首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The myofibrils in Drosophila have thick and thin types of myofilaments arranged in the hexagonal pattern described for Calliphora by Huxley and Hanson (15). The thick filaments, along most of their length in the A band, seem to be binary in structure, consisting of a dense cortex and a lighter medulla. In the H zone, however, they show more uniform density; lateral projections (bridges) also appear to be absent in this region. The M band has a varying number of granules (probably of glycogen) distributed between the myofilaments. The myofilaments on reaching the Z region appear to change their hexagonal arrangement and become connected to one another by Z filaments. The regular arrangement of the filaments found in most regions of the fibrils is not seen in the terminal sarcomeres of some flight muscles; the two types of filaments appear to be intermingled in an irregular pattern in these parts of the fibrils. The attachment of myofibrils to the cuticle through the epidermal cells is described.  相似文献   

2.
Muscles in the body wall, intestinal wall, and contractile hemolymphatic vessels (pseudohearts) of an oligochaete anelid (Eisenia foetida) were studied by electron microscopy. The muscle cells in all locations, except for the outer layer of the pseudohearts, are variants of obliquely striated muscle cells. Cells comprising the circular layer of the body wall possess single, peripherally located myofibrils that occupy most of the cytoplasm and surround other cytoplasmic organelles. The nuclei of the cells lie peripherally to the myofibrils. The sarcomeres consist of thin and thick myofilaments that are arranged in parallel arrays. In one plane of view, the filaments appear to be oriented obliquely to Z bands. Thin myofilaments measure 5–6 nm in diameter. Thick myofilaments are fusiform in shape and their width decreases from their centers (40–45 nm) to their tips (23–25 nm). The thin/thick filament ratio in the A bands is 10. The Z bands consist of Z bars alternating with tubules of the sarcoplasmic reticulum. Subsarcolemmal electron-dense plaques are found frequently. The cells forming the longitudinal layer of the body wall musculature are smaller than the cells in the circular layer and their thick filaments are smaller (31–33 nm centrally and 21–23 nm at the tips). Subsarcolemmal plaques are less numerous. The cells forming the heart wall inner layer, the large hemolymphatic vessels, and the intestinal wall are characterized by their large thick myofilaments (50–52 nm centrally and 27–28 nm at the tips) and abundance of mitochondria. The cells forming the outer muscular layer of the pseudohearts are smooth muscle cells. These cells are richer in thick filaments than vertebrate smooth muscle cells. They differ from obliquely striated muscle cells by possessing irregularly distributed electron-dense bodies for filament anchorage rather than sarcomeres and Z bands and by displaying tubules of smooth endoplasmic reticulum among the bundles of myofilaments. © 1995 Wiley-Liss, Inc.  相似文献   

3.
Trunk and limb muscles from fetal and newborn rabbits were investigated by means of light and electron microscopes. At 14 days gestation, the presumptive myoblasts migrate away from the myotome to form the anlage of the muscle of the trunk and limb. Among the population of undifferentiated cells, the myoblasts were recognized due to the presence of actin and myosin filaments. The aggregates of thin and thick filaments appear at the periphery of the cells. There is a great variety of filament assembly. The presence of Z band material appears to be essential for sarcomere formation. At 14 days of gestation the myotubes are more numerous in the limb than in the trunk. The presence of unmaturated fibrils with absence of the M line in the sarcomeres was observed. By day 18 of gestation the myotubes are wider and aggregate to form small bundles. The myofibrils were more numerous and the vesicles of the SR precursor, partly incrustated with ribosomes were dispersed among them. At day 22 of gestation the myotubes are thicker because of the myofibrils which are far more numberous. The sarcomeres were more fully developed, with the M line present. At day 28 of gestation and 3 days after delivery the already developed myofibers were present with a well organized SR system and fully developed sarcomeres.  相似文献   

