首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The C-terminal P5 domain of the histidine kinase CheA is essential for coupling CheA autophosphorylation activity to chemoreceptor control through a binding interaction with the CheW protein. To locate P5 determinants critical for CheW binding and chemoreceptor control, we surveyed cysteine replacements at 39 residues predicted to be at or near the P5 surface in Escherichia coli CheA. Two-thirds of the Cys replacement proteins exhibited in vitro defects in CheW binding, either before or after modification with a bulky fluorescein group. The binding-defective sites were widely distributed on the P5 surface and were often interspersed with sites that caused no functional defects, implying that relatively minor structural perturbations, often far from the actual binding site, can influence its conformation or accessibility. The most likely CheW docking area included loop 2 in P5 folding subdomain 1. All but four of the binding-defective P5-Cys proteins were defective in receptor-mediated activation, suggesting that CheW binding, as measured in vitro, is necessary for assembly of ternary signaling complexes and/or subsequent CheA activation. Other Cys sites specifically affected receptor-mediated activation or deactivation of CheA, demonstrating that CheW binding is not sufficient for assembly and/or operation of receptor signaling complexes. Because P5 is quite similar to CheW, whose structure is known to be dynamic, we suggest that conformational flexibility and dynamic motions govern the signaling activities of the P5 domain. In addition, relative movements of the CheA domains may be involved in CheW binding, in ternary complex assembly, and in subsequent stimulus-induced conformational changes in receptor signaling complexes.  相似文献   

2.
Chemotactic responses of Escherichia coli to aspartic acid are initiated by a ternary protein complex composed of Tar (chemoreceptor), CheA (kinase), and CheW (a coupling protein that binds to both Tar and CheA and links their activities). We used a genetic selection based on the yeast two-hybrid assay to identify nine cheW point mutations that specifically disrupted CheW interaction with CheA but not with Tar. We sequenced these single point mutants and purified four of the mutant CheW proteins for detailed biochemical characterizations that demonstrated the weakened affinity of the mutant CheW proteins for CheA, but not for Tar. In the three-dimensional structure of CheW, the positions affected by these mutations cluster on one face of the protein, defining a potential binding interface for interaction of CheW with CheA. We used a similar two-hybrid approach to identify four mutation sites that disrupted CheW binding to Tar. Mapping of these "Tar-sensitive" mutation sites and those from previous suppressor analysis onto the structure of CheW defined an extended surface on a face of the protein that is adjacent to the CheA-binding surface and that may serve as an interface for CheW binding to Tar.  相似文献   

3.
In Escherichia coli chemosensory arrays, transmembrane receptors, a histidine autokinase CheA, and a scaffolding protein CheW interact to form an extended hexagonal lattice of signaling complexes. One interaction, previously assigned a crucial signaling role, occurs between chemoreceptors and the CheW-binding P5 domain of CheA. Structural studies showed a receptor helix fitting into a hydrophobic cleft at the boundary between P5 subdomains. Our work aimed to elucidate the in vivo roles of the receptor–P5 interface, employing as a model the interaction between E. coli CheA and Tsr, the serine chemoreceptor. Crosslinking assays confirmed P5 and Tsr contacts in vivo and their strict dependence on CheW. Moreover, the P5 domain only mediated CheA recruitment to polar receptor clusters if CheW was also present. Amino acid replacements at CheA.P5 cleft residues reduced CheA kinase activity, lowered serine response cooperativity, and partially impaired chemotaxis. Pseudoreversion studies identified suppressors of P5 cleft defects at other P5 groove residues or at surface-exposed residues in P5 subdomain 1, which interacts with CheW in signaling complexes. Our results indicate that a high-affinity P5–receptor binding interaction is not essential for core complex function. Rather, P5 groove residues are probably required for proper cleft structure and/or dynamic behavior, which likely impact conformational communication between P5 subdomains and the strong binding interaction with CheW that is necessary for kinase activation. We propose a model for signal transmission in chemotaxis signaling complexes in which the CheW–receptor interface plays the key role in conveying signaling-related conformational changes from receptors to the CheA kinase.  相似文献   

