首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D J Murphy  S J Benkovic 《Biochemistry》1989,28(7):3025-3031
The strictly conserved residue leucine-54 of Escherichia coli dihydrofolate reductase forms part of the hydrophobic wall which binds the p-aminobenzoyl side chain of dihydrofolate. In addition to the previously reported glycine-54 mutant, isoleucine-54 and asparagine-54 substitutions have been constructed and characterized with regard to their effects on binding and catalysis. NADP+ and NADPH binding is virtually unaffected with the exception of a 15-fold decrease in NADPH dissociation from the Gly-54 mutant. The synergistic effect of NADPH on tetrahydrofolate dissociation seen in the wild-type enzyme is lost in the isoleucine-54 mutant: little acceleration is seen in tetrahydrofolate dissociation when cofactor is bound, and there is no discrimination between reduced and oxidized cofactor. The dissociation constants for dihydrofolate and methotrexate increase in the order Leu less than Ile less than Asn less than Gly, varying by a maximum factor of 1700 for dihydrofolate and 6300 for methotrexate. Despite these large changes in binding affinity, the hydride transfer rate of 950 s-1 in the wild-type enzyme is decreased by a constant factor of ca. 30 (2 kcal/mol) regardless of the mutant. Thus, the contributions of residue 54 to binding and catalysis appear to have been separated.  相似文献   

2.
Oligonucleotide-directed, site-specific mutagenesis was used to convert phenylalanine-31 of human recombinant dihydrofolate reductase (DHFR) to leucine. This substitution was of interest in view of earlier chemical modification studies (Kumar et al., 1981) and structural studies based on X-ray crystallographic data (Matthews et al., 1985a,b) which had implicated the corresponding residue in chicken liver DHFR, Tyr-31, in the binding of dihydrofolate. Furthermore, this particular substitution allowed testing of the significance of protein sequence differences between mammalian and bacterial reductases at this position with regard to the species selectivity of trimethoprim. Both wild-type (WT) and mutant (F31L) enzymes were expressed and purified by using a heterologous expression system previously described (Prendergast et al., 1988). Values of the inhibition constants (Ki values) for trimethoprim were 1.00 and 1.08 microM for WT and F31L, respectively. Thus, the presence of phenylalanine at position 31 in human dihydrofolate reductase does not contribute to the species selectivity of trimethoprim. The Km values for nicotinamide adenine dinucleotide phosphate (reduced) (NADPH) and dihydrofolate were elevated 10.8-fold and 9.4-fold, respectively, for the mutant enzyme, whereas the Vmax increased only 1.8-fold. Equilibrium dissociation constants (KD values) were obtained for the binding of NADPH and dihydrofolate in binary complexes with each enzyme. The KD for NADPH is similar in both WT and F31L, whereas the KD for dihydrofolate is 43-fold lower in F31L. Values for dihydrofolate association rate constants (kon) with enzyme and enzyme-NADPH complexes were measured by stopped-flow techniques.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
In the x-ray structure of the human dihydrofolate reductase, phenylalanine 31 and phenylalanine 34 have been shown to be involved in hydrophobic interactions with bound substrates and inhibitors. Using oligonucleotide-directed mutagenesis and a bacterial expression system producing the wild-type and mutant human dihydrofolate reductases at levels of 10% of the bacterial protein, we have constructed, expressed, and purified a serine 31 (S31) mutant and a serine 34 (S34) mutant. Fluorescence titration experiments indicated that S31 bound the substrate H2folate 10-fold tighter and the coenzyme NADPH 2-fold tighter than the wild-type human dihydrofolate reductase. The serine 31 mutation had little effect on the steady-state kinetic properties of the enzyme but produced a 100-fold increase in the dissociation constant (Kd) for the inhibitor methotrexate. The serine 34 mutant had much greater alterations in its properties than S31; specifically, S34 had a 3-fold reduction in the Km for NADPH, a 24-fold increase in the Km for H2folate, a 3-fold reduction in the overall reaction rate kcat, and an 80,000-fold increase in the Kd for methotrexate. In addition, the pH dependence of the steady-state kinetic parameters of S34 were different from that of the wild-type enzyme. These results suggest that phenylalanine 31 and phenylalanine 34 make very different contributions to ligand binding and catalysis in the human dihydrofolate reductase.  相似文献   

