首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract  Chemical similarities among ancient Angiosperms presumably played a role in the ecological and evolutionary diversification of the swallowtail butterflies (Papilionidae). The abilities of neonate larvae of the Citrus swallowtail, Papilio (= Princeps ) aegeus (from Queensland, Australia), to eat, survive and grow on leaves (a choice of young and old) of 34 plant species from families of ancient Angiosperms; 8 Rutaceae, 3 Magnoliaceae, 13 Lauraceae, 3 Monimiaceae, 1 Aristolochiaceae, 2 Apiaceae, 1 Sapotaceae, 1 Winteraceae and 2 Annonaceae were tested. It was apparent that there is genetic variation in populations of Rutaceae-specialised Australian P. aegeus for acceptance, consumption and larval growth, reflecting differential suitability of some native Australian Lauraceae species as food plants (as well as certain Winteraceae, Monimiaceae and non-Australian Magnoliaceae, Lauraceae and Annonaceae). No consumption or survival of P. aegeus was seen on Aristolochia elegans (Aristolochiaceae) or Pouteria australis (Sapotaceae) despite literature records alluding to this possibility. The Rutaceae specialist P. aegeus appears to have the fundamental detoxification capabilities for processing many existing species of the basal Angiosperm families, without having direct ancestors that historically had fed on them.  相似文献   

2.
The evolution of host range for insect herbivores involves many behavioral, physiological, and biochemical adaptations that often lead to locally specialized populations or species. Such specialization may be constrained by ecological factors (e.g., local host availability) or by evolutionary factors (e.g., phylogenetic divergence in behavioral, physiological, or biochemical detoxification enzymes; and potential inabilities to return to ancestral hosts). While insect adaptations to new hosts can be rapid, ancient detoxification systems may persist in some lineages of swallowtail butterflies (Papilionidae) for millions of years. Here, we test various species of specialized species/populations of Papilionidae (Lepidoptera) from North America and from Australia on an array of Australian host plant families in order to determine whether the current feeding constraints reflect loss of capabilities to recognize and use hosts other than their current (local) favorites. We selected two species of Lauraceae specialists (Papilio troilus L. and Papilio palamedes Drury) from North America and one locally specialized population of Papilio glaucus L. that only uses one plant species in the Magnoliaceae in Florida. We also examined three species/populations of Australian swallowtails for comparison, including the Monimiaceae‐specialized Graphium macleayanum moggana L. E. Couchman, the Rutaceae‐specialized Papilio aegeus Donovan, and the Annonaceae‐specialized Graphium eurypylus L. Our aim was to determine whether neonate larvae of these six specialists could survive on any plants other than their currently favored species. While the Lauraceae specialists could use nothing else and were thus evolutionarily constrained, the Magnoliaceae‐, Rutaceae‐, and Monimiaceae specialists all had common abilities to accept, feed, and grow on plants in the Lauraceae, Monimiaceae, Magnoliaceae, and Rutaceae families. Even the Annonaceae specialist was discovered using Magnoliaceae in the field, suggesting existence here also of both flexiblity in preferences and detoxification abilities and ‘ecological monophagy’.  相似文献   