4.
The basic structural unit of the signaling complex in bacterial chemotaxis consists of the chemotaxis kinase CheA, the coupling protein CheW, and chemoreceptors. These complexes play an important role in regulating the kinase activity of CheA and in turn controlling the rotational bias of the flagellar motor. Although individual three-dimensional structures of CheA, CheW, and chemoreceptors have been determined, the interaction between chemoreceptor and CheW is still unclear. We used nuclear magnetic resonance to characterize the interaction modes of chemoreceptor and CheW from Thermotoga maritima. We find that chemoreceptor binding surface is located near the highly conserved tip region of the N-terminal helix of the receptor, whereas the binding interface of CheW is placed between the β-strand 8 of domain 1 and the β-strands 1 and 3 of domain 2. The receptor-CheW complex shares a similar binding interface to that found in the "trimer-of-dimers" oligomer interface seen in the crystal structure of cytoplasmic domains of chemoreceptors from Escherichia coli. Based on the association constants inferred from fast exchange chemical shifts associated with receptor-CheW titrations, we estimate that CheW binds about four times tighter to its first binding site of the receptor dimer than to its second binding site. This apparent anticooperativity in binding may reflect the close proximity of the two CheW binding surfaces near the receptor tip or further, complicating the events at this highly conserved region of the receptor. This work describes the first direct observation of the interaction between chemoreceptor and CheW.  相似文献   

5.
During chemotactic signaling by Escherichia coli, autophosphorylation of the histidine kinase CheA is coupled to chemoreceptor control by the CheW protein, which interacts with the C-terminal P5 domain of CheA. To identify P5 determinants important for CheW binding and receptor coupling control, we isolated and characterized a series of P5 missense mutants. The mutants fell into four phenotypic groups on the basis of in vivo behavioral and protein stability tests and in vitro assays with purified mutant proteins. Group 1 mutants exhibited autophosphorylation and receptor-coupling defects, and their CheA proteins were subject to relatively rapid degradation in vivo. Group 1 mutations were located at hydrophobic residues in P5 subdomain 2 and most likely caused folding defects. Group 2 mutants made stable CheA proteins with normal autophosphorylation ability but with defects in CheW binding and in receptor-mediated activation of CheA autophosphorylation. Their mutations affected residues in P5 subdomain 1 near the interface with the CheA dimerization (P3) and ATP-binding (P4) domains. Mutant proteins of group 3 were normal in all tests yet could not support chemotaxis, suggesting that P5 has one or more important but still unknown signaling functions. Group 4 mutant proteins were specifically defective in receptor-mediated deactivation control. The group 4 mutations were located in P5 subdomain 1 at the P3/P3' interface. We conclude that P5 subdomain 1 is important for CheW binding and for receptor coupling control and that these processes may require substantial motions of the P5 domain relative to the neighboring P3 and P4 domains of CheA.  相似文献   

6.
In bacterial chemotaxis, transmembrane chemoreceptors, the CheA histidine kinase, and the CheW coupling protein assemble into signaling complexes that allow bacteria to modulate their swimming behavior in response to environmental stimuli. Among the protein-protein interactions in the ternary complex, CheA-CheW and CheW-receptor interactions were studied previously, whereas CheA-receptor interaction has been less investigated. Here, we characterize the CheA-receptor interaction in Thermotoga maritima by NMR spectroscopy and validate the identified receptor binding site of CheA in Escherichia coli chemotaxis. We find that CheA interacts with a chemoreceptor in a manner similar to that of CheW, and the receptor binding site of CheA's regulatory domain is homologous to that of CheW. Collectively, the receptor binding sites in the CheA-CheW complex suggest that conformational changes in CheA are required for assembly of the CheA-CheW-receptor ternary complex and CheA activation.  相似文献   

7.
The bacterial chemotaxis adaptor protein CheW physically links the chemoreceptors (MCPs) and the histidine kinase CheA. Extensive investigations using bacterium Escherichia coli have established the central role of CheW in the MCP-modulated activation of CheA. Here we report the solution structure of CheW from E. coli determined by NMR spectroscopy. The results show that E. coli CheW shares an overall fold with previously reported structure of CheW from Thermotoga maritima, whereas local conformational deviations are observed. In particular, the C-terminal alpha-helix is considerably longer in E. coli CheW and appears to shrink the active binding pocket with CheA. Our study provides the structural basis for further investigations in E. coli chemotaxis.  相似文献   

8.
In bacterial chemotaxis, an assembly of transmembrane receptors, the CheA histidine kinase and the adaptor protein CheW processes environmental stimuli to regulate motility. The structure of a Thermotoga maritima receptor cytoplasmic domain defines CheA interaction regions and metal ion-coordinating charge centers that undergo chemical modification to tune receptor response. Dimeric CheA-CheW, defined by crystallography and pulsed ESR, positions two CheWs to form a cleft that is lined with residues important for receptor interactions and sized to clamp one receptor dimer. CheW residues involved in kinase activation map to interfaces that orient the CheW clamps. CheA regulatory domains associate in crystals through conserved hydrophobic surfaces. Such CheA self-contacts align the CheW receptor clamps for binding receptor tips. Linking layers of ternary complexes with close-packed receptors generates a lattice with reasonable component ratios, cooperative interactions among receptors and accessible sites for modification enzymes.  相似文献   

