首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The anaerobic degradation of different fractions of rice straw in anoxic paddy soil was investigated. Rice straw was divided up into stem, leaf sheath and leaf blade. The different straw fractions were mixed with paddy soil and incubated under anoxic conditions. Fermentation of straw components started immediately and resulted in transient accumulation of acetate, propionate, butyrate, isobutyrate, valerate, isovalerate and caproate with much higher concentrations in the presence than in the absence of straw. Also some unidentified compounds with UV absorption could be detected. The maximum concentrations of these compounds were different when using different straw fractions, suggesting differences in the degradation pathway of these straw fractions during the early phase of incubation, i.e. with Fe(III) and sulfate serving as oxidants. When concentrations of the intermediates decreased to background values, CH(4) production started. Rates of CH(4)unamended soil. During the methanogenic phase, the percentage contribution of fermentation products to CH(4) production was determined by inhibition with 2-bromoethanesulfonate (BES). Acetate (48-83%) and propionate (18-28%) were found to be the main intermediates of the carbon flow to CH(4), irrespective of the fraction of the rice straw or its absence. Mass balance calculations showed that 84-89% of CH(4) was formed via acetate in the various incubations. Radiotracer experiments showed that 11-27% of CH(4) was formed from H(2)/CO(2), thus confirming that acetate contributed 73-89% to methanogenesis. Our results show that the addition of rice straw and the fraction of the straw affected the fermentation pattern only in the early phase of degradation, but had no effect on the degradation pathway during the later methanogenic phase.  相似文献   

2.
The anaerobic biodegradation of ferulate and benzoate in stabilized methanogenic consortia was examined in detail. Up to 99% of the ferulate and 98% of the benzoate were converted to carbon dioxide and methane. Methanogenesis was inhibited with 2-bromoethanesulfonic acid, which reduced the gas production and enhanced the buildup of intermediates. Use of high-performance liquid chromatography and two gas chromatographic procedures yielded identification of the following compounds: caffeate, p-hydroxycinnamate, cinnamate, phenylpropionate, phenylacetate, benzoate, and toluene during ferulate degradation; and benzene, cyclohexane, methylcyclohexane, cyclohexanecarboxylate, cyclohexanone, 1-methylcyclohexanone, pimelate, adipate, succinate, lactate, heptanoate, caproate, isocaproate, valerate, butyrate, isobutyrate, propionate, and acetate during the degradation of either benzoate or ferulate. Based on the identification of the above compounds, more complete reductive pathways for ferulate and benzoate are proposed.  相似文献   

3.
In anoxic paddy soil, rice straw is decomposed to CH(4) and CO(2) by a complex microbial community consisting of hydrolytic, fermenting, syntrophic and methanogenic microorganisms. Here, we investigated which of these microbial groups colonized the rice straw and which were localized in the soil. After incubation of rice straw in anoxic soil slurries for different periods, the straw pieces were removed from the soil, and both slurry and straw were studied separately. Although the potential activities of polysaccharolytic enzymes were higher in the soil slurry than in the straw incubations, the actual release of reducing sugars was higher in the straw incubations. The concentrations of fermentation products, mainly acetate and propionate, increased steadily in the straw incubations, whereas only a little CH(4) was formed. In the soil slurries, on the other hand, fermentation products were low, whereas CH(4) production was more pronounced. The production of CH(4) or of fermentation products in the separated straw and soil incubations accounted in sum for 54-82% of the CH(4) formed when straw was not removed from the soil. Syntrophic propionate degradation to acetate, CO(2) and H(2) was thermodynamically more favourable in the soil than in the straw fraction. These results show that hydrolysis and primary fermentation reactions were mainly localized on the straw pieces, whereas the syntrophic and methanogenic reactions were mainly localized in the soil. The percentage of bacterial relative to total microbial 16S rRNA content was higher on the straw than in the soil, whereas it was the opposite for the archaeal 16S rRNA content. It appears that rice straw is mainly colonized by hydrolytic and fermenting bacteria that release their fermentation products into the soil pore water where they are further degraded to CH(4). Hence, complete methanogenic degradation of straw in rice soil seems to involve compartmentalization.  相似文献   

