首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated the role of the herpes simplex virus type 1 UL8 gene product in viral DNA replication. First, we unambiguously fine mapped the mutation in tsS38 (complementation group 1-26) to an open reading frame, designated UL8, predicted to encode an 80-kilodalton protein. Previous studies indicated that tsS38 was capable of synthesizing low to moderate levels of viral DNA at the nonpermissive temperature (C. T. Chu, D. S. Parris, R. A. F. Dixon, F. E. Farber, and P. A. Schaffer, Virology 98:168-181, 1979); thus, it was not clear whether the UL8 gene product is essential for viral DNA synthesis. Therefore, a deletion-insertion mutation was constructed in the UL8 gene by removing most of its coding sequences and replacing them with the Escherichia coli lacZ gene under control of the viral ICP6 regulatory signals. The resulting recombinant, hr80, was propagated in helper cells (S22) which express the wild-type version of the UL8 gene, but was incapable of forming plaques in Vero cells. Furthermore, hr80 was totally defective in the synthesis of viral DNA and late proteins under nonpermissive growth conditions. These results demonstrated that the UL8 gene product is essential for viral DNA synthesis.  相似文献   

2.
In our search for novel inhibitors of herpes simplex virus type 1 (HSV-1), a new class of thiourea inhibitors was discovered. N-(4-[3-(5-Chloro-2,4-dimethoxyphenyl)-thioureido]-phenyl)-acetamide and its 2-fluoro-benzamide derivative inhibited HSV-1 replication. HSV-2, human cytomegalovirus, and varicella-zoster virus were inhibited to a lesser extent. The compounds acted late in the replication cycle by impairing both the cleavage of concatameric viral DNA into progeny genome length and the packaging of the DNA into capsids, indicative of a defect in the encapsidation process. To uncover the molecular target of the inhibition, resistant HSV-1 isolates were generated, and the mutation responsible for the resistance was mapped using marker transfer techniques. Each of three independent isolates had point mutations in the UL6 gene which resulted in independent single-amino-acid changes. One mutation was located in the N terminus of the protein (E121D), while two were located close together in the C terminus (A618V and Q621R). Each of these point mutations was sufficient to confer drug resistance when introduced into wild-type virus. The UL6 gene is one of the seven HSV-1 genes known to play a role in DNA packaging. This novel class of inhibitors has provided a new tool for dissection of HSV-1 encapsidation mechanisms and has uncovered a new viable target for the treatment of herpesviral diseases.  相似文献   

3.
The herpes simplex virus type 1 (HSV-1) UL6, UL15, and UL28 proteins are essential for cleavage of replicated concatemeric viral DNA into unit length genomes and their packaging into a preformed icosahedral capsid known as the procapsid. The capsid-associated UL6 DNA-packaging protein is located at a single vertex and is thought to form the portal through which the genome enters the procapsid. The UL15 protein interacts with the UL28 protein, and both are strong candidates for subunits of the viral terminase, a key component of the molecular motor that drives the DNA into the capsid. To investigate the association of the UL6 protein with the UL15 and UL28 proteins, the three proteins were produced in large amounts in insect cells with the baculovirus expression system. Interactions between UL6 and UL28 and between UL6 and UL15 were identified by an immunoprecipitation assay. These results were confirmed by transiently expressing wild-type and mutant proteins in mammalian cells and monitoring their distribution by immunofluorescence. In cells expressing the single proteins, UL6 and UL15 were concentrated in the nuclei whereas UL28 was found in the cytoplasm. When the UL6 and UL28 proteins were coexpressed, UL28 was redistributed to the nuclei, where it colocalized with UL6. In cells producing either of two cytoplasmic UL6 mutant proteins and a functional epitope-tagged form of UL15, the UL15 protein was concentrated with the mutant UL6 protein in the cytoplasm. These observed interactions of UL6 with UL15 and UL28 are likely to be of major importance in establishing a functional DNA-packaging complex at the portal vertex of the HSV-1 capsid.  相似文献   