3.
Gynoecium diversity and systematics of the Magnoliales and winteroids   总被引:1,自引:0,他引:1  
Carpel and ovule structure was compared in representatives of all 11 families of the Magnoliales (Annonaceae, Canellaceae, Degeneriaceae, Eupomatiaccae, Himantandraceae, Magnoliaceae, Myristicaceae) and winteroids (Austrobaileyaceae, Illiciaceae, Sehisandraceae, Winteraceae). Special attention was paid to features that are constant at family level. Bisexual flowers are always protogynous. In all representatives studied the carpels are closed at anthesis. Caipel closure is attained in three different ways: (1) postgenital fusion of inner surfaces (Degeneriaceae, Eupomatiaccae. Winteraceae), or (2) occlusion by secretion (Austrobaileyaceae, Sehisandraceae), or (3) a combination of (1) and (2): in Annonaceae, Canellaceae, Myristicaceae there is a conspicuous secretory canal in the innermost part of the ventral slit; in Illiciaceae and Magnoliaceae there is a narrow canal in the innermost part of the ventral slit; and in Himantandraceae the ventral slit is postgenilally fused in the style but completely open in the ovary. In most families the carpels have a double stigmalic crest or they have two tips in the transversal symmetry plane (i.e. at right angles to the median plane). Stigmas are unicellular papillate in most families but the papillae are bi-to multicellular (uniseriate) in Degeneriaceae and Eupomatiaceae. An unusual cryptic exlracarpellary compitum was found in Himantandraceae and Sehisandraceae. Intrusive oil cells were found in the carpel epidermis of Illiciaceae and Sehisandraceae. Mature ovules vary in length between 0.15 and 1.1 mm. The outer integument is fully annular (not semiannular) in Degeneriaceae, Himantandraceae, Canellaceae, Myristicaceae, and Illiciaceae. A rudimentary aril occurs in Canellaceae, and originates at the same site as in arillate Annonaceae and Myristicaceae. The results most strongly support an Annonaceae-Myristicaceae-Canellaceae alliance, to some degree also an Eupomatiaccac-Degeneriaceae-Himantandraceae-Magnoliaceae alliance, and an Illiciaceae-Schisandraceae-Winteraccae-Austrobaileyaceae alliance.  相似文献   

4.
5.
Magnoliales, consisting of six families of tropical to warm-temperate woody angiosperms, were long considered the most archaic order of flowering plants, but molecular analyses nest them among other eumagnoliids. Based on separate and combined analyses of a morphological matrix (115 characters) and multiple molecular data sets (seven variable chloroplast loci and five more conserved genes; 14 536 aligned nucleotides), phylogenetic relationships were investigated simultaneously within Magnoliales and Myristicaceae, using Laurales, Winterales, and Piperales as outgroups. Despite apparent conflicts among data sets, parsimony and maximum likelihood analyses of combined data converged towards a fully resolved and well-supported topology, consistent with higher-level molecular analyses except for the position of Magnoliaceae: Myristicaceae + (Magnoliaceae + (( Degeneria + Galbulimima ) + ( Eupomatia + Annonaceae))). Based on these results, we discuss morphological evolution in Magnoliales and show that several supposedly plesiomorphic traits are synapomorphies of Magnoliineae, the sister group of Myristicaceae (e.g. laminar stamens). Relationships within Annonaceae are also resolved with strong support ( Anaxagorea basal, then ambavioids). In contrast, resolution of relationships within Myristicaceae is difficult and still incomplete, due to a very low level of molecular divergence within the family and a long stem lineage. However, our data provide good evidence that Mauloutchia is nested among other Afro-Malagasy genera, contradicting the view that its androecium and pollen are plesiomorphic  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 142 , 125–186.  相似文献   

6.
Canright , James E. (Indiana U., Bloomington.) The comparative morphology and relationships of the Magnoliaceae. III. Carpels. Amer. Jour. Bot. 47(2): 145—155. Illus. 1960.–The morphology and vascular anatomy of the carpels of 49 species in 9 of the 10 genera of the Magnoliaceae are described. Assuming that the conduplicate carpel of Australasian species of Drimys (Winteraceae) represents the primitive condition, various carpellary modifications are indicated for the Magnoliaceae. These evolutionary spcializations from the basic type include: basal adnation, lateral concrescence, reduction in number of ovules, closure of the ventral suture, and localization of stigmatic areas. Among the examined species it was determined that carpels of the genera Elmerrillia and Manglietia retain the most primitive features, whereas those of the genus Liriodendron possess the most advanced. Comparisons are made with the gynoecia of related ranalean families, viz., Himantandraceae, Degeneriaceae and Annonaceae.  相似文献   

