首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detailed studies of the kinetics and mechanism of nucleotide incorporation catalyzed by the RNA-dependent RNA polymerase from poliovirus, 3D(pol), have been limited by the inability to assemble elongation complexes that permit activity to be monitored by extension of end-labeled primers. We have solved this problem by employing a short, symmetrical, heteropolymeric RNA primer-template that we refer to as "sym/sub." Formation of 3D(pol)-sym/sub complexes is slow owing to a slow rate of association (0.1 microM(-1) s(-1)) of 3D(pol) and sym/sub and a slow isomerization (0. 076 s(-1)) of the 3D(pol)-sym/sub complex that is a prerequisite for catalytic competence of this complex. Complex assembly is stoichiometric under conditions in which competing reactions, such as enzyme inactivation, are eliminated. Inactivation of 3D(pol) occurs at a maximal rate of 0.051 s(-1) at 22 degrees C in reaction buffer lacking nucleotide. At this temperature, ATP protects 3D(pol) against inactivation with a K(0.5) of 37 microM. Once formed, 3D(pol)-sym/sub elongation complexes are stable (t((1)/(2)) = 2 h at 22 degrees C) and appear to contain only a single polymerase monomer. In the presence of Mg(2+), AMP, 2'-dAMP, and 3'-dAMP are incorporated into sym/sub by 3D(pol) at rates of 72, 0.6, and 1 s(-1), respectively. After incorporation of AMP, 3D(pol)-sym/sub product complexes have a half-life of 8 h at 22 degrees C. The stability of 3D(pol)-sym/sub complexes is temperature-dependent. At 30 degrees C, there is a 2-8-fold decrease in complex stability. Complex dissociation is the rate-limiting step for primer utilization. 3D(pol) dissociates from the end of template at a rate 10-fold faster than from internal positions. The sym/sub system will facilitate mechanistic analysis of 3D(pol) and permit a direct kinetic and thermodynamic comparison of the RNA-dependent RNA polymerase to the other classes of nucleic acid polymerases.  相似文献   

2.
We have analyzed the divalent cation specificity of poliovirus RNA-dependent RNA polymerase, 3D(pol). The following preference was observed: Mn(2+) > Co(2+) > Ni(2+) > Fe(2+) > Mg(2+) > Ca(2+) > Cu(2+), and Zn(2+) was incapable of supporting 3D(pol)-catalyzed nucleotide incorporation. In the presence of Mn(2+), 3D(pol) activity was increased by greater than 10-fold relative to that in the presence of Mg(2+). Steady-state kinetic analysis revealed that the increased activity observed in the presence of Mn(2+) was due, primarily, to a reduction in the K(M) value for 3D(pol) binding to primer/template, without any significant effect on the K(M) value for nucleotide. The ability of 3D(pol) to catalyze RNA synthesis de novo was also stimulated approximately 10-fold by using Mn(2+), and the enzyme was now capable of also utilizing a DNA template for primer-independent RNA synthesis. Interestingly, the use of Mn(2+) as divalent cation permitted 3D(pol) activity to be monitored by following extension of 5'-(32)P-end-labeled, heteropolymeric RNA primer/templates. The kinetics of primer extension were biphasic because of the enzyme binding to primer/template in both possible orientations. When bound in the incorrect orientation, 3D(pol) was capable of efficient addition of nucleotides to the blunt-ended duplex; this activity was also apparent in the presence of Mg(2+). In the presence of Mn(2+), 3D(pol) efficiently utilized dNTPs, ddNTPs, and incorrect NTPs. On average, three incorrect nucleotides could be incorporated by 3D(pol). The ability of 3D(pol) to incorporate the correct dNTP, but not the correct ddNTP, was also observed in the presence of Mg(2+). Taken together, these results provide the first glimpse into the nucleotide specificity and fidelity of the poliovirus polymerase and suggest novel alternatives for the design of primer/templates to study the mechanism of 3D(pol)-catalyzed nucleotide incorporation.  相似文献   