4.
Washed excised roots of rice (Oryza sativa) produced H(2), CH(4) and fatty acids (millimolar concentrations of acetate, propionate, butyrate; micromolar concentrations of isovalerate, valerate) when incubated under anoxic conditions. Surface sterilization of the root material resulted in the inactivation of the production of CH(4), a strong reduction of the production of fatty acids and a transient (75 h) but complete inhibition of the production of H(2). Radioactive bicarbonate was incorporated into CH(4), acetate, propionate and butyrate. About 20-40% of the fatty acid carbon originated from CO(2) reduction. In the presence of phosphate, CH(4) was exclusively produced from H(2)/CO(2), since phosphate selectively inhibited acetoclastic methanogenesis. Acetoclastic methanogenesis was also selectively inhibited by methyl fluoride, while chloroform or 2-bromoethane sulfonate inhibited CH(4) production completely. Production of CH(4), acetate, propionate and butyrate from H(2)/CO(2) was always exergonic with Gibbs free energies <-20 kJ mol(-1) product. Chloroform inhibited the production of acetate and the incorporation of radioactive CO(2) into acetate. Simultaneously, H(2) was no longer consumed and accumulated, indicating that acetate was produced from H(2)/CO(2). Chloroform also resulted in increased production of propionate and butyrate whose formation from CO(2) became more exergonic upon addition of chloroform. Nevertheless, the incorporation of radioactive CO(2) into propionate and butyrate was inhibited by chloroform. The accumulation of propionate and butyrate in the presence of chloroform probably occurred by fermentation of organic matter, rather than by reduction of acetate and CO(2). [U-(14)C]Glucose was indeed converted to acetate, propionate, butyrate, CO(2) and CH(4). Radioactive acetate, CO(2) and CH(4) were also products of the degradation of [U-(14)C]cellulose and [U-(14)C]xylose. Addition of chloroform and methyl fluoride did not affect the product spectrum of [U-(14)C]glucose degradation. The application of combinations of selective inhibitors may be useful to elucidate anaerobic metabolic pathways in mixed microbial cultures and natural microbial communities.  相似文献   

5.
Aromatic compounds (biogenic and anthropogenic) are abundant in the biosphere. Some of them are well-known environmental pollutants. Although the aromatic nucleus is relatively recalcitrant, microorganisms have developed various catabolic routes that enable complete biodegradation of aromatic compounds. The adopted degradation pathways depend on the availability of oxygen. Under oxic conditions, microorganisms utilize oxygen as a cosubstrate to activate and cleave the aromatic ring. In contrast, under anoxic conditions, the aromatic compounds are transformed to coenzyme A (CoA) thioesters followed by energy-consuming reduction of the ring. Eventually, the dearomatized ring is opened via a hydrolytic mechanism. Recently, novel catabolic pathways for the aerobic degradation of aromatic compounds were elucidated that differ significantly from the established catabolic routes. The new pathways were investigated in detail for the aerobic bacterial degradation of benzoate and phenylacetate. In both cases, the pathway is initiated by transforming the substrate to a CoA thioester and all the intermediates are bound by CoA. The subsequent reactions involve epoxidation of the aromatic ring followed by hydrolytic ring cleavage. Here we discuss the novel pathways, with a particular focus on their unique features and occurrence as well as ecological significance.  相似文献   