7.
We investigated the embryology of the ‘lower’ monimioids, i.e. Monimioideae (Monimia, Palmeria and Peumus) and Hortonioideae (Hortonia), which are poorly described embryologically. Our results show that, contrary to what has been reported in the literature, ‘lower’ monimioids show very little variation in their embryological characters. Comparisons with Mollinedioideae (a large derived subfamily in Monimiaceae) and other families in Laurales show that the ‘lower’ monimioids are relatively consistent in sharing predominantly isobilateral tetrads of microspores and megaspores, a non‐specialized chalaza, and a mesotestal–endotestal seed coat (with tracheoidal cells of the meso‐ and endotesta). It is likely that, while the shared successive cytokinesis during meiosis of microspore mother cells supports the Monimiaceae–Hernandiaceae–Lauraceae clade obtained by molecular evidence, no synapomorphies exist to support a sister‐group relationship of Monimiaceae with Hernandiaceae or Lauraceae. Instead, the lack of hypostase in ovules and/or young seeds, the lack of endosperm in mature seeds and the amoeboid tapetum in the anther are likely synapomorphies of Hernandiaceae and Lauraceae. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 228–241.  相似文献   

8.
Local host plant specialization in an insect herbivore may be caused by numerous factors, including host-specific natural enemy pressures or a local lack of suitable host-plant choices that are available elsewhere in its range. Such local specialization or "ecological monophagy', for whatever reason, may reflect reduced ability to behaviourally accept or physiologically utilize other allopatric hosts that are naturally used elsewhere by the species. We tested this feeding specialization hypothesis using the Tasmanian subspecies of Macleay's swallowtail butterfly, Graphium macleayanum moggana (Papilionidae), which uses only a single host-plant species, Antherosperma moschatum (southern sassafras, of the Monlmiaceae). Further north, this same butterfly species (G. m. macleayanum) uses at least 13 host-plant species from seven genera and four families (Lauraceae, Rutaceae, Winteraceae, and Monlmiaceae). Our larval feeding assays with G. m. moggana from Tasmania showed that certain Magnoliaceae and Lauraceae could support some larval growth to pupation. However, such growth was slower and survival was lower than observed on their normal southern sassafras host (Monimiaceae). We also found that toxicity of particular plant species varied tremendously within plant families (for both the Magnoliceae and the Monlmiaceae).  相似文献   

9.
Species within the Euwallacea fornicatus (Eichhoff) species complex are one of the few ambrosia beetles that infest healthy plants and are a potential phytosanitary threat as it causes considerable damage to many tree species in its native and introduced distribution. We updated the list to 412 plant species in 75 families that are known hosts for the E. fornicatus species complex, including 27 new host records, 20 of which are reproductive hosts, in the families Annonaceae, Apocynaceae, Araliaceae, Caricaceae, Euphorbiaceae, Fabaceae, Lauraceae, Magnoliaceae, Malvaceae, Meliaceae, Moraceae, Myristicaceae, Rubiaceae, Salicaceae, Sapindaceae, and Sapotaceae.  相似文献   

10.
应用光学显微镜对白毛新木姜子的胚胎学特征进行了研究,首次在非寄生性樟科植物中发现了细胞型胚乳。对樟科8属进行了胚胎学特征的比较。花药四室,药室壁的发育属于“基本型”,周原质团型绒毡层。小孢子母细胞连续型分裂。等四面体型四分体。二细胞成熟花粉,无孔沟。雌孢原多个,一般仅一个能继续发育。蓼型胚囊。助细胞具丝状器。反足细胞宿存。大孢子母细胞和合子具极性。宿存的一个助细胞具有吸器功能。细胞型胚乳,胚胎发育属于柳叶菜型的三叶变型。种皮源于外珠被,内表皮细胞壁螺旋状加厚。胚胎学特征表明,新木姜子属与木姜子属有密切的亲缘关系。较多的双胚囊异常现象,支持樟科与Monimiaceae具有紧密关系的推测。胚胎学特征不支持将无根藤属独立为科的观点。  相似文献   