4.
Fine structural characteristics of the cardiac muscle and its sarcomere organization in the black widow spider, Latrodectus mactans were examined using transmission electron microscopy. The arrangement of cardiac muscle fibers was quite similar to that of skeletal muscle fibers, but they branched off at the ends and formed multiple connections with adjacent cells. Each cell contained multiple myofibrils and an extensive dyadic sarcotubular system consisting of sarcoplasmic reticulum and T‐tubules. Thin and thick myofilaments were highly organized in regular repetitive arrays and formed contractile sarcomeres. Each repeating band unit of the sarcomere had three apparent striations, but the H‐zone and M‐lines were not prominent. Myofilaments were arranged into distinct sarcomeres defined by adjacent Z‐lines with relatively short lengths of 2.0 μm to 3.3 μm. Cross sections of the A‐band showed hexagon‐like arrangement of thick filaments, but the orbit of thin filaments around each thick filament was different from that seen in other vertebrates. Although each thick filament was surrounded by 12 thin filaments, the filament ratio of thin and thick myofilaments varied from 3:1 to 5:1 because thin filaments were shared by adjacent thick filaments.  相似文献   

5.
The differentiation of the indirect flight muscles was studied in the various pupal stages of Drosophila. Fibrillar material originates in the young basophilic myoblasts in the form of short myofilamants distributed irregularly near the cell membranes. The filaments later become grouped into bundles (fibrils). Certain "Z bodies" appear to be important during this process. The "Z bodies" may possibly be centriolar derivatives and are the precursors of the Z bands. The first formed fibrils (having about 30 thick myofilaments) are already divided into sarcomeres by Z bands. These sarcomeres, however, seem to be shorter than those of the adult fibrils.The H band differentiates in fibrils having about 40 thick myofilaments; the fibrils constrict in the middle of each sarcomere during this process. The individual myofibrils increase from about 0.3 µ to 1.5 µ in diameter during development, apparently by addition of new filaments on the periphery of the fibrils. The ribosomes seem to be the only cytoplasmic inclusions which are closely associated with these growing myofibrils. Disintegration of the plasma membranes limiting individual myoblasts was commonly seen during development of flight muscles, supporting the view that the multinuclear condition of the fibers of these muscles is due to fusion of myoblasts.  相似文献   

6.
Cells in culture exposed to cytochalasin D (CD) rapidly undergo a long-sustained tonic contraction. Coincident with this contracture the thin microfilaments of the cortex become compacted into feltlike masses. The ravelled filaments of these masses remain actinlike and bind heavy meromyosin; they are not disrupted or disaggregated, but rather, appear to represent a contracted state of the microfilament apparatus of the cell cortex. On continued exposure to CD, ‘myoid’ bundles, containing thick, dense filaments, and larger fusiform or ribbonlike, putatively myosinoid, aggregates may appear. These appearances are interpreted as consequences of a state of hypercontraction without relaxation induced by CD. They do not occur in CD-treated cells prevented from contracting by inhibitors of energy metabolism, and are readily reversible on withdrawal of CD. Extensive ordered arrays of thin microfilaments develop in cells which are reextending during early recovery.  相似文献   

7.
At muscle-tendon junctions of red and of white axial muscle fibres of carp, new sarcomeres are found adjacent to existing sarcomeres along the bundles of actin filaments that connect the myofibrils with the junctional sarcolemma. As the filament bundles that transmit force to the junction originate proximal to new sarcomeres, they probably relieve these new sarcomeres from premature loading. In red fibres, these filament bundles are long (up to 20 m) and dense, permitting light-microscopical immunohistochemistry (double reactions: anti-titin or anti--actinin and phalloidin). New sarcomeres have clear I bands; their A band lengths are similar to those of older sarcomeres and the thick filaments lie in register. T tubules are found at the distal side of new sarcomeres but terminal Z lines are absent. The late addition of -actinin suggests that -actinin mainly has a stabilizing role in sarcomere formation. The presence of titin in the terminal fibre protrusions is in agreement with its supposed role in sarcomere formation, viz. the integration of thin and thick filaments. The absence of a terminal Z line from sarcomeres with well-registered A bands suggests that this structure is not essential for the anchorage of connective (titin) filaments.  相似文献   