9.
The initial signaling events underlying the chemotactic response of Escherichia coli to aspartic acid occur within a ternary complex that includes Tar (an aspartate receptor), CheA (a protein kinase), and CheW. Because CheW can bind to CheA and to Tar, it is thought to serve as an adapter protein in this complex. The functional importance of CheW binding interactions, however, has not been investigated. To better define the role of CheW and its binding interactions, we performed biochemical characterization of six mutant variants of CheW. We examined the ability of the purified mutant CheW proteins to bind to CheA and Tar, to promote formation of active ternary complexes, and to support chemotaxis in vivo. Our results indicate that mutations which eliminate CheW binding to Tar (V36M) or to CheA (G57D) result in a complete inability to form active ternary complexes in vitro and render the CheW protein incapable of mediating chemotaxis in vivo. The in vivo signaling pathway can, however, tolerate moderate changes in CheW-Tar and CheW-CheA affinities observed with several of the mutants (G133E, G41D, and 154ocr). One mutant (R62H) provided surprising results that may indicate a role for CheW in addition to binding CheA/receptors and promoting ternary complex formation.  相似文献   

10.
Bacterial chemotaxis is one of the best studied signal transduction pathways. CheW is a scaffold protein that mediates the association of the chemoreceptors and the CheA kinase in a ternary signaling complex. The effects of replacing conserved Arg62 of CheW with other residues suggested that the scaffold protein plays a more complex role than simply binding its partner proteins. Although R62A CheW had essentially the same affinity for chemoreceptors and CheA, cells expressing the mutant protein are impaired in chemotaxis. Using a combination of molecular dynamics simulations (MD), NMR spectroscopy, and circular dichroism (CD), we addressed the role of Arg62. Here we show that Arg62 forms a salt bridge with another highly conserved residue, Glu38. Although this interaction is unimportant for overall protein stability, it is essential to maintain the correct alignment of the chemoreceptor and kinase binding sites of CheW. Computational and experimental data suggest that the role of the salt bridge in maintaining the alignment of the two partner binding sites is fundamental to the function of the signaling complex but not to its assembly. We conclude that a key feature of CheW is to maintain the specific geometry between the two interaction sites required for its function as a scaffold.  相似文献   

11.
The dynamics of protein phosphorylation in bacterial chemotaxis   总被引:30,自引:0,他引:30  
K A Borkovich  M I Simon 《Cell》1990,63(6):1339-1348
The chemotaxis signal transduction pathway allows bacteria to respond to changes in concentration of specific chemicals (ligands) by modulating their swimming behavior. The pathway includes ligand binding receptors, and the CheA, CheY, CheW, and CheZ proteins. We showed previously that phosphorylation of CheY is activated in reactions containing receptor, CheW, CheA, and CheY. Here we demonstrate that this activation signal results from accelerated autophosphorylation of the CheA kinase. Evidence for a second signal transmitted by a ligand-bound receptor, which corresponds to inhibition of CheA autophosphorylation, is also presented. We postulate that CheA can exist in three forms: a "closed" form in the absence of receptor and CheW; an "open" form that results from activation of CheA by receptor and CheW; and a "sequestered" form in reactions containing ligand-bound receptor and CheW. The system's dynamics depends on the relative distribution of CheA among these three forms at any time.  相似文献   

12.
Motor behavior in prokaryotes is regulated by a phosphorelay network involving a histidine protein kinase, CheA, whose activity is controlled by a family of Type I membrane receptors. In a typical Escherichia coli cell, several thousand receptors are organized together with CheA and an Src homology 3-like protein, CheW, into complexes that tend to be localized at the cell poles. We found that these complexes have at least 6 receptors per CheA. CheW is not required for CheA binding to receptors, but is essential for kinase activation. The kinase activity per mole of bound CheA is proportional to the total bound CheW. Similar results were obtained with the E. coli serine receptor, Tsr, and the Salmonella typhimurium aspartate receptor, Tar. In the case of Tsr, under conditions optimal for kinase activation, the ratio of subunits in complexes is approximately 6 Tsr:4 CheW:1 CheA. Our results indicate that information from numerous receptors is integrated to control the activity of a relatively small number of kinase molecules.  相似文献   