4.
Arginine-70 of human dihydrofolate reductase (hDHFR) is a highly conserved residue which X-ray crystallographic data have shown to interact with the alpha-carboxylate of the terminal L-glutamate moiety of either folic acid or methotrexate (MTX). The rationale for this study was to introduce a conservative amino acid residue change at position 70 (Arg----Lys) which might function as a titratable group and, thus, reveal possible quantitative changes in ligand binding and kinetic parameters as a function of pH. Such a mutant enzyme (R70K) has been constructed and expressed by using site-directed mutagenesis techniques. This substitution has a dramatic effect on the binding of MTX, which displays a 22,600-fold increase in the dissociation constant (KD) at pH 7.5 compared to that of the reported wild-type enzyme value. At this pH, the KD value for dihydrofolate (FAH2) for the R70K enzyme shows only a 7-fold increase over that for the wild-type hDHFR. The pH profiles of the Michaelis and dissociation constants for FAH2 and KD values for MTX for the mutant enzyme all show a 7-8-fold increase from pH 7.5 to 8.5 as compared to its wild-type counterpart. The binding of NADPH or the nonclassical inhibitor trimetrexate (TMQ) to either the wild-type or the mutant enzyme does not show such pH-dependent characteristics. Thus, since FAH2 and MTX interact with the guanidinium side chain of arginine-70 in the wild-type hDHFR, the replacement of this residue with a lysine in the R70K mutant appears to have resulted in the introduction of a titratable group with a perturbed pKa value of ca. 8.3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Interaction of several representative folate, quinazoline and pyridine nucleotide derivatives with dihydrofolate reductase from amethopterin-resistant Lactobacillus casei induces dramatic changes in its circular dichroic spectral properties. The binding of dihydrofolate induces a large extrinsic Cotton effect at 295 nm ([theta] = 113 800 deg . cm2 . dm-1). The generation of this band by dihydrofolate is strictly dependent on complex formation with a single substrate binding site and a KD = 7 . 10(-6) M. The other binary complexes examined include the enzyme . NADPH, enzyme . amethopterin, enzyme . folate, and enzyme . methasquin. All such complexes differ in spectral detail, the negative ellipticity at 330 nm being characteristic of the "folate site" complexes. The circular dichroic spectrum of the ternary complex of reductase . NADPH . methotrexate shows a positive symmetrical band centered at 360 nm ([theta] - 32 000 deg . cm2 . dm-1). Since both of the corresponding binary complexes exhibit negative bands in this region, this induced band represents a unique molecular property of the ternary complex. Chemical modification of a single tryptophan residue of the enzyme, as determined from magnetic circular dichroism spectra, results in a complete loss in the ability to bind either dihydrofolate or NADPH.  相似文献   

6.
Lysine-54 of human dihydrofolate reductase (hDHFR) appears to be involved in the interaction with the 2'-phosphate of NADPH and is conserved as a basic residue in other species. Studies have suggested that in Lactobacillus casei dihydrofolate reductase Arg-43, the homologous residue at this position, plays an important role in the binding of NADPH and in the differentiation of Km values for NADPH and NADH. A Lys-54 to Gln-54 mutant (K54Q) of hDHFR has been constructed by oligodeoxynucleotide-directed mutagenesis in order to study the role of Lys-54 in differentiating Km and Kcat values for NADPH and NADH as well as in other functions of hDHFR. The purpose of this paper is to delineate in quantitative terms the magnitude of the effect of the Lys-54 to Gln-54 replacement on the various kinetic parameters of hDHFR. Such quantitative effects cannot be predicted solely on the basis of X-ray structures. The Km for NADPH for the K54Q mutant enzyme is 58-fold higher, while the Km for NADH for K54Q is only 3.9-fold higher than that of the wild type, indicating that the substitution of Lys-54 with Gln-54 decreases the apparent affinity of the enzyme for NADPH dramatically, but has a lesser effect on the apparent affinity for NADH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The fluorescence emission spectrum of soybean dihydrofolate reductase suggests that the emitting tryptophan residues are situated in a hydrophobic microenvironment. The dissociation constants determined from fluorescence and circular dichroism data reveal that the soybean enzyme has a lower affinity for substrates and substrate analogs than that determined for dihydrofolate reductases isolated from other sources. The binding of methotrexate to the soybean enzyme does not affect the binding of NADPH. Similarly, the binding of NADPH has no effect on subsequent methotrexate binding. Polarimetric study indicates that the enzyme has a low (ca. 5%) α-helical content. Addition of dihydrofolate to the soybean enzyme results in the generation of a positive ellipticity band at 298 nm with a molar ellipticity, [θ], of 186,000, whereas the binding of folate induces a negative ellipticity band at 280 nm with [θ] of ?181,000. The qualitative and quantitative differences in the circular dichroism of the enzyme-dihydrofolate and enzyme-folate complexes indicate that the mode of binding of these ligands may be different. The formation of an enzyme-NADPH complex is accompanied by a negative Cotton effect at 270 nm. These studies indicate that the binding of substrates or inhibitors causes significant conformational changes in the enzyme and also leads to the formation of a number of spectroscopically identifiable complexes.  相似文献   