8.
The musculature of the telson of Limulus polyphemus L. consists of three dorsal muscles: the medial and lateral telson levators and the telson abductor, and one large ventral muscle; the telson depressor, which has three major divisions: the dorsal, medioventral, and lateroventral heads. The telson muscles are composed of one type of striated muscle fiber, which has irregularly shaped myofibrils. The sarcomeres are long, with discrete A and I and discontinuous Z bands. M lines are not present. H zones can be identified easily, only in thick (1.0 µm) longitudinal sections or thin cross sections. In lengthened fibers, the Z bands are irregular and the A bands appear very long due to misalignment of constituent thick filaments. As the sarcomeres shorten, the Z lines straighten somewhat and the thick filaments become more aligned within the A band, leading to apparent decrease in A band length. Further A band shortening, seen at sarcomere lengths below 7.4 µm may be a function of conformational changes of the thick filaments, possibly brought about by alterations in the ordering of their paramyosin cores.  相似文献   

9.
In order to evaluate the effects of specific mutations on sarcomere assembly and function in vivo, we describe the course of normal development of Drosophila indirect flight muscle (IFM) in staged pupae using electron microscopy. We find that no contractile assemblies remain in larval muscle remnants invaded by imaginal myoblasts, establishing that myofibrils in IFM assemble de novo. Stress-fiber-like structures or other template structures are not prominent before or during sarcomere assembly. By 42 hr pupation (eclosion 112 hr), thick and thin filaments have appeared simultaneously in slender, interdigitated arrays between regularly spaced Z-bodies. Each tiny, uniformly striated myofibril forms within a "sleeve" of microtubules, and both microtubules and myofibrils are attached to the cell membrane at each end of the fiber from the initial stages of assembly. Later in pupation, the microtubule "sleeves" disassemble. Sarcomere number appears to remain constant. We saw no evidence that terminal sarcomeres are sites for addition of new sarcomeres or that Z-lines split transversely, producing new, very short sarcomeres. Rather, initial thick and thin filaments and sarcomeres are much shorter than adult length. Sarcomere length increases smoothly and coordinately from 1.7 to 3.2 μm, reflecting increase in filament lengths and indicating that myosin and actin molecules must be incorporated into filaments after sarcomere formation. Myofilaments are not seen scattered in the cytoplasm at any time, nor do we detect filaments that could be in the process of being "trolleyed" along myofibrils into positions of lateral register. Myofibril diameter increases uniformly from 4-thick filaments to 36-thick filaments across, by peripheral addition of myofilaments. At each successive stage, all sarcomeres in a fiber attained similar length and diameter. Initial thick filaments are solid but within several hours these and all subsequently assembled thick filaments appear hollow. Initial Z-bodies do not show any internal lattice and are more irregularly shaped than adult Z-discs.  相似文献   

10.
The formation of myofibrils in the developing leg muscle of the 12-day chick embryo was studied by electron microscopy. Myofilaments of two varieties, thick (160–170 A in diameter) and thin (60–70 A in diameter), which have been designated myosin and actin filaments, respectively, on the basis of their similarity to natural and synthetic myosin and actin filaments, appear in the cytoplasm of developing muscle cells. There is a greater than 7:1 ratio of thin to thick filaments in these young myofibers. The free myofilaments become aligned in the long axis of the cells, predominantly in subsarcolemmal locations, and aggregate into hexagonally packed arrays of filaments. The presence of Z band material or M band cross-bridges do not appear to be essential for the formation or spacing of these aggregates of filaments. Formation of the Z band lattices occurs coincidentally with the back-to-back apposition of thin filaments. An hypothesis concerning myofibril growth, based on the self-assembly characteristics of the filaments, is presented.  相似文献   