3.
Arnold JJ  Gohara DW  Cameron CE 《Biochemistry》2004,43(18):5138-5148
The use of Mn(2+) as the divalent cation cofactor in polymerase-catalyzed reactions instead of Mg(2+) often diminishes the stringency of substrate selection and incorporation fidelity. We have solved the complete kinetic mechanism for single nucleotide incorporation catalyzed by the RNA-dependent RNA polymerase from poliovirus (3D(pol)) in the presence of Mn(2+). The steps employed during a single cycle of nucleotide incorporation are identical to those employed in the presence of Mg(2+) and include a conformational-change step after nucleotide binding to achieve catalytic competence of the polymerase-primer/template-nucleotide complex. In the presence of Mn(2+), the conformational-change step is the primary determinant of enzyme specificity, phosphoryl transfer appears as the sole rate-limiting step for nucleotide incorporation, and the rate of phosphoryl transfer is the same for all nucleotides: correct and incorrect. Because phosphoryl transfer is the rate-limiting step in the presence of Mn(2+), it was possible to determine that the maximal phosphorothioate effect in this system is in the range of 8-11. This information permitted further interrogation of the nucleotide-selection process in the presence of Mg(2+), highlighting the capacity of this cation to permit the enzyme to use the phosphoryl-transfer step for nucleotide selection. The inability of Mn(2+) to support a reduction in the efficiency of phosphoryl transfer when incorrect substrates are employed is the primary explanation for the loss of fidelity observed in the presence of this cofactor. We propose that the conformational change involves reorientation of the triphosphate moiety of the bound nucleotide into a conformation that permits binding of the second metal ion required for catalysis. In the presence of Mg(2+), this conformation requires interactions with the enzyme that permit a reduction in catalytic efficiency to occur during an attempt to incorporate an incorrect nucleotide. Adventitious interactions in the cofactor-binding site with bound Mn(2+) may diminish fidelity by compensating for interaction losses used to modulate catalytic efficiency when incorrect nucleotides are bound in the presence of Mg(2+).  相似文献   

4.
Poliovirus (PV) is a well-characterized RNA virus, and the RNA-dependent RNA polymerase (RdRp) from PV (3Dpol) has been widely employed as an important model for understanding the structure-function relationships of RNA and DNA polymerases. Many experimental studies of the kinetics of nucleotide incorporation by RNA and DNA polymerases suggest that each nucleotide incorporation cycle basically consists of six sequential steps: (1) an incoming nucleotide binds to the polymerase-primer/template complex; (2) the ternary complex (nucleotide-polymerase-primer/template) undergoes a conformational change; (3) phosphoryl transfer occurs (the chemistry step); (4) a post-chemistry conformational change occurs; (5) pyrophosphate is released; (6) RNA or DNA translocation. Recently, the importance of structural motif D in nucleotide incorporation has been recognized, but the functions of motif D are less well explored so far. In this work, we used two computational techniques, molecular dynamics (MD) simulation and quantum mechanics (QM) method, to explore the roles of motif D in nucleotide incorporation catalyzed by PV 3Dpol. We discovered that the motif D, exhibiting high flexibility in either the presence or the absence of RNA primer/template, might facilitate the transportation of incoming nucleotide or outgoing pyrophosphate. We observed that the dynamic behavior of motif A, which should be essential to the polymerase function, was greatly affected by the motions of motif D. In the end, through QM calculations, we attempted to investigate the proton transfer in enzyme catalysis associated with a few amino acid residues of motifs F and D.  相似文献   