4.
5.
The UL56 gene product of herpes simplex virus (HSV) has been shown to play an important role in viral pathogenicity. However, the properties and functions of the UL56 protein are little understood. We raised rabbit polyclonal antisera specific for the UL56 protein of HSV type 2 (HSV-2) and examined its expression and properties. The gene product was identified as three polypeptides with apparent molecular masses ranging from 32 to 35 kDa in HSV-2-infected cells, and at least one species was phosphorylated. Studies of their origins showed that the UL56 protein of HSV-2 is also translated from the upstream in-frame methionine codon that is not present in the HSV-1 genome. Synthesis was first detected at 6 h postinfection and was not abolished by the viral DNA synthesis inhibitor phosphonoacetic acid. Indirect immunofluorescence studies revealed that the UL56 protein localized to both the Golgi apparatus and cytoplasmic vesicles in HSV-2-infected and single UL56-expressing cells. Deletion mutant analysis showed that the C-terminal hydrophobic region of the protein was required for association with the cytoplasmic membrane and that the N-terminal proline-rich region was important for its translocation to the Golgi apparatus and cytoplasmic vesicles. Moreover, the results of protease digestion assays and sucrose gradient fractionation strongly suggested that UL56 is a tail-anchored type II membrane protein associated with lipid rafts. We thus hypothesized that the UL56 protein, as a tail-anchored type II membrane protein, may be involved in vesicular trafficking in HSV-2-infected cells.  相似文献   

6.
7.
The binding of a herpes simplex virus type 1 (HSV-1) encoded polypeptide to a viral origin of DNA replication has been studied by using a gel retardation assay. Incubation of nuclear extract from HSV-1 infected cells with a labelled origin-containing fragment resulted in the formation of a specific retarded complex, the migration of which was further reduced in the presence of an antibody reactive with the UL9 gene product. Introduction of an additional copy of the UL9 gene, under the control of an immediate early (IE) promoter, conferred the ability to express origin binding activity at the non-permissive temperature upon an HSV-1 ts mutant blocked at the IE stage of infection. Endogenous or exogenous proteolytic activity revealed the presence of a relatively protease-resistant domain which retained sequence-specific DNA binding activity. The C-terminal 317 amino acids of the UL9 gene expressed as a fusion protein in Escherichia coli also bound to the origin. Our results demonstrate that the UL9 gene product binds to a viral origin and that sequence specific recognition and binding are specified by the C-terminal 37% of the polypeptide.  相似文献   

8.
Role of the UL25 protein in herpes simplex virus DNA encapsidation   总被引:1,自引:0,他引:1       下载免费PDF全文
The herpes simplex virus protein UL25 attaches to the external vertices of herpes simplex virus type 1 capsids and is required for the stable packaging of viral DNA. To define regions of the protein important for viral replication and capsid attachment, the 580-amino-acid UL25 open reading frame was disrupted by transposon mutagenesis. The UL25 mutants were assayed for complementation of a UL25 deletion virus, and in vitro-synthesized protein was tested for binding to UL25-deficient capsids. Of the 11 mutants analyzed, 4 did not complement growth of the UL25 deletion mutant, and analysis of these and additional mutants in the capsid-binding assay demonstrated that UL25 amino acids 1 to 50 were sufficient for capsid binding. Several UL25 mutations were transferred into recombinant viruses to analyze the effect of the mutations on UL25 capsid binding and on DNA cleavage and packaging. Studies of these mutants demonstrated that amino acids 1 to 50 of UL25 are essential for its stable interaction with capsids and that the C terminus is essential for DNA packaging and the production of infectious virus through its interactions with other viral packaging or tegument proteins. Analysis of viral DNA cleavage demonstrated that in the absence of a functional UL25 protein, aberrant cleavage takes place at the unique short end of the viral genome, resulting in truncated viral genomes that are not retained in capsids. Based on these observations, we propose a model where UL25 is required for the formation of DNA-containing capsids by acting to stabilize capsids that contain full-length viral genomes.  相似文献   

