首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ubiquitous isozyme of phosphoglycerate kinase, PGK-1, and the testis-specific isozyme, PGK-2, have been localized to specific cells of the testis by indirect immunofluorescence on Bouin's fixed testis sections. The earliest cell of the spermatogenic series in which PGK-2 is detectable by immunofluorescence is the Stage 12 spermatid. The intensity of fluorescence increases as the spermatids progress to later stages and is strong in both released spermatids and their residual bodies. PGK-2 is not detectable in premeiotic germinal cells or somatic cells of the testis. Specific fluorescence for PGK-1 is localized to the somatic cells of the testis: the interstitial and Sertoli cells.  相似文献   

2.
3.
Monoclonal antibodies against mouse testis-specific phosphoglycerate kinase (PGK-2) were produced in order to determine immunohistochemically the onset of PGK-2 synthesis in the germinal epithelium of the mouse. PGK-2 was detected in testis sections in spermatids as early as stage 12 and in spermatozoa, but not in earlier stages of spermatogenesis nor in any somatic cells of the testis. During ontogeny, PGK-2 appears within the testis at day 30 post-partum, concomitant with spermatids entering the maturation phase. All three allelic isozymes PGK-2A, -2B, and -2C were detected equally by the monoclonal antibody in testis sections of several inbred mouse strains, each of which expresses a specific PGK-2 variant. Moreover, the monoclonal antibody against mouse PGK-2 reacted with heterologous sperm-specific PGK from rat, rabbit, and bull and, therefore, may serve as a useful immunochemical marker for mammalian spermatogenesis.  相似文献   

4.
The PGK-B isozyme, currently known as PGK-2 in the mouse nomenclature, is the predominant PGK isozyme in mammalian sperm. In many species it is detectable only in sperm, in spermatogenic testes and in epididymides containing sperm. In this paper, we provide evidence that some kangaroo species express low PGK-B activity in somatic tissues, in addition to high activity in testes. Three kangaroo species, M. rufogriseus, M. robustus and M. giganteus, exhibit polymorphism of PGK-B. Breeding data support the hypothesis of autosomal co-dominant inheritance, as is the case in mice. Population data for the three polymorphisms are discussed. PGK-B is not detectable in somatic tissues or spermatogenic testis extracts of monotreme mammals, birds or lizards; it is probably restricted to therian mammals.  相似文献   

5.
6.
The intracellular location of the mRNA for the testis-specific isozyme of phosphoglycerate kinase-2 (PGK-2) has been determined for two spermatogenic cell types. The mRNA activity for PGK-2 from the polysomal and nonpolysomal fractions of pachytene primary spermatocytes or round spermatids has been assayed by cell-free translation with the polypeptide products monitored by immunoprecipitation, followed by one-dimensional or two-dimensional electrophoresis and fluorography. The results reveal that the majority of PGK-2 mRNA activity of round spermatids was present in the polysomal fraction while the relatively less abundant PGK-2 mRNA of pachytene primary spermatocytes was present in the nonpolysomal fraction. No PGK-2 mRNA activity was observed in the cytoplasmic RNA from primitive type A spermatogonia or prepubertal Sertoli cells. These data indicate that mature PGK-2 mRNA first appears in the cytoplasm of spermatogenic cells during the prophase of meiosis and increases in amount after meiosis. Although mature PGK-2 mRNA is present in meiotic cells it is not actively translated until after meiosis has been completed. Thus, mRNA accumulation and translational mechanisms are involved in the control of phosphoglycerate kinase-2 synthesis during spermatogenesis.  相似文献   

7.
Summary The mammalian genome contains two functional loci for the production of phosphoglycerate kinase, PGK-1, an X-linked gene expressed in all somatic cells, and PGK-2, an autosomal intron-less gene expressed exclusively in late spermatogenesis. A nucleotide substitution from guanine to thymine was recently found at position 473 of PGK-1 mRNA in PGK Shizuoka. The mutation was not found in the PGK-2 gene and might have occurred after separation of PGK-1 and PGK-2.  相似文献   

8.
The hypothesis that PGK-B, like LDH-C4, is restricted to spermatogenic cells was explored by examining isozyme patterns in testes from mice depleted of germinal cells by surgical cryptorchism. In experimentally cryptorchized C57BL/10Sn males, decline in PGK-B activity paralleled decline in LDH-C4 activity and was correlated with degeneration of spermatocytes, spermatids, and spermatozoa. Trace amounts of these sperm isozymes found in cryptorchid testes after the depletion of maturing germ cells probably came from degenerated spermatids and spermatocytes and not from somatic testicular cells.  相似文献   