5.
We have constructed a structural model for poliovirus RNA-dependent RNA polymerase (3D(pol)) in complex with a primer-template (sym/sub) and ATP. Residues found in conserved structural motifs A (Asp-238) and B (Asn-297) are involved in nucleotide selection. Asp-238 appears to couple binding of nucleotides with the correct sugar configuration to catalytic efficiency at the active site of the enzyme. Asn-297 is involved in selection of ribonucleoside triphosphates over 2'-dNTPs, a role mediated most likely via a hydrogen bond between the side chain of this residue and the 2'-OH of the ribonucleoside triphosphate. Substitutions at position 238 or 297 of 3D(pol) produced derivatives exhibiting a range of catalytic efficiencies when assayed in vitro for poly(rU) polymerase activity or sym/sub elongation activity. A direct correlation existed between activity on sym/sub and biological phenotypes; a 2.5-fold reduction in polymerase elongation rate produced virus with a temperature-sensitive growth phenotype. These data permit us to propose a detailed, structural model for nucleotide selection by 3D(pol), confirm the biological relevance of the sym/sub system, and provide additional evidence for kinetic coupling between RNA synthesis and subsequent steps in the virus life cycle.  相似文献   

6.
Cramer J  Jaeger J  Restle T 《Biochemistry》2006,45(11):3610-3619
Here we report a detailed characterization of the biochemical and kinetic properties of the hepatitis C virus (HCV, genotype-1b, J4 consensus) RNA-dependent RNA polymerase NS5B, by performing comprehensive RNA binding, nucleotide incorporation, and protein/protein oligomerization studies. By applying equilibrium fluorescence titrations, we determined a surprisingly high dissociation constant (K(d)) of approximately 250 nM for single-stranded as well as for partially double-stranded RNA. A detailed analysis of the nucleic acid binding mechanism using pre-steady-state techniques revealed the association reaction to be nearly diffusion controlled. It occurs in a single step with a second-order rate constant (k(on)) of 0.273 nM(-)(1) s(-)(1). The dissociation of the nucleic acid-polymerase complex is fast with a dissociation rate constant (k(off)) of 59.3 s(-)(1). With short, partially double-stranded RNAs, no nucleotide incorporation could be observed, while de novo RNA synthesis with short RNA templates showed nucleotide incorporation and end-to-end template switching events. Single-turnover, single-nucleotide incorporation studies (representing here the initiation and not processive polymerization) using dinucleotide primers revealed a very slow incorporation rate (k(pol)) of 0.0007 s(-)(1) and a K(d) of the binary enzyme-nucleic acid complex for the incoming ATP of 27.7 microM. Using dynamic laser light scattering, it could be shown for the first time that oligomerization of HCV NS5B is a dynamic and monovalent salt concentration dependent process. While NS5B is highly oligomeric at low salt concentrations, monomers were only observed at NaCl concentrations above 300 mM. Binding of short RNA substrates led to a further increase in oligomerization, whereas GTP did not show any effect on protein/protein interactions. Furthermore, nucleotide incorporation studies indicate the oligomerization state does not correlate with enzymatic activities as previously proposed.  相似文献   

7.
Fast, accurate nucleotide incorporation by polymerases facilitates expression and maintenance of genomes. Many polymerases use conformational dynamics of a conserved α helix to permit efficient nucleotide addition only when the correct nucleotide substrate is bound. This α helix is missing in structures of RNA-dependent RNA polymerases (RdRps) and RTs. Here, we use solution-state nuclear magnetic resonance to demonstrate that the conformation of conserved structural motif D of an RdRp is?linked to the nature (correct versus incorrect) of the bound nucleotide and the protonation state of a conserved, motif-D lysine. Structural data also reveal the inability of motif D to achieve its optimal conformation after incorporation of an incorrect nucleotide. Functional data are consistent with the conformational change of motif D becoming rate limiting during and after nucleotide misincorporation. We conclude that motif D of RdRps and, by inference, RTs is the functional equivalent to the fidelity helix of other polymerases.  相似文献   