6.
Kim YH  Cho K  Yun SH  Kim JY  Kwon KH  Yoo JS  Kim SI 《Proteomics》2006,6(4):1301-1318
Proteomic analysis of Pseudomonas putida KT2440 cultured in monocyclic aromatic compounds was performed using 2-DE/MS and cleavable isotope-coded affinity tag (ICAT) to determine whether proteins involved in aromatic compound degradation pathways were altered as predicted by genomic analysis (Jiménez et al., Environ Microbiol. 2002, 4, 824-841). Eighty unique proteins were identified by 2-DE/MS or MS/MS analysis from P. putida KT2440 cultured in the presence of six different organic compounds. Benzoate dioxygenase (BenA, BenD) and catechol 1,2-dioxygenase (CatA) were induced by benzoate. Protocatechuate 3,4-dixoygenase (PcaGH) was induced by p-hydroxybenzoate and vanilline. beta-Ketoadipyl CoA thiolase (PcaF) and 3-oxoadipate enol-lactone hydrolase (PcaD) were induced by benzoate, p-hydroxybenzoate and vanilline, suggesting that benzoate, p-hydroxybenzoate and vanilline were degraded by different dioxygenases and then converged in the same beta-ketoadipate degradation pathway. An additional 110 proteins, including 19 proteins from 2-DE analysis, were identified by cleavable ICAT analysis for benzoate-induced proteomes, which complemented the 2-DE results. Phenylethylamine exposure induced beta-ketoacyl CoA thiolase (PhaD) and ring-opening enzyme (PhaL), both enzymes of the phenylacetate (pha) biodegradation pathway. Phenylalanine induced 4-hydroxyphenyl-pyruvate dioxygenase (Hpd) and homogentisate 1,2-dioxygenase (HmgA), key enzymes in the homogentisate degradation pathway. Alkyl hydroperoxide reductase (AphC) was induced under all aromatic compounds conditions. These results suggest that proteome analysis complements and supports predictive information obtained by genomic sequence analysis.  相似文献   

7.
Aerobic methane (CH(4) ) oxidation reduces the emission of CH(4) from mires and is regulated by various environmental factors. Organic acids and alcohols are intermediates of the anaerobic degradation of organic matter or are released by plant roots. Methanotrophs isolated from mires utilize these compounds preferentially to CH(4) . Thus, the effect of organic acids and ethanol on CH(4) oxidation by methanotrophs of a mire was evaluated. Slurries of mire soil oxidized supplemental CH(4) down to subatmospheric concentrations. The dominant pmoA and mmoX genotypes were affiliated with sequences from Methylocystis species capable of utilization of acetate and atmospheric CH(4) . Soil slurries supplemented with acetate, propionate or ethanol had reduced CH(4) oxidation rates compared with unsupplemented or glucose-supplemented controls. Expression of Methylocystis-affiliated pmoA decreased when CH(4) consumption decreased in response to acetate and was enhanced after acetate was consumed, at which time the consumption of CH(4) reached control levels. The inhibition of methanotroph activity might have been due to either toxicity of organic compounds or their preferred utilization. CH(4) oxidation was reduced at 5 and 0.5 mM of supplemental organic compounds. Acetate concentrations may exceed 3 mM in the investigated mire. Thus, the oxidation of CH(4) might decrease in microzones where organic acids occur.  相似文献   

8.
Li Y  Wu J  Wang W  Ding P  Feng L 《Journal of Proteomics》2012,75(4):1201-1210
Geobacillus thermodenitrificans NG80-2 is a crude oil-degrading thermophilic bacterium isolated from an oil reservoir in China. In this study, the gene clusters and pathways for the degradation of benzoate (via benzoyl-CoA), phenylacetate (via phenylacetyl-CoA), 4-hydroxyphenylacetate (via 3,4-dihydroxyphenylacetate) and anthranilate (via 3-hydroxyanthranilate) were confirmed using combined in silico analysis and proteomics approaches. It was observed that synthesis of the enzymes catalyzing initial activation, ring oxidation and ring cleavage reactions were generally induced specifically by their respective substrates, while many of the enzymes catalyzing downstream reactions exhibited broader substrate specificities. Novel genes encoding benzoyl-CoA epoxidase and 3,4-dihydroxyphenylacetate 2,3-dioxygenase, and a paaX homologue that serves as a positive regulator of benzoate degradation were proposed. Downregulation of the glycolysis pathway, along with upregulation of the gluconeogenesis pathway and the glyoxylate bypass (phenylacetate) were detected in association with the utilization of the aromatics. This novel proteomics approach confirmed the presence of multiple metabolic pathways for aromatic compounds in NG80-2, which is highly advantageous to the survival of this thermophilic bacterium under reservoir conditions.  相似文献   