11.
Chicken skeletal muscle taken from embryos in ovo was examined by thin-section electron microscopy. Measurements of filament diameters reveal three nonoverlapping groups of filaments: thin (actin myofibrillar) filaments with mean diameters of 5.3 +/- 0.6 nm (S.D.), thick (myosin myofibrillar) filaments with mean diameters of 15 +/- 1.4 nm, and intermediate filaments with mean diameters of 9.3 +/- 0.9 nm. During muscle development these diameters do not change. By counting the number of filaments observed in the sarcoplasm at different stages, we find that the spatial density of intermediate filaments decreases during avian myogenesis in ovo, from 91 intermediate filaments/micron 2 at 6 days to 43 intermediate filaments/micron 2 at 17 days in ovo. Initially randomly arranged, some intermediate filaments become associated with Z discs, sarcoplasmic reticulum, nuclear membrane, and the sarcolemma between 6 and 10 days in ovo. These associated intermediate filaments course both parallel and transverse to myofibrils, forming lateral connections between myofibrillar Z discs and longitudinal connections from Z disc to Z disc within myofibrils. Intermediate filaments also appear to connect Z discs with the nuclear membrane. The intermediate filament associations persist through day 17 of development, after which the presence of cytoskeletal filaments is obscured by the densely packed myofibrils and membranes. Intermediate filament distribution becomes anisotropic during development. A greater proportion of intermediate filaments in the immediate perimyofibrillar area are oriented parallel to myofibrils than in other areas, so that the majority of the intermediate filaments nearest the myofibrils course parallel to them. The longitudinal intramyofibrillar intermediate filaments persist throughout development, as shown by their existence in KI-extracted adult myofibrils.  相似文献   

12.
Summary Myofilament assembly occurs in a definite sequence. Myofibrils first appear within embryonic myotomes as non-striated, linear arrangements of parallel thick and thin myofilaments (crude sarcomeres) with periodic dense cross bands (Z lines). In the center of sarcomeres within these early myofibrils, faint M lines are often detected. In older embryos, after typical cross striations became apparent, the M lines can be detected bisecting each A band.Research supported by The Muscular Dystrophy Association, U.S.A.  相似文献   

13.
Muscle cell differentiation in the tail of the ascidian, Perophora orientalis, from early tail-bud embryos to swimming larvae, were studied cytologically and ultrastructurally. Myogenic cells did not form multinucleated myotubes, but remained as mononucleated cells. Nucleolar component increased prior to a marked increase in cytoplasmic RNA. Cytoplasmic RNA appeared first around nucleus and later concentrated in the peripheral cytoplasm. The fine filaments measuring 20–30 Å in their thin parts and 30–45 Å in their thick parts in diameter appeared initially, forming loose networks, in the peripheral cytoplasm where ribosome clusters had been concentrated. These filaments were tightly attached by particles of various size and density. These filaments tended to be arranged in parallel as they increased in their size. They seemed to be precursors of both actin and myosin filaments of formed myofibrils. Z band precursors were found as dense patches in association with loosely arranged myofilaments and consisted of particulate and filamentous materials. The myofibrils seemed to grow further by organizing free filaments into bundles and further by aligning bundles of myofilaments at both ends.  相似文献   

14.
An investigation of developing skeletal muscle necessitatesthe study of three categories; the derivation of muscle cellsor fibers, myofilament synthesis and interactions, assemblyof myofilaments into functional sarcomeres of striated myofibrils.With few exceptions, skeletal muscle cells are of mesodermalorigin, and consist of rounded mononucleated cells which elongateand fuse with one another to become myotubes. Within the sarcoplasm,myofibrillar proteins are synthesized and grouped into interactingthick and thin filaments. Crude, non-striated myofibrils resultfrom linear arrangements of thick and thin filaments which arehorizontally aligned by the invaginating sarcotubular system.After Z-lines form, providing attachment sites for thin filaments,a typical banding pattern follows. The newly formed Z-linespull apart, followed by the attached thin filaments, and repeating"relaxed" sarcomeres are the resulting striated myofibrillarpattern.  相似文献   

15.
THE ULTRASTRUCTURE OF STRIATED MUSCLE AT VARIOUS SARCOMERE LENGTHS   总被引:2,自引:2,他引:0       下载免费PDF全文
1. Rest and equilibrium length muscle sarcomeres are composed of thin filaments (actin) which traverse the sarcomeres from the Z membranes up to the H band; at this level the filaments are considerably thicker and less numerous. 2. Shortening of muscle is associated with a transformation of thin into thick filaments in the A band. 3. These observations are discussed in terms of interaction of actin and myosin to form a supercoiled structure as the basis of contraction.  相似文献   

