules. Y-shaped RNAs inhibited the formation of mRNA (i.e. RNA splicing) to the greatest extent.  相似文献   

14.
Xu L  Lv J  Ling L  Wang P  Song P  Su R  Zhu G 《Analytical biochemistry》2011,419(2):309-316
Nucleic acids were found to partition into the phenol phase during phenol extraction in the presence of guanidinium at certain concentrations under acidic conditions. The guanidinium-concentration-dependent nucleic acid partitioning patterns were analogous to those of the nucleic acid adsorption/partitioning onto silica mediated by guanidinium, which implied that phenol and silica interact with nucleic acids through similar mechanisms. A competition effect was observed in which the nucleic acids that had partitioned into the phenol phase or onto the silica solid phase could be recovered to the aqueous phases by potassium in a molecular weight–salt concentration-dependent manner (the higher molecular weight nucleic acids needed higher concentrations of potassium to be recovered, and vice versa). Methods were developed based on these findings to isolate total RNA from Escherichia coli. By controlling the concentrations of guanidinium and potassium salts used before phenol extraction or silica adsorption, we can selectively recover total RNA but not the high molecular weight genomic DNA in the aqueous phases. Genomic DNA-free total RNA obtained by our methods is suitable for RT-PCR or other purposes. The methods can also be adapted to isolate small RNAs or RNA in certain molecular weight ranges by changing the salt concentrations used.  相似文献   

15.
Noncoding RNAs play essential roles in genetic regulation in all organisms. In eukaryotic cells, many small non-coding RNAs act in complex with Argonaute proteins and regulate gene expression by recognizing complementary RNA targets. The complexes of Argonaute proteins with small RNAs also play a key role in silencing of mobile genetic elements and, in some cases, viruses. These processes are collectively called RNA interference. RNA interference is a powerful tool for specific gene silencing in both basic research and therapeutic applications. Argonaute proteins are also found in prokaryotic organisms. Recent studies have shown that prokaryotic Argonautes can also cleave their target nucleic acids, in particular DNA. This activity of prokaryotic Argonautes might potentially be used to edit eukaryotic genomes. However, the molecular mechanisms of small nucleic acid biogenesis and the functions of Argonaute proteins, in particular in bacteria and archaea, remain largely unknown. Here we briefly review available data on the RNA interference processes and Argonaute proteins in eukaryotes and prokaryotes.  相似文献   

16.
Extracellular nucleic acids   总被引:4,自引:0,他引:4  
Extracellular nucleic acids are found in different biological fluids in the organism and in the environment: DNA is a ubiquitous component of the organic matter pool in the soil and in all marine and freshwater habitats. Data from recent studies strongly suggest that extracellular DNA and RNA play important biological roles in microbial communities and in higher organisms. DNA is an important component of bacterial biofilms and is involved in horizontal gene transfer. In recent years, the circulating extracellular nucleic acids were shown to be associated with some diseases. Attempts are being made to develop noninvasive methods of early tumor diagnostics based on analysis of circulating DNA and RNA. Recent observations demonstrated the possibility of nucleic acids exchange between eukaryotic cells and extracellular space suggesting their participation in so far unidentified biological processes.  相似文献   

17.
18.
In vitro and in vivo action of antisense RNA   总被引:3,自引:0,他引:3  
The transient or permanent expression of antisense RNA represents one option to apply antisense techniques in biotechnology and medical research. Despite the increasing importance and use of antisense nucleic acids as well as their significant antisense-specific phenotypic effects in vivo, there is an obvious lack of explanation for the mechanism of their action. By studying naturally occurring antisense RNA and analyzing their mechanism of action we attempt to learn more about the design, the use, and the critical parameters of artificial antisense RNA. Attempts to derive models from biochemical and structural studies for the interactions between antisense RNAs and their targets will be discussed.  相似文献   

19.
20.
Selenium (Se) can provide unique biochemical and biological functions, and properties to macromolecules, including protein and RNA. Although Se has not yet been found in DNA, identification of the presence of Se in natural tRNAs has led to discovery of the naturally occurring 2-selenouridine and 5-[(methylamino)methyl]-2-selenouridine (mnm(5)se(2)U). The Se-atoms at C(2) of the modified uridines are introduced by 2-selenouridine synthase via displacement of the S-atoms in the corresponding 2-thiouridine nucleotides of the tRNAs, and selenophosphate is used as the Se donor. The research indicated that mnm(5)se(2)U is located at the first or wobble position of the anticodons in several bacterial tRNAs, including tRNA(Lys), tRNA(Glu), and tRNA(Gln). The 2-seleno functionality on this modified nucleotide probably improves the translation accuracy and/or efficiency. These observations in vivo suggest that the presence of Se can provide natural RNAs with useful properties to better function and survival. To further investigate the biochemical and structural properties of Se-derivatized nucleic acids (SeNA), we have pioneered chemical and enzymatic synthesis of Se-derivatized nucleic acids, and introduced Se into both RNA and DNA at a variety of positions by atom-specific replacement of oxygen. This review outlines the recent advancements in chemical and biochemical syntheses, and studies of SeNAs, and their potential applications in structural and functional investigation of nucleic acids and their protein complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号