9.
10.
氢醌和双氰胺对种稻土壤N2O和CH4排放的影响   总被引:14,自引:1,他引:13  
通过盆栽试验,研究了脲酶抑制剂氢醌(HQ)、硝化抑制剂双氰胺(DCD)及二者的组合(HQ+DCD)对种稻土壤N2O和CH4排放的影响.结果表明,在未施麦秸粉时,所有施抑制剂的处理均较单施尿素的能显著减少水稻生长期供试土壤N2O和CH4的排放.特别是HQ+DCD处理,其N2O和CH4排放总量分别约为对照的1/3和1/2.而在施麦秸粉后,该处理的N2O排放总量为对照的1/2,但CH4排放总量却较少差别.不论是N2O还是CH4的排放总量,施麦秸粉的都比未施的高出1倍和更多.因此,单从土壤源温室气体排放的角度看,将未腐熟的有机物料与尿素共施,并不是一种适宜的施肥制度.供试土壤的N2O排放通量,与水稻植株的NO-3N含量和土表水层中的矿质N量分别呈显著的指数正相关和线性正相关;CH4的排放通量则与水稻植株的生长量和土表水层中的矿质N量呈显著的线性负相关.在N2O与CH4的排放间,未施麦秸粉时存在着定量的相互消长关系;施麦秸粉后,虽同样存在所述关系,但难以定量化.  相似文献   

11.
The study provides the first evidence of the presence and abundance of bacterial population that coupled ferric iron reduction to aromatic compounds degradation in tropical irrigated paddy soils in the Philippines. Culturable phenol/benzoate degrading iron-reducing bacteria was enumerated by the most probable number (MPN) counts using phenol or benzoate as sole carbon source, and ferric oxide [Fe(OH)(3)] as the sole electron acceptor. Population density of phenol degrading iron-reducing bacteria (P-IRB) in irrigated paddy soil ranged from 10(2) to 10(8)g(-1) dry soil, and increased with the progressive rice growth in rice cropping seasons; the study also revealed a significant rhizosphere effect on population of P-IRB. However, high enumeration of benzoate degrading iron-reducing bacteria (B-IRB) was obtained in all the tested soil samples averaging at 1.2 x 10(6)g(-1) dry soil, and did not fluctuate significantly over the rice cropping seasons. Statistical data showed that less cropping density with aerated fallow and high nitrogen rate favored the population growth of P-IRB. However, results showed that population size of B-IRB was relatively insensitive to the effect of either seasonal or extrinsic factors tested in this study.  相似文献   

12.
Although CH 4 production is sensitive to temperature, it is not clear how temperature controls CH 4 production directly versus the production of organic substrates that methanogens convert into CH 4 . Therefore, this study was done to better understand how CH 4 production in rice paddy soil responded to temperature when the process was not limited by the availability of substrates. In a laboratory-incubation study using three Indian rice soils under flooded conditions, the effect of temperature on CH 4 production was examined. CH 4 production in acid sulphate, laterite, and alluvial soil samples under flooded conditions distinctly increased with increase in temperature from 15°C to 35°C. Laterite and acid sulphate soils produced distinctly less CH 4 than alluvial soils. CO 2 production increased with increase in temperature in all the soils. The readily mineralizable carbon C and Fe 2+ contents in soils were least at 15°C and highest at 35°C, irrespective of soil type. Likewise, a significant correlation existed between microbial population (methanogens and sulphate reducers) and CH 4 production. Comparing the temperature coefficients ( Q 10 ) for methane production within each soil type at low (15°C-25°C) and medium (25°C-35°C) temperature intervals revealed that these values were not uniform for both alluvial and laterite soils. But acid sulphate soil had Q 10 values that were near 2 at both temperature intervals. When these soil samples were amended with substrates (acetate, H 2 -CO 2 , and rice straw), there were stimulatory effects on methane production rates and consequently on the Q 10 values. The pattern of temperature coefficients was characteristic of the soil type and the nature of substrates used for amendment.  相似文献   