8.
The kinetics of nucleotide incorporation into 24/36-mer primer/template DNA by purified fetal calf thymus DNA polymerase (pol) delta was examined using steady-state and pre-steady-state kinetics. The role of the pol delta accessory protein, proliferating cell nuclear antigen (PCNA), on DNA replication by pol delta was also examined by kinetic analysis. The steady-state parameter k(cat) was similar for pol delta in the presence and absence of PCNA (0.36 and 0.30 min(-1), respectively); however, the K(m) for dNTP was 20-fold higher in the absence of PCNA (0.067 versus 1.2 microm), decreasing the efficiency of nucleotide insertion. Pre-steady-state bursts of nucleotide incorporation were observed for pol delta in the presence and absence of PCNA (rates of polymerization (k(pol)) of 1260 and 400 min(-1), respectively). The reduction in polymerization rate in the absence of PCNA was also accompanied by a 2-fold decrease in burst amplitude. The steady-state exonuclease rate of pol delta was 0.56 min(-1) (no burst, 10(3)-fold lower than the rate of polymerization). The small phosphorothioate effect of 2 for correct nucleotide incorporation into DNA by pol delta.PCNA indicated that the rate-limiting step in the polymerization cycle occurs prior to phosphodiester bond formation. A K(d)(dNTP) value of 0.93 microm for poldelta.dNTP binding was determined by pre-steady-state kinetics. A 5-fold increase in K(d)(DNA) for the pol delta.DNA complex was measured in the absence of PCNA. We conclude that the major replicative mammalian polymerase, pol delta, exhibits kinetic behavior generally similar to that observed for several prokaryotic model polymerases, particularly a rate-limiting step following product formation in the steady state (dissociation of oligonucleotides) and a rate-limiting step (probably conformational change) preceding phosphodiester bond formation. PCNA appears to affect pol delta replication in this model mainly by decreasing the dissociation of the polymerase from the DNA.  相似文献   

9.
10.
Pre-steady-state and steady-state kinetics of nucleotide incorporation and excision were used to assess potential mechanisms by which the fidelity of the herpes simplex virus type 1 DNA polymerase catalytic subunit (Pol) is enhanced by its processivity factor, UL42. UL42 had no effect on the pre-steady-state rate constant for correct nucleotide incorporation (150 s(-1)) nor on the primary rate-limiting conformational step. However, the equilibrium dissociation constant for the enzyme in a stable complex with primer-template was 44 nm for Pol and 7.0 nm for Pol/UL42. The catalytic subunit and holoenzyme both selected against incorrect nucleotide incorporation predominantly at the level of nucleotide affinity, although UL42 slowed by 4-fold the maximum rate of incorporation of incorrect, compared with correct, nucleotide. Pol, with or without UL42, cleaved matched termini at a slower rate than mismatched ones, but UL42 did not significantly alter the pre-steady-state rate constant for mismatch excision ( approximately 16 s(-1)). The steady-state rate constant for nucleotide addition was 0.09 s(-1) and 0.03 s(-1) for Pol and Pol/UL42, respectively, and enzyme dissociation was the rate-limiting step. The longer half-life for DNA complexes with Pol/UL42 (23 s) compared with that with Pol (8 s) affords a greater probability for excision when a misincorporation event does occur, accounting predominantly for the failure of Pol/UL42 to accumulate mismatched product at moderate nucleotide concentrations.  相似文献   

11.
12.
Purohit V  Grindley ND  Joyce CM 《Biochemistry》2003,42(34):10200-10211
We have investigated conformational transitions in the Klenow fragment polymerase reaction by stopped-flow fluorescence using DNA substrates containing the fluorescent reporter 2-aminopurine (2-AP) on the template strand, either at the templating position opposite the incoming nucleotide (designated the 0 position) or 5' to the templating base (the +1 position). By using both deoxy- and dideoxy-terminated primers, we were able to distinguish steps that accompany ternary complex formation from those that occur during nucleotide incorporation. The fluorescence changes revealed two extremely rapid steps that occur early in the pathway for correct nucleotide incorporation. The first, detectable with the 2-AP reporter at the 0 position, occurs within the first few milliseconds and is associated with dNTP binding. This is followed by a rapid step involving relative movement of the +1 base, detectable when the 2-AP reporter is at the +1 position. Finally, when the primer had a 3'-OH, a fluorescence decrease with a rate equal to the rate of nucleotide incorporation was observed with both 0 and +1 position reporters. When the primer was dideoxy-terminated, the only change observed at the rate expected for nucleotide incorporation had a very small amplitude, suggesting that the rate-limiting conformational change does not produce a large fluorescence change, and is therefore unlikely to involve a significant change in the environment of the fluorophore. Fluorescence changes observed during misincorporation were substantially different from those observed during correct nucleotide incorporation, implying that the conformations adopted during correct and incorrect nucleotide incorporation are distinct.  相似文献   