11.
应用光学显微镜对白毛新木姜子的胚胎学特征进行了研究,首次在非寄生性樟科植物中发现了细胞型胚乳。对樟科8属进行了胚胎学特征的比较。花药四室,药室壁的发育属于"基本型",周原质团型绒毡层。小孢子母细胞连续型分裂。等四面体型四分体。二细胞成熟花粉,无孔沟。雌孢原多个,一般仅一个能继续发育。蓼型胚囊。助细胞具丝状器。反足细胞宿存。大孢子母细胞和合子具极性。宿存的一个助细胞具有吸器功能。细胞型胚乳,胚胎发育属于柳叶菜型的三叶变型。种皮源于外珠被,内表皮细胞壁螺旋状加厚。胚胎学特征表明,新木姜子属与木姜子属有密切的亲缘关系。较多的双胚囊异常现象,支持樟科与Monimiaceae具有紧密关系的推测。胚胎学特征不支持将无根藤属独立为科的观点。  相似文献   

12.
ENDRESS, P. K. & HUFFORD, L. D., 1989. The diversity of stamen structures and dehiscence patterns among Magnoliidae . Structure of stamens, particularly the patterns of anther dehiscence were studied over a wide range of families of the Magnoliidae with emphasis on the Magnoliales and Laurales as the most conservative orders of the angiosperms. Valvate dehiscence by proximal and distal stomial bifurcation was found (in addition to the already known Sarcandra and Polyalthia) for the first time in Degeneriaceae, Himantandraceae, Eupomatiaceae, in some additional Annonaceae, and in Peumus of the Monimioideae sensu lata. At least proximal bifurcations of the stomia occur in some Magnoliaceae and Ranunculaceae. An endothecial-like connective hypodermis was found (in addition to the already known Chloranthaceae and Magnoliaceae) in some Annonaceae, in Pseudowintera (Winteraceae), and in Thalictrum (Ranunculaceae). In the Annonaceae an endothecial-like connective hypodermis is partly correlated with valvate dehiscence by stomial bifurcations (as in many Hamamelididae). However, in many Magnoliidae stamens with this valvate pattern the anther is massive, especially in ‘laminar’ stamens, and the counterforce to the opening valves is therefore provided on the morphological and not on the histological level. Concomitant with valvate dehiscence by circular or elliptic flaps in the Laurales is often structural and functional dissocation of the two pollen sacs of a thcca, which is expressed by: (1) independent opening of each pollen sac, (2) lack of disruption of the interlocular zone of a theca, (3) frequent occurrence of asymmetry of the two pollen sacs of the theca, (4) frequent loss of one pollen sac per theca. In Berberidaceae with similar flaps asymmetry of the two pollen sacs of a theca is also common. These finds, together with the detection by paleobotanists of valvate anthers from the Lower Cretaceous, point to the probability that valvate anthers were more common in primitive angiosperms than previously thought.  相似文献   

13.
Gynoecium diversity and systematics of the Laurales   总被引:4,自引:0,他引:4  
Carpel and ovule structure was comparatively studied in representatives of all eight families of the Laurales: Amborellaceae, Calycanthaceae, Chloranthaceae, Gomortegaceae, Hernandiaceae, Lauraceae, Monimiaceae, and Trimeniaceae. In all representatives the carpels are closed at anthesis. As in Magnoliales/winteroids, closure takes place in three different modes: (1) by postgenital fusion of the stylar (and ovarial) ventral slit (Calycanthaceae, Gomortegaceae, Lauraceae, Hernandiaceae); (2) by occlusion of the inner space by secretion (Amborellaceae, Chloranthaceae, Trimeniaceae, Mollinedioideae of Monimiaceae), all having extremely ascidiate carpels; (3) by a combination of (1) and (2), whereby the ventral slit in the style is postgenitally fused but a central canal remains open, which is filled by secretion (Monimiaceae except Mollinedioideae). The carpels have a single ovule in ventral median placentation; only Calycanthaceae have two lateral ovules, although the upper ovule degenerates. In contrast to Magnoliales/winteroids, several representatives have orthotropous or almost orthotropous ovules (Amborellaceae, Chloranthaceae, Gomortegaceae). Mature ovules vary in length between 425 μm (some Monimiaceae) and 1500 urn (some Calycanthaceae, Trimeniaceae). Although all ovules are crassinucellar, nucellus breadth varies between 60 μm (Chimonanthus, Calycanthaceae) and 500 μm (Hemandia, Hernandiaceae). In almost all representatives the single ovule (two in Calycanthaceae) tightly fills out the ovarial cavity. The micropyle is mostly formed by the inner integument. In a few cases there is no micropyle and the nucellar apex makes direct contact with the inner ovary surface or the funicle (Lauraceae p.p., Calycanthaceae p.p., Hernandiaceae p.p., Monimiaceae p.p.). The ovule is pachychalazal (or perichalazal) in Lauraceae, some Hernandiaceae, and Gomortegaceae. Both integuments are variously lobed or unlobed. The outer integument is semiannular or annular, and this may vary within a family (Calycanthaceae, Hernandiaceae, Monimiaceae); it is also exceedingly diverse in thickness (2–23 cell layers). Gynoecial traits support the association of Chloranthaceae, Trimeniaceae, and Amborellaceae, and also separately Gomortegaceae, Hernandiaceae, and Lauraceae. In addition, affinities of the first group with Schisandraceae, Illiciaceae and Austrobaileyaceae may also be supported.  相似文献   