13.
Phenol degradation under methanogenic conditions has long been studied, but the anaerobes responsible for the degradation reaction are still largely unknown. An anaerobe, designated strain UI(T), was isolated in a pure syntrophic culture. This isolate is the first tangible, obligately anaerobic, syntrophic substrate-degrading organism capable of oxidizing phenol in association with an H(2)-scavenging methanogen partner. Besides phenol, it could metabolize p-cresol, 4-hydroxybenzoate, isophthalate, and benzoate. During the degradation of phenol, a small amount of 4-hydroxybenzoate (a maximum of 4 microM) and benzoate (a maximum of 11 microM) were formed as transient intermediates. When 4-hydroxybenzoate was used as the substrate, phenol (maximum, 20 microM) and benzoate (maximum, 92 microM) were detected as intermediates, which were then further degraded to acetate and methane by the coculture. No substrates were found to support the fermentative growth of strain UI(T) in pure culture, although 88 different substrates were tested for growth. 16S rRNA gene sequence analysis indicated that strain UI(T) belongs to an uncultured clone cluster (group TA) at the family (or order) level in the class Deltaproteobacteria. Syntrophorhabdus aromaticivorans gen. nov., sp. nov., is proposed for strain UI(T), and the novel family Syntrophorhabdaceae fam. nov. is described. Peripheral 16S rRNA gene sequences in the databases indicated that the proposed new family Syntrophorhabdaceae is largely represented by abundant bacteria within anaerobic ecosystems mainly decomposing aromatic compounds.  相似文献   

14.
From various oxic or anoxic habitats anaerobic enrichment cultures were set up which completely oxidized aromatic amino acids to CO2 with nitrate as electron acceptor. Tyrosine and tryptophan at first were degraded to phenol and indole, respectively, prior to utilization of the aromatic ring; with phenylalanine no intermediates were detected. Attempts to isolate denitrifying bacteria able to completely degrade aromatic amino acids were unsuccessful. Starting with these enrichments several strains of denitrifying bacteria were anaerobically enriched and isolated with known fermentation products of amino acids (phenylacetate, 4-OH-phenylacetate, 2-OH-benzoate) plus nitrate as sole sources of carbon and energy.Three strains were characterized further. They grew well in defined mineral salts medium, were gram-negative and facultatively anaerobic with strictly oxidative metabolism; molecular oxygen, nitrate or nitrite served as electron acceptors. The isolates were tentatively identified as pseudomonads, but could not be aligned to known species. They oxidized a variety of aromatic compounds completely to CO2 anaerobically and, with some exceptions, also aerobically. The substrates included among others: (4-OH)-phenylacetate, (4-OH)-phenylglyoxylate, benzoate, 2-aminobenzoate, phenol, OH-benzoates, indole and notably toluene. Reduced alicyclic compounds were not utilized. During anaerobic degradation of (4-OH)-phenylacetate transient accumulation of (4-OH)-phenylglyoxylate was observed.It is proposed that anaerobic -oxidation of the-CH2–COOH side chain to -CO–COOH initiates anaerobic degradation of (4-OH)-phenylacetate. This implies a novel type of anaerobic -hydroxylation with water as the oxygen donor. Abbreviation. Hydroxyl groups were abbreviated as OH  相似文献   

15.
Incorporation of plant residues strongly enhances the methane production and emission from flooded rice fields. Temperature and residue type are important factors that regulate residue decomposition and CH(4) production. However, the response of the methanogenic archaeal community to these factors in rice field soil is not well understood. In the present experiment, the structure of the archaeal community was determined during the decomposition of rice root and straw residues in anoxic rice field soil incubated at three temperatures (15 degrees C, 30 degrees C, and 45 degrees C). More CH(4) was produced in the straw treatment than root treatment. Increasing the temperature from 15 degrees C to 45 degrees C enhanced CH(4) production. Terminal restriction fragment length polymorphism analyses in combination with cloning and sequencing of 16S rRNA genes showed that Methanosarcinaceae developed early in the incubations, whereas Methanosaetaceae became more abundant in the later stages. Methanosarcinaceae and Methanosaetaceae seemed to be better adapted at 15 degrees C and 30 degrees C, respectively, while the thermophilic Methanobacteriales and rice cluster I methanogens were significantly enhanced at 45 degrees C. Straw residues promoted the growth of Methanosarcinaceae, whereas the root residues favored Methanosaetaceae. In conclusion, our study revealed a highly dynamic structure of the methanogenic archaeal community during plant residue decomposition. The in situ concentration of acetate (and possibly of H(2)) seems to be the key factor that regulates the shift of methanogenic community.  相似文献   