13.
Gohara DW  Arnold JJ  Cameron CE 《Biochemistry》2004,43(18):5149-5158
We have performed a kinetic and thermodynamic analysis of 3D(pol) derivatives containing substitutions in the ribose-binding pocket with ATP analogues containing correct and incorrect sugar configurations. We find that Asp-238, a residue in structural motif A that is conserved in all RNA-dependent RNA polymerases, is a key determinant of polymerase fidelity. Alterations in the position of the Asp-238 side chain destabilize the catalytically competent 3D(pol)-primer/template-NTP complex and reduce the efficiency of phosphoryl transfer. The reduction in phosphoryl transfer may be a reflection of increased mobility of other residues in motif A that are required for stabilizing the triphosphate moiety of the nucleotide substrate in the active conformation. We present a structural model to explain how Asp-238 functions to select nucleotides with a correct sugar configuration and a correct base. We propose that this mechanism is employed by all RNA-dependent RNA polymerases. We discuss the possibility that all nucleic acid polymerases with the canonical "palm"-based active site employ a similar mechanism to maximize fidelity.  相似文献   

14.
15.
Amiloride and its derivative 5-(N-ethyl-N-isopropyl)amiloride (EIPA) were previously shown to inhibit coxsackievirus B3 (CVB3) RNA replication in cell culture, with two amino acid substitutions in the viral RNA-dependent RNA polymerase 3D(pol) conferring partial resistance of CVB3 to these compounds (D. N. Harrison, E. V. Gazina, D. F. Purcell, D. A. Anderson, and S. Petrou, J. Virol. 82:1465-1473, 2008). Here we demonstrate that amiloride and EIPA inhibit the enzymatic activity of CVB3 3D(pol) in vitro, affecting both VPg uridylylation and RNA elongation. Examination of the mechanism of inhibition of 3D(pol) by amiloride showed that the compound acts as a competitive inhibitor, competing with incoming nucleoside triphosphates (NTPs) and Mg(2+). Docking analysis suggested a binding site for amiloride and EIPA in 3D(pol), located in close proximity to one of the Mg(2+) ions and overlapping the nucleotide binding site, thus explaining the observed competition. This is the first report of a molecular mechanism of action of nonnucleoside inhibitors against a picornaviral RNA-dependent RNA polymerase.  相似文献   

16.
Several variants of RB69 DNA polymerase (RB69 pol) with single-site replacements in the nascent base-pair binding pocket are less discriminating with respect to noncomplementary dNMP incorporation than the wild-type enzyme. To quantify the loss in base selectivity, we determined the transient-state kinetic parameters for incorporation of correct and all combinations of incorrect dNMPs by the exonuclease-deficient form of one of these RB69 pol variants, L561A, using rapid chemical quench assays. The L561A variant did not significantly alter the k(pol) and K(D) values for incorporation of correct dNMPs, but it showed increased incorporation efficiency (k(pol)/K(D)) for mispaired bases relative to the wild-type enzyme. The incorporation efficiency for mispaired bases by the L561A variant ranged from 1.5 x 10(-)(5) microM(-)(1) s(-)(1) for dCMP opposite templating C to 2 x 10(-)(3) microM(-)(1) s(-)(1) for dAMP opposite templating C. These k(pol)/K(D) values are 3-60-fold greater than those observed with the wild-type enzyme. The effect of the L561A replacement on the mutation frequency in vivo was determined by infecting Escherichia coli harboring a plasmid encoding the L561A variant of RB69 pol with T4 phage bearing a mutant rII locus, and the rates of reversions to rII(+) were scored. The exonuclease-proficient RB69 pol L561A displayed a weak mutator phenotype. In contrast, no progeny phage were produced after infection of E. coli, expressing an exonuclease-deficient RB69 pol L561A, with either mutant or wild-type T4 phage. This dominant-lethal phenotype was attributed to error catastrophe caused by the high rate of mutation expected from combining the pol L561A and exo(-) mutator activities.  相似文献   