14.
The embryological characteristics of Gomortegaceae, which are poorly understood, were investigated on the basis of Gomortega nitida, the only species of the family, to understand better the evolution of this group within Laurales. Comparisons with other Laurales and Magnoliales (a sister group of Laurales) show that Gomortega has many embryological features in common with the other lauralean families. Notably, Gomortega shares a testa without or with at best only a poorly developed mesotesta as a synapomorphy with all other Laurales. The genus further shares anthers dehisced by valves as a synapomorphy with the other Laurales (except for Calycanthaceae and Monimiaceae), and a non-multiplicative testa and bisporangiate anther as synapomorphies with Atherospermataceae and Siparunaceae (although the non-multiplicative testa occurs as a homoplasy in Monimiaceae, and the bisporangiate anther in Monimiaceae pro parte, Lauraceae pro parte and Hernandiaceae, respectively). Gomortega shows simultaneous cytokinesis to form pollen grains, a one-celled ovule archesporium and non-specialized chalaza, all or part of which may be synapomorphies shared with Atherospermataceae. Gomortega appears to have no embryological autapomorphies, but further comparison with Atherospermataceae is required.Kweon Heo and Yukitoshi Kimoto contributed equally to this work.  相似文献   

15.
New embryological evidence in angiosperm classification is presented from two different lines of research. One deals with a new field in embryological research, the other keeps within the classical framework. The new approach encouraged by the author refers to the exploration of the chemical composition of the pollen tube as a taxonomic tool. The presence of callose in several pollen tubes and the lack of this compound in others has been correlated with other embryological and taxonomical features within the Tubiflorae, showing a great deal of correspondence. In order to exemplify the classical approach, two families have been selected: Loranthaceae and Hydnoraceae. The Loranthaceae have a special structure called the "mamelon", usually interpreted as a placenta. Recent research based on the position of the ar–chesporial tissue shows that not all "mamelons" should be regarded as homologous structures. Based on this finding, a new scheme of evolutionary lines is proposed. In connection with the holoparasitic family Hydnoraceae, the author discusses its relationships with Mitrastemonaceae and Annonaceae on grounds of embryology and floral morphology.  相似文献   

16.
17.
Over the past 25 years, discoveries of Early Cretaceous fossil flowers, often associated with pollen and sometimes with vegetative parts, have revolutionized our understanding of the morphology and diversity of early angiosperms. However, few of these fossils have been integrated into the increasingly robust phylogeny of living angiosperms based primarily on molecular data. To remedy this situation, we have used a morphological data set for living basal angiosperms (including basal eudicots and monocots) to assess the most parsimonious positions of early angiosperm fossils on cladograms of Recent plants, using constraint trees that represent the current range of hypotheses on higher-level relationships, and concentrating on Magnoliidae (the clade including Magnoliales, Laurales, Canellales, and Piperales) and eudicots. In magnoliids, our results confirm proposed relationships of Archaeanthus (latest Albian?) to Magnoliaceae, Endressinia (late Aptian) to Magnoliales (the clade comprising Degeneria, Galbulimima, Eupomatia, and Annonaceae), and Walkeripollis pollen tetrads (late Barremian?) to Winteraceae, but they indicate that Mauldinia (early Cenomanian) was sister to both Lauraceae and Hernandiaceae rather than to Lauraceae alone. Among middle Albian to early Cenomanian eudicots, we confirm relationships of Nelumbites to Nelumbo, platanoid inflorescences and Sapindopsis to Platanaceae, and Spanomera to Buxaceae. With the possible exception of Archaeanthus, these fossils are apparently not crown group members of living families but rather stem relatives of one or more families.  相似文献   