16.
The length and spatial organization of thin filaments in skeletal muscle sarcomeres are precisely maintained and are essential for efficient muscle contraction. While the major structural components of skeletal muscle sarcomeres have been well characterized, the mechanisms that regulate thin filament length and spatial organization are not well understood. Tropomodulin is a new, 40.6-kD tropomyosin-binding protein from the human erythrocyte membrane skeleton that binds to one end of erythrocyte tropomyosin and blocks head-to-tail association of tropomyosin molecules along actin filaments. Here we show that rat psoas skeletal muscle contains tropomodulin based on immunoreactivity, identical apparent mobility on SDS gels, and ability to bind muscle tropomyosin. Results from immunofluorescence labeling of isolated myofibrils at resting and stretched lengths using anti-erythrocyte tropomodulin antibodies indicate that tropomodulin is localized at or near the free (pointed) ends of the thin filaments; this localization is not dependent on the presence of myosin thick filaments. Immunoblotting of supernatants and pellets obtained after extraction of myosin from myofibrils also indicates that tropomodulin remains associated with the thin filaments. 1.2-1.6 copies of muscle tropomodulin are present per thin filament in myofibrils, supporting the possibility that one or two tropomodulin molecules may be associated with the two terminal tropomyosin molecules at the pointed end of each thin filament. Although a number of proteins are associated with the barbed ends of the thin filaments at the Z disc, tropomodulin is the first protein to be specifically located at or near the pointed ends of the thin filaments. We propose that tropomodulin may cap the tropomyosin polymers at the pointed end of the thin filament and play a role in regulating thin filament length.  相似文献   

17.
The lengths of the actin (thin) filaments in sarcomeres directly influence the physiological properties of striated muscle. Although electron microscopy techniques provide the highest precision and accuracy for measuring thin filament lengths, significant obstacles limit their widespread use. Here, we describe distributed deconvolution, a fluorescence-based method that determines the location of specific thin filament components such as tropomodulin (Tmod) or probes such as phallacidin (a phalloidin derivative). Using Tmod and phallacidin fluorescence, we were able to determine the thin filament lengths of isolated chicken pectoralis major myofibrils with an accuracy and precision comparable to electron microscopy. Additionally, phallacidin fluorescence intensity at the Z line provided information about the width of Z lines. Furthermore, we detected significant variations in thin filaments lengths among individual myofibrils from chicken posterior latissimus dorsai and embryonic chick cardiac myocytes, suggesting that a ruler molecule (e.g., nebulin) does not strictly determine thin filament lengths in these muscles. This versatile method is applicable to myofibrils in living cells that exhibit significant variation in sarcomere lengths, and only requires a fluorescence microscope and a CCD camera.  相似文献   

18.
Obscurin is a recently identified giant multidomain muscle protein whose functions remain poorly understood. The goal of this study was to investigate the process of assembly of obscurin into nascent sarcomeres during the transition from non-striated myofibril precursors to striated structure of differentiating myofibrils in cell cultures of neonatal rat cardiac myocytes. Double immunofluorescent labeling and high resolution confocal microscopy demonstrated intense incorporation of obscurin in the areas of transition from non-striated to striated regions on the tips of developing myofibrils and at the sites of lateral fusion of nascent sarcomere bundles. We found that obscurin rapidly and precisely accumulated in the middle of the A-band regions of the terminal newly assembled half-sarcomeres in the zones of transition from the continuous, non-striated pattern of sarcomeric α-actinin distribution to cross-striated structure of laterally expanding nascent Z-discs. The striated pattern of obscurin typically ended at these points. This occurred before the assembly of morphologically differentiated terminal Z-discs of the assembling sarcomeres on the tips of growing myofibrils. The presence of obscurin in the areas of the terminal Z-discs of each new sarcomere was detected at the same time or shortly after complete assembly of sarcomeric structure. Many non-striated fibers with very low concentration of obscurin were already immunopositive for sarcomeric actin and myosin. This suggests that obscurin may serve for organization and alignment of myofilaments into the striated pattern. The comparison of obscurin and titin localization in these areas showed that obscurin assembly into the A-bands occurred soon after or concomitantly with incorporation of titin. Electron microscopy of growing myofibrils demonstrated intense formation and integration of myosin filaments into the “open” half-assembled sarcomeres in the areas of the terminal Z–I structures and at the lateral surfaces of newly formed, terminally located nascent sarcomeres. This process progressed before the assembly of the second-formed, terminal Z-discs of new sarcomeres and before the development of ultrastructurally detectable mature M-lines that define the completion of myofibril assembly, which supports the data of immunocytochemical study. Abundant non-aligned sarcomeres in immature myofibrils located on the growing tips were spatially separated and underwent the transition to the registered, aligned pattern. The sarcoplasmic reticulum, the organelle known to interact with obscurin, assembled around each new sarcomere. These results suggest that obscurin is directly involved in the proper positioning and alignment of myofilaments within nascent sarcomeres and in the establishment of the registered pattern of newly assembled myofibrils and the sarcoplasmic reticulum at advanced stages of myofibrillogenesis. This paper is dedicated to the memory of Professor Pavel P. Rumyantsev (1927–1988), a pioneer in studies of cardiac muscle differentiation, who is a lasting inspiration to all who worked with him.  相似文献   