17.
Positive-strand RNA viruses within the Picornaviridae family express an RNA-dependent RNA polymerase, 3D(pol), that is required for viral RNA replication. Structures of 3D(pol) from poliovirus, coxsackievirus, human rhinoviruses, and other picornaviruses reveal a putative template RNA entry channel on the surface of the enzyme fingers domain. Basic amino acids and tyrosine residues along this entry channel are predicted to form ionic and base stacking interactions with the viral RNA template as it enters the polymerase active site. We generated a series of alanine substitution mutations at these residues in the poliovirus polymerase and assayed their effects on template RNA binding, RNA synthesis initiation, rates of RNA elongation, elongation complex (EC) stability, and virus growth. The results show that basic residues K125, R128, and R188 are important for template RNA binding, while tyrosines Y118 and Y148 are required for efficient initiation of RNA synthesis and for EC stability. Alanine substitutions of tyrosines 118 and 148 at the tip of the 3D(pol) pinky finger drastically decreased the rate of initiation as well as EC stability, but without affecting template RNA binding or RNA elongation rates. Viable poliovirus was recovered from HeLa cells transfected with mutant RNAs; however, mutations that dramatically inhibited template RNA binding (K125A-K126A and R188A), RNA synthesis initiation (Y118A, Y148A), or EC stability (Y118A, Y148A) were not stably maintained in progeny virus. These data identify key residues within the template RNA entry channel and begin to define their distinct mechanistic roles within RNA ECs.  相似文献   

18.
Fiala KA  Suo Z 《Biochemistry》2004,43(7):2116-2125
The kinetic mechanism of DNA polymerization catalyzed by Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) is resolved by pre-steady-state kinetic analysis of single-nucleotide (dTTP) incorporation into a DNA 21/41-mer. Like replicative DNA polymerases, Dpo4 utilizes an "induced-fit" mechanism to select correct incoming nucleotides. The affinity of DNA and a matched incoming nucleotide for Dpo4 was measured to be 10.6 nM and 230 microM, respectively. Dpo4 binds DNA with an affinity similar to that of replicative polymerases due to the presence of an atypical little finger domain and a highly charged tether that links this novel domain to its small thumb domain. On the basis of the elemental effect between the incorporations of dTTP and its thio analogue S(p)-dTTPalphaS, the incorporation of a correct incoming nucleotide by Dpo4 was shown to be limited by the protein conformational change step preceding the chemistry step. In contrast, the chemistry step limited the incorporation of an incorrect nucleotide. The measured dissociation rates of the enzyme.DNA binary complex (0.02-0.07 s(-1)), the enzyme.DNA.dNTP ternary complex (0.41 s(-1)), and the ternary complex after the protein conformational change (0.004 s(-1)) are significantly different and support the existence of a bona fide protein conformational change step. The rate-limiting protein conformational change was further substantiated by the observation of different reaction amplitudes between pulse-quench and pulse-chase experiments. Additionally, the processivity of Dpo4 was calculated to be 16 at 37 degrees C from analysis of a processive polymerization experiment. The structural basis for both the protein conformational change and the low processivity of Dpo4 was discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号