9.
J D Baines  A P Poon  J Rovnak    B Roizman 《Journal of virology》1994,68(12):8118-8124
Previous studies have shown that a ts mutant [herpes simplex virus 1 (mP)ts66.4] in the UL15 gene fails to package viral DNA into capsids (A. P. W. Poon and B. Roizman, J. Virol. 67:4497-4503, 1993) and that although the intron separating the first and second exons of the UL15 gene contains UL16 and UL17 open reading frames, replacement of the first exon with a cDNA copy of the entire gene does not affect viral replication (J.D. Baines, and B. Roizman, J. Virol. 66:5621-5626, 1992). We report that (i) a polyclonal rabbit antiserum generated against a chimeric protein consisting of the bacterial maltose-binding protein fused in frame to the majority of sequences contained in the second exon of the UL15 gene reacted with two proteins with M(r) of 35,000 and 75,000, respectively, in cells infected with a virus containing the authentic gene yielding a spliced mRNA or with a virus in which the authentic UL15 gene was replaced with a cDNA copy. (ii) Insertion of 20 additional codons into the C terminus of UL15 exon II caused a reduction in the electrophoretic mobility of both the apparently 35,000- and 75,000-M(r) proteins, unambiguously demonstrating that both share the carboxyl terminus of the UL15 exon II. (iii) Accumulation of the 35,000-M(r) protein was reduced in cells infected and maintained in the presence of phosphonoacetate, an inhibitor of viral DNA synthesis. (iv) The UL15 proteins were localized in the perinuclear space at 6 h after infection and largely in the nucleus at 12 h after infection. (v) Viral DNA accumulating in cells infected with herpes simplex virus 1(mP)ts66.4 and maintained at the nonpermissive temperature was in an endless (concatemeric) form, and therefore UL15 is required for the cleavage of mature, unit-length molecules for packaging into capsids.  相似文献   

10.
Seven herpes simplex virus (HSV) genes have been shown recently to be necessary and sufficient to support the replication of origin-containing plasmids. Two of these genes (pol and dbp) encode well-known DNA replication proteins (the DNA polymerase and the major single-stranded DNA binding protein), and a third gene (UL42) encodes a previously identified infected-cell protein which binds tightly to double-stranded DNA. The products of the four remaining genes have not previously been identified. Using the predicted amino acid sequence data (D.J. McGeoch, M.A. Dalrymple, A. Dolan, D. McNab, L.J. Perry, P. Taylor, and M.D. Challberg, J. Virol. 62:444-453; D.J. McGeoch and J.P. Quinn, Nucleic Acids Res. 13:8143-8163), we have raised rabbit antisera against the products of all seven genes. We report here the use of these reagents to identify these proteins in infected cells. All seven proteins localized to the nucleus and were expressed in a manner consistent with the idea that they are the products of early genes. Various immunological assays suggest that four of these proteins (UL5, UL8, UL9, and UL52) are made in infected cells in very low abundance relative to the other three. To improve our ability to study these proteins, we have expressed UL5, UL8, UL9, and UL52 in insect cells by using the baculovirus expression system. The HSV protein made in insect cells were immunoprecipitable with the appropriate antisera, and the size of each protein was indistinguishable from the size of the corresponding protein made in HSV-infected Vero cells. Our data offer strong support for the accuracy of open reading frames proposed by McGeoch et al. In addition, the antisera and the overproduced HSV replication proteins should be useful reagents with which to analyze the biochemistry of HSV DNA replication.  相似文献   

11.
Genetic experiments have shown that the products of the herpes simplex virus type 1 (HSV-1) DNA polymerase (UL30) and UL42 genes are both required for viral DNA replication, and a number of studies have suggested that these two proteins specifically interact. We have confirmed and extended these findings. The viral DNA polymerase from HSV-1-infected cells has been purified as a complex containing equimolar quantities of the UL30 (Pol, the catalytic subunit) and UL42 polypeptides. Sedimentation and gel filtration analyses of this complex are consistent with the idea that the complex consists of a heterodimer of Pol and UL42. A complex with identical physical and functional properties was also purified from insect cells coinfected with recombinant baculoviruses expressing the two polypeptides. Therefore, the formation of the Pol-UL42 complex does not require the participation of any other HSV-encoded protein. We have compared the catalytic properties of the Pol-UL42 complex with those of the isolated subunits of the enzyme purified from recombinant baculovirus-infected insect cells. The specific activity of the catalytic subunit alone was nearly identical to that of the complex when assayed on activated DNA. When assayed on a defined template such as singly primed M13 DNA, however, the combination of Pol and UL42 utilized fewer primers and formed larger products than Pol alone. Template challenge experiments demonstrated that the Pol-UL42 complex was more highly processive than Pol alone. Our data are consistent with the idea that the UL42 polypeptide is an accessory subunit of the DNA polymerase that acts to increase the processivity of polymerization.  相似文献   