13.
We examined the binding interactions of the methylation-dependent chemotaxis receptors Tsr and Tar with the chemotaxis-specific protein kinase CheA and the coupling factor CheW. Receptor directly bound CheW, but receptor-CheA binding was dependent upon the presence of CheW. These observations in combination with our previous identification of a CheW-CheA complex suggest that CheW physically links the kinase to the receptor. The ternary complex of receptor, CheW, and CheA is both kinetically and thermodynamically stable at physiological concentrations. Stability is not significantly altered by changes associated with attractant or repellent binding to the receptor. Such binding greatly modulates the kinase activity of CheA. Our results demonstrate that modulation of the kinase activity does not require association-dissociation of the ternary complex. This suggests that the receptor signal is transduced through conformational changes in the ternary complex rather than through changes in the association of the kinase CheA with receptor and/or CheW.  相似文献   

14.
Using protein from the hyperthermophile Thermotoga maritima, we have determined the solution structure of CheW, an essential component in the formation of the bacterial chemotaxis signaling complex. The overall fold is similar to the regulatory domain of the chemotaxis kinase CheA. In addition, interactions of CheW with CheA were monitored by nuclear magnetic resonance (NMR) techniques. The chemical shift perturbation data show the probable contacts that CheW makes with CheA. In combination with previous genetic data, the structure also suggests a possible binding site for the chemotaxis receptor. These results provide a structural basis for a model in which CheW acts as a molecular bridge between CheA and the cytoplasmic tails of the receptor.  相似文献   

15.
Chemotactic stimuli in bacteria are sensed by large sensory complexes, or receptor clusters, that consist of tens of thousands of proteins. Receptor clusters appear to play a key role in signal processing, but their structure remains poorly understood. Here we used fluorescent protein fusions to study in vivo formation of the cluster core, which consists of receptors, a kinase CheA and an assisting protein CheW. We show that receptors aggregate through their cytoplasmic domains even in the absence of other chemotaxis proteins. Clustering is further enhanced by the binding of CheW. Surprisingly, we observed that some fragments of CheA bind receptor clusters well in the absence of CheW, although the latter does assist the binding of full-length CheA. The resulting mode of receptor cluster formation is consistent with an experimentally observed flexible stoichiometry of chemosensory complexes and with assumptions of recently proposed computer models of signal processing in chemotaxis.  相似文献   

16.
Biologically important protein complexes often involve molecular interactions that are low affinity or transient. We apply pulsed dipolar electron spin resonance spectroscopy and site-directed spin labeling in what to our knowledge is a new approach to study aggregation and to identify regions on protein surfaces that participate in weak, but specific molecular interactions. As a test case, we have probed the self-association of the chemotaxis kinase CheA, which forms signaling clusters with chemoreceptors and the coupling protein CheW at the poles of bacterial cells. By measuring the intermolecular dipolar interactions sensed by spin-labels distributed over the protein surface, we show that the soluble CheA kinase aggregates to a small extent through interactions mediated by its regulatory (P5) domain. Direct dipolar distance measurements confirm that a hydrophobic surface at the periphery of P5 subdomain 2 associates CheA dimers in solution. This result is further supported by differential disulfide cross-linking from engineered cysteine reporter sites. We suggest that the periphery of P5 is an interaction site on CheA for other similar hydrophobic surfaces and plays an important role in structuring the signaling particle.  相似文献   

17.
Characterizing protein-protein interactions in a biologically relevant context is important for understanding the mechanisms of signal transduction. Most signal transduction systems are membrane associated and consist of large multiprotein complexes that undergo rapid reorganization—circumstances that present challenges to traditional structure determination methods. To study protein-protein interactions in a biologically relevant complex milieu, we employed a protein footprinting strategy based on isotope-coded affinity tag (ICAT) reagents. ICAT reagents are valuable tools for proteomics. Here, we show their utility in an alternative application—they are ideal for protein footprinting in complex backgrounds because the affinity tag moiety allows for enrichment of alkylated species prior to analysis. We employed a water-soluble ICAT reagent to monitor cysteine accessibility and thereby to identify residues involved in two different protein-protein interactions in the Escherichia coli chemotaxis signaling system. The chemotaxis system is an archetypal transmembrane signaling pathway in which a complex protein superstructure underlies sophisticated sensory performance. The formation of this superstructure depends on the adaptor protein CheW, which mediates a functionally important bridging interaction between transmembrane receptors and histidine kinase. ICAT footprinting was used to map the surfaces of CheW that interact with the large multidomain histidine kinase CheA, as well as with the transmembrane chemoreceptor Tsr in native E. coli membranes. By leveraging the affinity tag, we successfully identified CheW surfaces responsible for CheA-Tsr interaction. The proximity of the CheA and Tsr binding sites on CheW suggests the formation of a composite CheW-Tsr surface for the recruitment of the signaling kinase to the chemoreceptor complex.  相似文献   