8.
The ionization state of aspartate 26 in Lactobacillus casei dihydrofolate reductase has been investigated by selectively labeling the enzyme with [13Cgamma] aspartic acid and measuring the 13C chemical shifts in the apo, folate-enzyme, and dihydrofolate-enzyme complexes. Our results indicate that no aspartate residue has a pKa greater than approximately 4.8 in any of the three complexes studied. The resonance of aspartate 26 in the dihydrofolate-enzyme complex has been assigned by site-directed mutagenesis; aspartate 26 is found to have a pKa value of less than 4 in this complex. Such a low pKa value makes it most unlikely that the ionization of this residue is responsible for the observed pH profile of hydride ion transfer [apparent pKa = 6.0; Andrews, J., Fierke, C. A., Birdsall, B., Ostler, G., Feeney, J., Roberts, G. C. K., and Benkovic, S. J. (1989) Biochemistry 28, 5743-5750]. Furthermore, the downfield chemical shift of the Asp 26 (13)Cgamma resonance in the dihydrofolate-enzyme complex provides experimental evidence that the pteridine ring of dihydrofolate is polarized when bound to the enzyme. We propose that this polarization of dihydrofolate acts as the driving force for protonation of the electron-rich O4 atom which occurs in the presence of NADPH. After this protonation of the substrate, a network of hydrogen bonds between O4, N5 and a bound water molecule facilitates transfer of the proton to N5 and transfer of a hydride ion from NADPH to the C6 atom to complete the reduction process.  相似文献   

9.
We have prepared a selectively deuterated dihydrofolate reductase in which all the aromatic protons except the C(2) protons of tryptophan have been replaced by deuterium and have examined the 1H NMR spectra of its complexes with folate, trimethoprim, methotrexate, NADP+, and NADPH. One of the four Trp C(2)-proton resonance signals (signal P at 3.66 ppm from dioxane) has been assigned to Trp-21 by examining the NMR spectrum of a selectively deuterated N-bromosuccinimide-modified dihydrofolate reductase. This signal is not perturbed by NADPH, indicating that the coenzyme is not binding close to the 2 position of Trp-21. This contrasts markedly with the 19F shift (2.7 ppm) observed for the 19F signal of Trp-21 in the NADPH complex with the 6-fluorotryptophan-labeled enzyme. In fact the crystal structure of the enzyme . methotrexate . NADPH shows that the carboxamide group of the reduced nicotinamide ring is near to the 6 position of Trp-21 but remote from its 2 position. The nonadditivity of the 1H chemical-shift contributions for signals tentatively assigned to Trp-5 and -133 indicates that these residues are influenced by ligand-induced conformational changes.  相似文献   