16.
Methyl bromide (CH3Br) and methyl chloride (CH3Cl) are important precursors for destruction of stratospheric ozone, and oceanic uptake is an important component of the biogeochemical cycle of these methyl halides. In an effort to identify and characterize the organisms mediating halocarbon biodegradation, we surveyed the effect of potential cometabolic substrates on CH3Br biodegradation using a 13CH3Br incubation technique. Toluene (160 to 200 nM) clearly inhibited CH3Br and CH3Cl degradation in seawater samples from the North Atlantic, North Pacific, and Southern Oceans. Furthermore, a marine bacterium able to co-oxidize CH3Br while growing on toluene was isolated from subtropical Western Atlantic seawater. The bacterium, Oxy6, was also able to oxidize o-xylene and the xylene monooxygenase (XMO) pathway intermediate 3-methylcatechol. Patterns of substrate oxidation, lack of acetylene inhibition, and the inability of the toluene 4-monooxygenase (T4MO)-containing bacterium Pseudomonas mendocina KR1 to degrade CH3Br ruled out participation of the T4MO pathway in Oxy6. Oxy6 also oxidized a variety of toluene (TOL) pathway intermediates such as benzyl alcohol, benzylaldehyde, benzoate, and catechol, but the inability of Pseudomonas putida mt-2 to degrade CH3Br suggested that the TOL pathway might not be responsible for CH3Br biodegradation. Molecular phylogenetic analysis identified Oxy6 to be a member of the family Sphingomonadaceae related to species within the Porphyrobacter genus. Although some Sphingomonadaceae can degrade a variety of xenobiotic compounds, this appears to be the first report of CH3Br degradation for this class of organism. The widespread inhibitory effect of toluene on natural seawater samples and the metabolic capabilities of Oxy6 indicate a possible link between aromatic hydrocarbon utilization and the biogeochemical cycle of methyl halides.  相似文献   

17.
Temperature is an important factor controlling CH(4) production in anoxic rice soils. Soil slurries, prepared from Italian rice field soil, were incubated anaerobically in the dark at six temperatures of between 10 to 37 degrees C or in a temperature gradient block covering the same temperature range at intervals of 1 degrees C. Methane production reached quasi-steady state after 60 to 90 days. Steady-state CH(4) production rates increased with temperature, with an apparent activation energy of 61 kJ mol(-1). Steady-state partial pressures of the methanogenic precursor H(2) also increased with increasing temperature from <0.5 to 3.5 Pa, so that the Gibbs free energy change of H(2) plus CO(2)-dependent methanogenesis was kept at -20 to -25 kJ mol of CH(4)(-1) over the whole temperature range. Steady-state concentrations of the methanogenic precursor acetate, on the other hand, increased with decreasing temperature from <5 to 50 microM. Simultaneously, the relative contribution of H(2) as methanogenic precursor decreased, as determined by the conversion of radioactive bicarbonate to (14)CH(4), so that the carbon and electron flow to CH(4) was increasingly dominated by acetate, indicating that psychrotolerant homoacetogenesis was important. The relative composition of the archaeal community was determined by terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes (16S rDNA). T-RFLP analysis differentiated the archaeal Methanobacteriaceae, Methanomicrobiaceae, Methanosaetaceae, Methanosarcinaceae, and Rice clusters I, III, IV, V, and VI, which were all present in the rice field soil incubated at different temperatures. The 16S rRNA genes of Rice cluster I and Methanosaetaceae were the most frequent methanogenic groups. The relative abundance of Rice cluster I decreased with temperature. The substrates used by this microbial cluster, and thus its function in the microbial community, are unknown. The relative abundance of acetoclastic methanogens, on the other hand, was consistent with their physiology and the acetate concentrations observed at the different temperatures, i.e., the high-acetate-requiring Methanosarcinaceae decreased and the more modest Methanosaetaceae increased with increasing temperature. Our results demonstrate that temperature not only affected the activity but also changed the structure and the function (carbon and electron flow) of a complex methanogenic system.  相似文献   