9.
Sertoli cells play a major role in the regulation of spermatogenic cell energy metabolism and differentiation. This study demonstrates that Sertoli cells are essential for the maintenance of spermatogenic cell glutathione (GSH), an important intracellular reductant and detoxicant. Primary spermatocytes and round spermatids isolated from Xenopus laevis contained 1.5 +/- 0.1 mM GSH, but sperm lacked detectable GSH. During a 5-day culture period, isolated spermatocytes and spermatids lost 80% of the initial GSH (t 1/2 = 55 h). The levels of GSH were unaffected by L-buthionine-SR-sulfoximine (BSO), a selective inhibitor of GSH synthesis. Cultures of testicular lobules and spermatocysts (composed of germ cells and Sertoli cells) depleted of interstitial tissue lost only 30% of their initial GSH in 4.5 days; the GSH levels decreased during treatment with BSO. Spermatogenic cells in cultured testes maintained their GSH levels for 7 days by a BSO-sensitive mechanism. These results demonstrate that the intracellular GSH levels of spermatogenic cells are dependent upon germ cell-somatic cell interactions. Spermatogenic cells were shown to possess gamma-glutamyl transpeptidase, glutathione synthetase, 5-oxoprolinase, and gamma-glutamylcysteine synthetase activities. [35S] Cysteine incorporation and distribution as analyzed by high performance liquid chromatography (HPLC) showed that isolated spermatogenic cells are capable of GSH synthesis. The rate of GSH synthesis, however, was insufficient to compensate for GSH turnover. These results demonstrate that production of spermatogenic cell GSH is dependent upon Sertoli cells. To our knowledge, this is the first evidence that interactions between different cell types may be of significance in GSH metabolism.  相似文献   

10.
11.
The presence and biosynthesis of the testis-specific isozyme of lactate dehydrogenase (LDH-X) in cells at various stages of spermatogenesis have been examined. Enrichment of testicular cells in various stages of spermatogenesis has been achieved by two methods: (1) cell separation by velocity sedimentation in the Elutriator rotor and (2) γ irradiation of testes to eliminate specific classes of testicular cells. Separation of cells from immature mice indicated that cells prior to the midpachytene stage contain no LDH-X. Measurement of LDH-X levels in cells separated from adult mice and in testicular homogenates prepared at various times after irradiation indicated that the highest level of LDH-X per cell (normalized for DNA content) was in spermatids. Synthesis of LDH-X was determined, after in vivo injection of [3H]valine, by measurement of the radioactivity in LDH-X precipitated with specific antiserum. After irradiation, the rate of LDH-X synthesis remained constant, despite the loss of early primary spermatocytes. In separated cells, the rate of LDH-X synthesis was highest in late pachytene spermatocytes, lower in round spermatids, and even lower, but still significant, in elongated spermatids. Therefore, the synthesis of LDH-X begins at a specific point during spermatogenesis, the midpachytene stage of spermatocyte development, and continues throughout spermatid differentiation.  相似文献   

12.
13.
One hundred cockerels of the Hacco strain were reared in deep litter. At 5 weeks of age the left testes of 30 cockerels and right testes of another 30 cockerels were surgically removed. The remaining cockerels were sham operated. At 10, 15, 20 and 25 weeks of age equal numbers from each group were killed. The rate of testis growth, the spermatid/spermatozoa reserve for each genital tract, and the relative spermatogenic activity (i.e., spermatid/sperm per g of testicular tissue) were determined for the left and right testes at the different ages.At 10 weeks of age only spermatids were found in all the testes, with concomitant very low relative spermatogenic activities. The weights of the testes increased with age and compensatory hypertrophy occurred in the testes of the hemicastrates from 15 weeks of age. The mean of the sperm reserve of the left (7.391 × 109 sperm) and right (8.66 × 109 sperm) genital tracts of hemicastrates contained significantly more (P < 0.05) sperm than the sum of the means of the sperm reserves in the left and right genital tracts (5.19 × 109sperm) of the intact cockerels at 25 weeks of age.The relative spermatogenic activities varied with age but the pattern was similar for all cockerels, with the activities of the testes of the hemicastrates being significantly higher (P < 0.5). In all cases the values for the right testes were higher than those for the corresponding left testes.At 15 weeks of age both spermatids and spermatozoa were found in 71.4% and 100% of the right and left testes of the hemicastrates, respectively, and in 25% of the left testes of the intact cockerels. Only spermatids were found in the right testes of the intact cockerels.Hemicastration caused the right testes of the hemicastrates to produce sperm earlier than those of intact cockerels. The left testes in all cases produced sperm earlier than the corresponding right testes. Hemicastration enhanced sperm numbers per g testes (i.e., relative spermatogenic activity).  相似文献   