10.
The apoenzyme of wild-type (WT) dihydrofolate reductase (DHRF) from Escherichia coli exists in two conformational states, Et and Ew, which differ in affinity for NADPH and in kinetic competence. Dissociation constants for the binary complex of NADPH with the two conformers differ by over 100-fold (KDt = 0.17 microM, KDw = 22 microM). Rate constants governing the interconversion of conformers are small (t1/2 for Ew----Et = 71 s), and since Ew is not catalytically competent, this conversion is accompanied by an increase in catalytic velocity. The equilibrium proportion of Et in the absence of ligands is 63%, but binding of NADPH greatly increases this proportion, and t1/2 for conversion of Ew.NADPH to Et.NADPH is 30 s. This conformational equilibrium has also been examined in mutant enzyme in which aspartate 27 is replaced by asparagine (D27N E. coli DHFR). Although ASp27 is an active site residue, it does not interact directly with bound NADPH, and in the mutant the rate constant for NADPH binding to Et is unchanged as are the dissociation constants for NADPH complexes with Et or Ew. However, for mutant apoenzyme, the proportion of Et is decreased to 18% in the absence of ligands so that the overall KD for NADPH is increased (0.15 microM for WT E. coli DHFR, 0.68 microM for D27N E. coli DHFR). The lower proportion of Et is due to a decreased rate for Ew----Et (t1/2 = 221 s) and an increased rate for Et----Ew (t1/2 = 50 s versus 120 s for WT E. coli DHFR).  相似文献   

11.
S M Dunn  T M Lanigan  E E Howell 《Biochemistry》1990,29(37):8569-8576
In the absence of ligands, dihydrofolate reductase from Escherichia coli exists in at least two interconvertible conformations, only one of which binds NADPH with high affinity. This equilibrium is pH dependent, involving an ionizable group of the enzyme (pK approximately 5.5), and the proportion of the NADPH-binding conformer increases from 42% at pH 5 to 65% at pH 8. The role of specific amino acids in enzyme conformation has been investigated by studying the kinetics of NADPH binding to three dihydrofolate reductase mutants: (i) a mutant in which Asp-27, a residue that is directly involved in the binding of folates and antifolates but not NADPH, has been replaced by a serine, (ii) a mutant in which Phe-137 on the exterior of the molecule and distant from the binding sites has been replaced by a serine, and (iii) a mutant in which both Asp-27 and Phe-137 have been replaced by serines. Mutation of the Asp-27 residue reduces the affinity for NADPH by approximately 7-fold. Kinetic measurements have suggested that this is due mainly to an increase in the rate of dissociation of the initial complex and a slight shift in the enzyme equilibrium to favor the nonbinding conformation. The pH dependence of the conformer equilibrium is also shifted by approximately one pH unit to higher pH (pK approximately 6.5). In addition, the pH profile suggests the involvement of a second ionizable group having a pK of about 8 since, above pH 7, the proportion of the NADPH-binding form decreases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
When dihydrofolate reductase from a methotrexate-resistant strain of Escherichia coli B, MB 1428, is treated with approximately a 5 mol ratio of N-bromosuccinimide (NBS) to enzyme at pH 7.2 and assayed at the same pH, there is a 40% loss of activity due to the modification of 1 histidine residue and possibly 1 methionine residue before oxidation of tryptophan occurs. The initial modification is accompanied by a shift of the pH for maximal enzymatic activity from pH 7.2 to pH 5.5 Upon further treatment with N-bromosuccinimide, the activity is gradually reduced from 60 to 0% as tryptophan residues become oxidized. An NBS to enzyme mole ratio of approximately 20 results in 90% inactivation of the enzyme. When the enzyme is titrated with NBS in 6 M guanidine HCl, 5 mol of tryptophan react per mol of enzyme, a result in agreement with the total tryptophan content as determined by magnetic circular dichroism. The 40% NBS-inactivated sample posses full binding capacity for methotrexate and reduced triphosphopyridine nucleotide, and the Km values for dihydrofolate and TPNH are the same as for the native enzyme. After 90% inactivation, only half of the enzyme molecules bind methotrexate, and the dissociation constant for methotrexate is 40 nM as compared to 4 nM for native enzyme in solutions of 0.1 M ionic strength, pH 7.2 Also, TPNH is not bound as tightly to the modified enzyme-methotrexate complex as to the unmodified enzyme-methotrexate complex. Circular dichroism studies indicate the 90% NBS-inactivated enzyme has the same alpha helix content as the native enzyme but less beta structure, while the 40% inactivated enzyme is essentially the same as the native enzyme. Protection experiments were complicated by the fact that NBS reacts with the substrates and cofactors of the enzyme. Although protection of specific residues was not determined, it was clear that TPNH was partially protected from NBS reaction when bound to the enzyme, and the enzyme, and the enzyme was not inactivated by NBS until the TPNH had reacted.  相似文献   