12.
The UL5 gene product is required continuously during viral DNA synthesis (L. Zhu and S. K. Weller, Virology 166:366-378, 1988) and has been shown to be a component of a three protein helicase-primase complex encoded by herpes simplex virus type 1 (J. J. Crute, T. Tsurumi, L. Zhu, S. K. Weller, P.D. Olivo, M. D. Challberg, E. S. Mocarski, and I. R. Lehman, Proc. Natl. Acad. Sci. USA 86:2186-2189, 1989). The other members of the complex are viral proteins encoded by genes UL8 and UL52. In this study, we isolated a permissive cell line (L2-5) which contains the wild-type UL5 gene under the control of the strong and inducible promoter for the large subunit of herpes simplex virus type 1 ribonucleotide reductase (ICP6). An insertion mutant containing a mutation in the UL5 gene (hr99) was isolated by using the insertional mutagen ICP6::lacZ, in which the Escherichia coli lacZ gene is expressed under control of the viral ICP6 promoter. When grown on Vero cells, hr99 does not form plaques or synthesize viral DNA, although both defects are complemented efficiently on the L2-5 cells. These results confirm that the UL5 gene product is essential for viral growth and DNA replication. Furthermore, since no detectable UL5 protein is synthesized in hr99-infected cells, these cells provide a valuable control not only for the detection of the UL5 protein itself but also for the detection of protein-protein interactions with UL8 and UL52 by coimmunoprecipitation. In addition, the lacZ insertion in hr99 provides a convenient screening system for the introduction of site-specific mutations into the viral genome (L. Zhu and S. K. Weller, J. Virol. 66:469-479, 1992). Thus, hr99 is a valuable tool in the structure-function analysis of the UL5 gene.  相似文献   

13.
Herpes simplex virus type 1 (HSV-1) gene UL14 is located between divergently transcribed genes UL13 and UL15 and overlaps the promoters for both of these genes. UL14 also exhibits a substantial overlap of its coding region with that of UL13. It is one of the few HSV-1 genes for which a phenotype and protein product have not been described. Using mass spectrometric and immunological approaches, we demonstrated that the UL14 protein is a minor component of the virion tegument of 32 kDa which is expressed late in infection. In infected cells, the UL14 protein was detected in the nucleus at discrete sites within electron-dense nuclear bodies and in the cytoplasm initially in a diffuse distribution and then at discrete sites. Some of the UL14 protein was phosphorylated. A mutant with a 4-bp deletion in the central region of UL14 failed to produce the UL14 protein and generated small plaques. The mutant exhibited an extended growth cycle at low multiplicity of infection and appeared to be compromised in efficient transit of virus particles from the infected cell. In mice injected intracranially, the 50% lethal dose of the mutant was reduced more than 30,000-fold. Recovery of the mutant from the latently infected sacral ganglia of mice injected peripherally was significantly less than that of wild-type virus, suggesting a marked defect in the establishment of, or reactivation from, latent infection.  相似文献   