18.
Schisandraceae are traditionally subdivided in two genera, Schisandra and Kadsura, based on differences in the organisation of the floral receptacle, the carpels, and the presence or absence of a ``pseudostigma'. Recently, phylogenetic analyses utilizing ITS sequence data and morphological data resulted in incongruent tree topologies, with the morphological trees suggesting monophyly of the two genera, whereas ITS trees did not resolve Schisandra and Kadsura as monophyletic clades. In the present paper we study seed morphology and leaf epidermal features of 22 species of Schisandraceae in order to provide additional data for a morphological data matrix. Seed morphological characters are highly homoplastic and do not yield further evidence for monophyly of the two genera. Instead, a number of characters appear to support sister group relationships between taxa within the genera, such as, for instance, for K. coccinea and K. scandens, both of which have large seeds along with a multi-layered mesotesta. Considering leaf epidermal characteristics, species of Kadsura were found to be consistently amphistomatic, whereas species of Schisandra are always hypostomatic. Phylogenetic analysis using the extended data matrix resulted in weakly supported Kadsura and Schisandra clades with five and four synapomorphies indicating monophyly of Kadsura and Schisandra, respectively. Fossils ascribed to Schisandraceae date back to the Late Cretaceous. These are tri-and hexacolpate pollen types displaying a combination of features found in modern Schisandraceae and partly also in Illiciaceae. Leaf remains from this period are poorly preserved and difficult to ascribe to Schisandraceae because of the lack of synapomorphies for the family. In the Early Cainozoic, leaf and seed remains from North America and Europe unambiguously belong to the family. Seeds from the Eocene of North America show some similarities to the modern Schisandra glabra from North America, while fossils from Europe show more similarities to modern Asian species.  相似文献   

19.
Two representative genera of Hernandiaceae,Gyrocarpus andHernandia, were investigated embryologically to contribute to a better understanding of their respective evolutionary position. Comparisons with other lauralean families using Chloranthaceae or Annonaceae (as a representative of Magnoliales) as an outgroup of Laurales (if present, plus other related taxa) support a lauraceous affinity for the two genera because of the presence of ramified raphal vascular bundles at the chalaza (a synapomorphy), but do not provide evidence for the separation of Hernandiaceae from Lauraceae.Hernandia rather shares with Lauraceae two apomorphies (i.e., the seed pachychalazy and the ruminate seed) which may be homoplasies judged from results of cladistic and molecular studies published elsewhere.Hernandia is greatly divergent from an ancestral line common withGyrocarpus and is even diversified within the genus. Based on evidence from embryology as well as from other sources, it seems best to accept two separate subfamilies in Hernandiaceae as usually have been accepted: one is a derived subfamily Hernandioideae, and the other a less specialized Gyrocarpoideae.  相似文献   

20.
Dynastid scarab beetle pollination appears basic within the genusAnnona. Those species ofAnnona which are more morphologically derived, as well as allRollinia spp. possess reduced floral chambers and attract small beetles likeNitidulidae orStaphylinidae. Pollination of the primitive species ofAnnona byDynastinae would imply that the genus had not evolved before the Tertiary. The fossil record is in congruence with this hypothesis. Once again it is stressed that the cantharophilous syndrome, as it is found in theAnnonaceae, Magnoliaceae, Eupomatiaceae andCalycanthaceae, with beetles being exclusive pollinators, is a secondary and derived condition and obviously different from the expected basic entomophily of the original angiosperms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号