13.
D A Matthews 《Biochemistry》1979,18(8):1602-1610
The three-dimensional molecular structure of Lactobacillus casei dihydrofolate reductase complexed with NADPH and methotrexate has been used to interpret published magnetic resonance spectra for this enzyme. Proton resonances from histidine residues and 19F resonances from fluorine-labeled fluorotyrosine and fluorotryptophan dihydrofolate reductase have been assigned in several cases to specific amino acids in the primary sequence. Furthermore, the 31P signals from the pyrophosphate moiety of bound NADPH have been assigned and the large upfield shift for 13C-labeled (at the carboxamide carbon) NADP+ upon binding to the reductase has been explained in terms of desolvation effects.  相似文献   

14.
A kinetic scheme is presented for Lactobacillus casei dihydrofolate reductase that predicts steady-state kinetic parameters. This scheme was derived from measuring association and dissociation rate constants and pre-steady-state transients by using stopped-flow fluorescence and absorbance spectroscopy. Two major features of this kinetic scheme are the following: (i) product dissociation is the rate-limiting step for steady-state turnover at low pH and follows a specific, preferred pathway in which tetrahydrofolate (H4F) dissociation occurs after NADPH replaces NADP+ in the ternary complex; (ii) the rate constant for hydride transfer from NADPH to dihydrofolate (H2F) is rapid (khyd = 430 s-1), favorable (Keq = 290), and pH dependent (pKa = 6.0), reflecting ionization of a single group. Not only is this scheme identical in form with the Escherichia coli kinetic scheme [Fierke et al. (1987) Biochemistry 26, 4085] but moreover none of the rate constants vary by more than 40-fold despite there being less than 30% amino acid homology between the two enzymes. This similarity is consistent with their overall structural congruence. The role of Trp-21 of L. casei dihydrofolate reductase in binding and catalysis was probed by amino acid substitution. Trp-21, a strictly conserved residue near both the folate and coenzyme binding sites, was replaced by leucine. Two major effects of this substitution are on (i) the rate constant for hydride transfer which decreases 100-fold, becoming the rate-limiting step in steady-state turnover, and (ii) the affinities for NADPH and NADP+ which decrease by approximately 3.5 and approximately 0.5 kcal mol-1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The surface accessibility of the histidine, tyrosine, and tryptophan residues of Lactobacillus casei dihydrofolate reductase has been determined from 360-MHz 1H photochemically induced dynamic nuclear polarization (photo-CIDNP) NMR experiments. In the absence of ligands, four (or perhaps five) of the seven histidine residues and at least one of the four tryptophan residues are accessible to a flavin dye molecule. One of the five tyrosine residues is also slightly accessible. Of the accessible histidine residues, one becomes inaccessible on the binding of NADP+ and one on the binding of p-aminobenzoyl glutamate. These have been assigned to residues which interact directly with these two ligands. One histidine residue (probably His-22) shows an increase in accessibility on addition of folate or methotrexate to the enzyme . NADP+ complex. In addition, the binding of several ligands, notably trimethoprim, leads to an increase in the accessibility of a tryptophan residue. This is clear evidence for ligand-induced conformational changes in dihydrofolate reductase and allows us to identify some of the residues involved.  相似文献   

16.
The role of the active site residue phenylalanine-31 (Phe31) for recombinant human dihydrofolate reductase (rHDHFR) has been probed by comparing the kinetic behavior of wild-type enzyme (wt) with mutant in which Phe31 is replaced by leucine (F31L rHDHFR). At pH 7.65 the steady-state kcat is almost doubled, but the rate constant for hydride transfer is decreased to less than half that for wt enzyme, as is the rate of the obligatory isomerization of the substrate complex that precedes hydride transfer. Although steady-state measurements indicated that the mutation causes large increases in Km for both substrates, dissociation constants for many complexes are decreased. These apparent paradoxes are due to major mutation-induced decreases in rate constants (koff) for dissociation of folate, dihydrofolate, and tetrahydrofolate from all of their complexes. This results in a mechanism proceeding almost entirely by only one of the two pathways used by wt enzyme. Other consequences of these changes are a much altered dependence of steady-state kcat on pH, inhibition rather than activation by tetrahydrofolate, absence of hysteresis in transient-state kinetics, and a decrease in enzyme efficiency under physiological conditions. The results indicate that there is no quantitative correlation between dihydrofolate binding and the rate of hydride transfer for this enzyme.  相似文献   