14.
The potent inhibition of herpes simplex type 1 (HSV-1) DNA polymerase by acyclovir triphosphate has previously been shown to be due to the formation of a dead-end complex upon binding of the next 2'-deoxynucleoside 5'-triphosphate encoded by the template after incorporation of acyclovir monophosphate into the 3'-end of the primer (Reardon, J. E., and Spector, T. (1989) J. Biol. Chem. 264, 7405-7411). This mechanism of inhibition of HSV-1 DNA polymerase has been used here to design an affinity column for the enzyme. A DNA hook template-primer containing an acyclovir monophosphate residue on the 3'-primer terminus has been synthesized and attached to a resin support. In the absence of added nucleotides, the column behaves as a simple DNA-agarose column, and HSV-1 DNA polymerase can be chromatographed using a salt gradient. The presence of the next required nucleotide encoded by the template (dGTP) increases the affinity of HSV-1 DNA polymerase for the acyclovir monophosphate terminal primer-template attached to the resin, and the enzyme is retained even in the presence of 1 M salt. The enzyme can be eluted from the column with a salt gradient after removal of the nucleotide from the buffer. Traditionally, the affinity purification of an enzyme relies on elution by a salt gradient, pH gradient, or more selectively by addition of a competing ligand (substrate/inhibitor) to the elution buffer. In the present example, elution of HSV-1 polymerase is facilitated by removal of the substrate from the buffer. This represents an example of mechanism-based affinity chromatography.  相似文献   

15.
The UL28 protein of herpes simplex virus type 1 (HSV-1) is one of seven viral proteins required for the cleavage and packaging of viral DNA. Previous results indicated that UL28 interacts with UL15 and UL33 to form a protein complex (terminase) that is presumed to cleave concatemeric DNA into genome lengths. In order to define the functional domains of UL28 that are important for DNA cleavage/packaging, we constructed a series of HSV-1 mutants with linker insertion and nonsense mutations in UL28. Insertions that blocked DNA cleavage and packaging were found to be located in two regions of UL28: the first between amino acids 200 to 400 and the second between amino acids 600 to 740. Insertions located in the N terminus or in a region located between amino acids 400 and 600 did not affect virus replication. Insertions in the carboxyl terminus of the UL28 protein were found to interfere with the interaction of UL28 with UL33. In contrast, all of the UL28 insertion mutants were found to interact with UL15 but the interaction was reduced with mutants that failed to react with UL33. Together, these observations were consistent with previous conclusions that UL15 and UL33 interact directly with UL28 but interact only indirectly with each other. Revertant viruses that formed plaques on Vero cells were detected for one of the lethal UL28 insertion mutants. DNA sequence analysis, in combination with genetic complementation assays, demonstrated that a second-site mutation in the UL15 gene restored the ability of the revertant to cleave and package viral DNA. The isolation of an intergenic suppressor mutant provides direct genetic evidence of an association between the UL28 and UL15 proteins and demonstrates that this association is essential for DNA cleavage and packaging.  相似文献   

16.
Herpes simplex virus type 1 polypeptide ICP4 bends DNA.   总被引:5,自引:1,他引:4       下载免费PDF全文
  相似文献   

17.
Herpes simplex virus type 1 (HSV-1) syncytial (syn) mutants cause formation of giant polykaryocytes and have been utilized to identify genes promoting or suppressing cell fusion. We previously described an HSV-1 recombinant, F1 (J.L. Goodman, M. L. Cook, F. Sederati, K. Izumi, and J. G. Stevens, J. Virol. 63:1153-1161, 1989), which has unique virulence properties and a syn mutation in the carboxy terminus of glycoprotein B (gB). We attempted to replace this single-base-pair syn mutation through cotransfection with a 379-bp PCR-generated fragment of wild-type gB. The nonsyncytial viruses isolated were shown by DNA sequencing not to have acquired the expected wild-type gB sequence. Instead, they had lost their cell-cell fusion properties because of alterations mapping to the UL45 gene. The mutant UL45 gene is one nonsyncytial derivative of F1, A4B, was found to have a deletion of a C at UL45 nucleotide 230, resulting in a predicted frame shift and termination at 92 rather than 172 amino acids. Northern (RNA) analysis showed that the mutant UL45 gene was normally transcribed. However, Western immunoblotting showed no detectable UL45 gene product from A4B or from another similarly isolated nonsyncytial F1 derivative, A61B, while another such virus, 1ACSS, expressed reduced amounts of UL45. When A4B was cotransfected with the wild-type UL45 gene, restoration of UL45 expression correlated with restoration of syncytium formation. Conversely, cloned DNA fragments containing the mutant A4B UL45 gene transferred the loss of cell-cell fusion to other gB syn mutants, rendering them UL45 negative and nonsyncytial. We conclude that normal UL45 expression is required to allow cell fusion induced by gB syn mutants and that the nonessential UL45 protein may play an important role as a mediator of fusion events during HSV-1 infection.  相似文献   