18.
A stabilized consortium of microbes which anaerobically degraded benzoate and produced CH4 was established by inoculation of a benzoate-mineral salts medium with sewage sludge; the consortium was routinely subcultured anaerobically in this medium for 3 years. Acetate, formate, H2 and CO2 were identified as intermediates in the overall conversion of benzoate to CH4 by the culture. Radioactivity was equally divided between the CH4 and CO2 from the degradation of uniformly ring-labeled [14C]benzoate. The methyl group of acetate was stoichiometrically converted to CH4. Acetate, cyclohexanecarboxylate, 2-hydroxycyclohexanecarboxylate, o-hydroxybenzoic acid and pimelic acid were converted to CH4 without a lag suggesting that benzoate was degraded by a reductive pathway. Addition of o-chlorobenzoate inhibited benzoate degradation but not acetate degradation or methane formation. Two methanogenic organisms were isolated from the mixed culture, neither organism was able to degrade benzoate, showing that the methanogenic bacteria served as terminal organisms of a metabolic food chain composed of several organisms. Removal of intermediates by the methanogenic bacteria provided thermodynamically favorable conditions for benzoate degradation.  相似文献   

19.
Mycobacterium sp. strain KMS has bioremediation potential for polycyclic aromatic hydrocarbons (PAHs), such as pyrene, and smaller ring aromatics, such as benzoate. Degradation of these aromatics involves oxidation catalyzed by aromatic ring-hydroxylating dioxygenases. Multiple genes encoding dioxygenases exist in KMS: ten genes encode large-subunits with homology to phenylpropionate dioxygenase genes, sixteen pairs of adjacent genes encode alpha- and beta-subunits of dioxygenase and two genes encode beta-subunits. These genes include orthologs of nid genes essential for degradation of multi-ring PAHs in M. vanbaalenii isolate PYR-1. The multiplicity of genes in part is explained by block duplication that results in two or three copies of certain genes on the chromosome, a linear plasmid, and a circular plasmid within the KMS genome. Quantitative real-time PCR showed that four dioxygenase beta-subunit nid genes from operons with almost identical promoter sequences otherwise unique in the genome were induced by pyrene to similar extents. No induction occurred with benzoate. Unlike isolate PYR-1, isolate KMS has an operon specifying benzoate catabolism and the expression of the alpha-subunit dioxygenase gene was activated by benzoate but not pyrene. These studies showed that isolate KMS had a genome well adapted to utilization of different aromatic compounds.  相似文献   

20.
The microbially mediated reductive dehalogenation of aromatic compounds is potentially important in removal of chlorinated aromatic compounds from the environment. Thermodynamic data are presented which show that the reductive dechlorination of 3-chlorobenzoate to benzoate is exergonic, which led to the hypothesis that reductive elimination of chlorine from 3-chlorobenzoate yields biologically useful energy. In the present paper this hypothesis is tested. Experimental data were obtained with a defined 3-chlorobenzoate degrading methanogenic consortium. These data showed that (i) the molar growth yield of a defined 3-chlorobenzoate degrading consortium increased from 4.9 g protein per mol benzoate metabolized to 6.8 g protein per mol 3-chlorobenzoate when 3-chlorobenzoate replaced benzoate as energy source, and that (ii) the ATP level in starved consortium cells was twice as high when the cells were fed 3-chlorobenzoate than when fed benzoate. These observations show that the electrochemical potential between the redox partners of the H+/H2 (electron-donating) and 3-chlorobenzoate/benzoate (electron-accepting) couples is a potential source of energy and are consistent with the hypothesis that reductive dechlorination of aromatic compounds is coupled to a novel type of microbial chemotrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号