17.
The effects of phenylalanine, NaCl and pH on the conformation of chorismate mutase/prephenate dehydratase have been investigated, using measurements of far and near-ultraviolet circular dichroic spectra and ultraviolet difference spectra. At pH 8.2 in 20 mM Tris-Cl buffer the enzyme was found to contain 10-20% helix and 40-50% beta-structure. There was little or no change in these values on the addition of 1 mM phenylalanine (the allosteric effector) or 0.4 M NaCl or by decreasing the pH to 7.4. Both phenylalanine and NaCl caused significant changes in the conformation of the enzyme. The most prominent of these was the movement of a tryptophan residue into a more hydrophobic environment. There was also a slight perturbation of this tryptophan when the pH was decreased to 7.4. The conformational changes can explain sigmoidal kinetic behaviour observed previously [Gething et al. (1976) Eur. J. Biochem. 71, 317-325].  相似文献   

18.
In Escherichia coli , genetic regulation of aromatic amino acid biosynthesis and uptake is effected by the protein TyrR, which acts via ligand-mediated repression and activation. Characterization of the interactions of tyrosine, phenylalanine and tryptophan with TyrR revealed the presence of two separate aromatic amino acid-binding sites, one ATP-dependent, the other ATP-independent. Binding to the ATP-dependent site induces the self-association of TyrR. Using sedimentation equilibrium analyses, dissociation constants for this site in the dimeric and hexameric forms of TyrR were determined to be 330 μM and 24 μM, respectively, for tyrosine, and 55 mM and 3.7 mM, respectively, for phenylalanine. Tryptophan bound with a strength similar to that of phenylalanine, and both phenylalanine and tryptophan competed with the binding of tyrosine. The ATP-independent site, which has not been observed previously, was characterized by ultraviolet (u.v.) difference spectroscopy and a sedimentation-velocity meniscus-depletion method. Phenylalanine bound co-operatively to this site, exhibiting half-saturation at 260 µM. Tryptophan competed weakly with phenylalanine, half-saturation occurring at 1.2 mM. No binding of tyrosine to this site could be detected. We propose that the binding of phenylalanine or tryptophan to this ATP-independent site is responsible for phenylalanine- and tryptophan-mediated regulation by TyrR.  相似文献   

19.
Dihydrofolate reductase has been purified from a methotrexate-resistant strain of Lactobacillus casei NCB 6375. By careful attention to growth conditions, up to 2.5 g of enzyme is obtained from a 400 litre culture. The purification procedure, involving poly-ethyleneimine treatment, DEAE-cellulose chromatography and affinity chromatography on methotrexate-aminohexyl-Sepharose, operates on the gram scale, with overall yields of 50-60%. Elution of the affinity column by reverse (upward) flow was used, as it led to recovery of the enzyme in a much smaller volume. The enzyme obtained appears to be more than 98% pure, as judged by gel electrophoresis, isoelectric focusing, and gel filtration. It has a mol.wt. of approx. 17900 and a turnover number of 4s-1 (50mM-triethanolamine/400mM-KCl, pH 7.2, 25 degrees C) with dihydrofolate and NADPH as substrates. The turnover number for folate is 0.02s-1. Michaelis constants for a variety of substrates have been measured by using a new fluorimetric assay (0.36 muM-dihydrofolate; 0.78 muM-NADPH), and binding constants determined by using the quenching of protein fluorescence (dihydrofolate, 2.25 X 10(6)M-1; NADPH, greater than 10(8)M-1). The pH/activity profile shows a single maximum at pH 7.3; at this pH, marked activation by 0.5M-NaCl is observed.  相似文献   

20.
The active site residue phenylalanine 313 is conserved in the sequences of all known tryptophan hydroxylases. The tryptophan hydroxylase F313W mutant protein no longer shows a preference for tryptophan over phenylalanine as a substrate, consistent with a role of this residue in substrate specificity. A tryptophan residue occupies the homologous position in tyrosine hydroxylase. The tyrosine hydroxylase W372F mutant enzyme does not show an increased preference for tryptophan over tyrosine or phenylalanine, so that this residue cannot be considered the dominant factor in substrate specificity in this family of enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号