18.
Using Vero cells transformed with the wild-type gene for ICP4 as the permissive host cell, we isolated herpes simplex virus type 1 (HSV-1) mutants containing deletions in both copies of the ICP4 gene. The mutants, d120 and d202, contained deletions of 4.1 and 0.5 kilobases, respectively, in each copy of ICP4. ICP4 mRNA synthesized in d202-infected Vero cells was 0.5 kilobases smaller than that synthesized in cells infected with the wild-type virus. No ICP4 mRNA was detected in d120-infected Vero cells. d120 and d202 specified polypeptides that reacted with ICP4 antiserum and were smaller than the wild-type ICP4 polypeptide by 130 and 30 kilodaltons, respectively. The only other HSV-1 gene products detectable on infection of Vero cells with d120 and d202 were ICP6 (of the early kinetic class of HSV-1 polypeptides), ICP0 (immediate early), ICP22 (immediate early), and ICP27 (immediate early). Immediate-early polypeptides ICP0 and ICP27 were expressed to a higher level in Vero cells infected with an ICP4 temperature-sensitive (ts) mutant (tsB32) at 39 degrees C, indicating immediate-early stimulatory activity associated with the ts ICP4 polypeptide. In addition, the patterns of complementation of d120, d202, and tsB32 in ICP4-transformed cells also demonstrated inhibitory activity associated with the ts form of the ICP4 polypeptide.  相似文献   

19.
The herpes simplex virus type 1 (HSV-1) UL15 gene is a spliced gene composed of two exons and is predicted to encode an 81-kDa protein of 735 amino acids (aa). Two UL15 gene products with molecular masses of 75 and 35 kDa have been observed (J. Baines, A. Poon, J. Rovnak, and B. Roizman, J. Virol. 68:8118-8124, 1994); however, it is not clear whether the smaller form represents a proteolytic cleavage product of the larger form or whether it is separately translated. In addition, an HSV-1 temperature-sensitive mutant in the UL15 gene (ts66.4) is defective in both cleavage of viral DNA concatemers into unit-length monomers and packaging of viral DNA into capsids (A. Poon and B. Roizman, J. Virol. 67:4497-4503, 1993; J. Baines et al., J. Virol. 68:8118-8124, 1994). In this study, we detected two UL15 gene products of 81 and 30 kDa in HSV-1-infected cells, using a polyclonal antibody raised against a maltose binding protein fusion construct containing UL15 exon 2. In addition, we report the isolation of two HSV-1 insertion mutants, hr81-1 and hr81-2, which contain an ICP6::lacZ insertion in UL15 exon 1 and exon 2 and thus would be predicted to encode C-terminally truncated peptides of 153 and 509 aa long, respectively. hr81-1 and hr81-2 are defective in DNA cleavage and packaging and accumulate only B capsids. However, both mutants are able to undergo wild-type levels of DNA replication and genomic inversion, suggesting that genomic inversion is a result of DNA replication rather than of DNA cleavage and packaging. We also provide evidence that the 81- and 30-kDa proteins are the products of separate in-frame translation events from the UL15 gene and that the 81-kDa full-length UL15 protein is required for DNA cleavage and packaging.  相似文献   

20.
DNA sequence of the Herpes simplex virus type 2 glycoprotein D gene   总被引:30,自引:0,他引:30  
R J Watson 《Gene》1983,26(2-3):307-312
We describe a 1635-bp Herpes simplex virus type 2 (HSV-2) DNA sequence containing the entire coding region of glycoprotein D (gD-2). The amino acid sequence of gD-2, deduced from the nucleotide sequence, was compared to that of the analogous Herpes simplex virus type 1 (HSV-1) glycoprotein (gD-1). The two glycoproteins are 85% homologous and contain highly conserved regions of as much as 49 amino acids in length. Comparison of DNA sequences upstream from gD-1 and gD-2 coding regions identified possible conserved regulatory sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号