19.
Summary Thin methacrylate sections of developing tails of Amblystoma opacum larvae were examined in the electron microscope and a series of stages in the differentiation of the myotome musculature was reconstructed from electron micrographs and earlier light microscopic studies of living muscle. The earliest muscle cell precursor that can be clearly identified is a round or oval cell with abundant cytoplasm containing scattered myofilaments and free ribonucleoprotein granules, but little endoplasmic reticulum. These cells sometimes form a syncytium and they may also be fused with adjacent formed muscle fibers by lateral processes. Nuclei are large and nucleoli are prominent. This cell, called a myoblast here, is distinctly different in its appearance from the adjacent mesenchymal cells which have abundant granular endoplasmic reticulum. The earliest myofilaments are of both the thick and thin varieties and are distributed in a disorganized fashion in the cytoplasm. These filaments are similar to the actin and myosin filaments described by Huxley and they are present in the cytoplasm at an earlier stage of differentiation than heretofore suspected from light microscopy studies. The first myofibrils are a heterogeneous combination of thick and thin filaments and dense Z bands and are not homogeneous as so many light microscopists have contended. As development progresses, cross striations become more orderly and definitive sarcomeres are formed. Thereafter, new myofilaments and Z bands seem to be added to the lateral surfaces and distal ends of existing myofibrils.Free ribonucleoprotein granules are a prominent part of the myoblast cytoplasm and are found in close association with the differentiating myofilaments in all stages of development. In early muscle fibers and some of the formed fibers, similar granules are often concentrated in the I bands. A theory of myofilament differentiation based on current concepts of the role of ribonucleoprotein in protein synthesis is presented in the discussion. Stages in myofibril formation and possible relationships of the filaments in developing muscle cells to other types of cytoplasmic filaments are also discussed.Supported by grant C-5196 from the United States Public Health Service.  相似文献   

20.
Rui Y  Bai J  Perrimon N 《PLoS genetics》2010,6(11):e1001208
The stereotyped striation of myofibrils is a conserved feature of muscle organization that is critical to its function. Although most components that constitute the basic myofibrils are well-characterized biochemically and are conserved across the animal kingdom, the mechanisms leading to the precise assembly of sarcomeres, the basic units of myofibrils, are poorly understood. To gain insights into this process, we investigated the functional relationships of sarcomeric protein complexes. Specifically, we systematically analyzed, using either RNAi in primary muscle cells or available genetic mutations, the organization of myofibrils in Drosophila muscles that lack one or more sarcomeric proteins. Our study reveals that the thin and thick filaments are mutually dependent on each other for striation. Further, the tension sensor complex comprised of zipper/Zasp/α-actinin is involved in stabilizing the sarcomere but not in its initial formation. Finally, integrins appear essential for the interdigitation of thin and thick filaments that occurs prior to striation. Thus, sarcomere formation occurs by the coordinated assembly of multiple latent protein complexes, as opposed to sequential assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号