18.
CheA, a cytoplasmic histidine autokinase, in conjunction with the CheW coupling protein, forms stable ternary complexes with the cytoplasmic signaling domains of transmembrane chemoreceptors. These signaling complexes induce chemotactic movements by stimulating or inhibiting CheA autophosphorylation activity in response to chemoeffector stimuli. To explore the mechanisms of CheA control by chemoreceptor signaling complexes, we examined the ability of various CheA fragments to interfere with receptor coupling control of CheA. CheA[250-654], a fragment carrying the catalytic domain and an adjacent C-terminal segment previously implicated in stimulatory control of CheA activity, interfered with the production of clockwise flagellar rotation and with chemotactic ability in wild-type cells. Epistasis tests indicated that CheA[250-654] blocked clockwise rotation by disrupting stimulatory coupling of CheA to receptors. In vitro coupling assays confirmed that a stoichiometric excess of CheA[250-654] fragments could exclude CheA from stimulatory receptor complexes, most likely by competing for CheW binding. However, CheA[250-654] fragments, even in vast excess, did not block receptor-mediated inhibition of CheA, suggesting that CheA[250-654] lacks an inhibitory contact site present in native CheA. This inhibitory target is most likely in the N-terminal P1 domain, which contains His-48, the site of autophosphorylation. These findings suggest a simple allosteric model of CheA control by ternary signaling complexes in which the receptor signaling domain conformationally regulates the interaction between the substrate and catalytic domains of CheA.  相似文献   

19.
An unusual regulatory mechanism involving two response regulators, CheY1 and CheY2, but no CheZ phosphatase, operates in the chemotactic signalling chain of Sinorhizobium meliloti . Active CheY2-P, phosphorylated by the cognate histidine kinase, CheA, is responsible for flagellar motor control. In the absence of any CheZ phosphatase activity, the level of CheY2-P is quickly reset by a phospho-transfer from CheY2-P first back to CheA, and then to CheY1, which acts as a phosphate sink. In studying the mechanism of this phosphate shuttle, we have used GFP fusions to show that CheY2, but not CheY1, associates with CheA at a cell pole. Cross-linking experiments with the purified proteins revealed that both CheY2 and CheY2-P bind to an isolated P2 ligand-binding domain of CheA, but CheY1 does not. The dissociation constants of CheA–CheY2 and CheA–CheY2-P indicated that both ligands bind with similar affinity to CheA. Based on the NMR structures of CheY2 and CheY2-P, their interactions with the purified P2 domain were analysed. The interacting surface of CheY2 comprises its C-terminal β4-α4-β5-α5 structural elements, whereas the interacting surface of CheY2-P is shifted towards the loop connecting β5 and α5. We propose that the distinct CheY2 and CheY2-P surfaces interact with two overlapping sites in the P2 domain that selectively bind either CheY2 or CheY2-P, depending on whether CheA is active or inactive.  相似文献   

20.
An allosteric model for transmembrane signaling in bacterial chemotaxis   总被引:4,自引:0,他引:4  
Bacteria are able to sense chemical gradients over a wide range of concentrations. However, calculations based on the known number of receptors do not predict such a range unless receptors interact with one another in a cooperative manner. A number of recent experiments support the notion that this remarkable sensitivity in chemotaxis is mediated by localized interactions or crosstalk between neighboring receptors. A number of simple, elegant models have proposed mechanisms for signal integration within receptor clusters. What is a lacking is a model, based on known molecular mechanisms and our accumulated knowledge of chemotaxis, that integrates data from multiple, heterogeneous sources. To address this question, we propose an allosteric mechanism for transmembrane signaling in bacterial chemotaxis based on the "trimer of dimers" model, where three receptor dimers form a stable complex with CheW and CheA. The mechanism is used to integrate a diverse set of experimental data in a consistent framework. The main predictions are: (1) trimers of receptor dimers form the building blocks for the signaling complexes; (2) receptor methylation increases the stability of the active state and retards the inhibition arising from ligand-bound receptors within the signaling complex; (3) trimer of dimer receptor complexes aggregate into clusters through their mutual interactions with CheA and CheW; (4) cooperativity arises from neighboring interaction within these clusters; and (5) cluster size is determined by the concentration of receptors, CheA, and CheW. The model is able to explain a number of seemingly contradictory experiments in a consistent manner and, in the process, explain how bacteria are able to sense chemical gradients over a wide range of concentrations by demonstrating how signals are integrated within the signaling complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号