14.
The specific activity of 2,3-dehydrodolichyl diphosphate synthase in homogenates of protease-treated seminiferous tubules, enriched spermatogenic cells, and Sertoli cells changed as a function of the age of prepuberal rats. The highest enzymatic activity occurred in each case in 23-day-old rats. Homogenates of pachytene spermatocytes, spermatids, or Sertoli cells had higher synthase activity than a whole testicular homogenate prepared by protease treatment of tubules. Enzymatic activity in pachytene spermatocytes expressed per mg of protein was about 1.7-fold higher than in spermatids, 5.3-fold higher than in spermatogonia, and about 8.3-fold higher than in spermatozoa. Therefore, the increase in spermatogenic cell synthase before day 23 can be accounted for by the appearance of the pachytene spermatocytes. Enzymatic activity decreased remarkably after the differentiation of spermatids into spermatozoa. Synthase activity in enriched Sertoli cell preparations was 1.5-2.3-fold higher than in spermatogenic cell preparations between days 15 and 30. Therefore, both spermatogenic cells and Sertoli cells contribute to changes in the enzymatic activity in seminiferous tubules during development. These changes may be important in regulating the availability of dolichyl phosphate for glycoprotein synthesis during early stages of differentiation.  相似文献   

15.
16.
High levels of plasma estrogens constitute an endocrine peculiarity of the adult stallion. This is mostly due to testicular cytochrome p450 aromatase, the only irreversible enzyme responsible for the bioconversion of androgens into estrogens. To identify more precisely the testicular aromatase synthesis sites in the stallion, testes from nine horses (2-5 years) were obtained during winter or spring. Paraplast-embedded sections were processed using rabbit anti-equine aromatase, followed by biotinylated goat anti-rabbit antibodies, and amplified with a streptavidin-peroxidase complex. Immunoreactivity was detected with diaminobenzidine. Immunofluorescence detection, using fluoroisothiocyanate-conjugated goat anti-rabbit antibodies, was also applied. Specific aromatase immunoreactivity was observed intensely in Leydig cells but also for the first time, to a lesser extent, in the cytoplasm surrounding germ cells at the junction with Sertoli cells. Interestingly, the immunoreactivity in Sertoli cells appears to vary with the spermatogenic stages in the basal compartment (with spermatogonia) as well as in the adluminal one (with spermatids). Relative staining intensity in Leydig and Sertoli cells and testicular microsomal aromatase activity increased with age. The present study in stallions indicates that in addition to Leydig cells, Sertoli cells also appear to participate in estrogen synthesis, and this could play a paracrine role in the regulation of spermatogenesis.  相似文献   

17.
18.
A method is described for the preparation of highly purified fractions (greater than 80% pure) of immature spermatids (round, steps 1--8) from rat testes by centrifugal elutriation in sufficient yields for biochemical studies when four rat testes are used. Electron microscopy established the identity of the cells and demonstrated that the cell membrane is intact. Some cells develop nuclear and cytoplasmic vacuoles during the 2 h required for preparation. Immature spermatids prepared by this method use glucose with an increase in oxygen consumption, lactate production, and protein synthesis over control levels (no glucose). The testicular cell suspension from which spermatids are separated, like whole testis and spermatids themselves, show higher incorporation of amino acids into TCA-precipitable material at 34 degrees C than at 38 degrees C and in the presence of glucose. A subcellular system prepared from immature spermatids with excess ATP shows greater incorporation of amino acids into TCA-precipitable material at 34 degrees C than at 38 degrees C. This difference does not result from increased breakdown of protein. It is concluded that body temperature (38 degrees C) inhibits some aspect(s) of protein synthesis in addition to previously reported effects on amino acid transport and production of ATP (Means and Hall. 1969. Endocrinology. 84:285--297.).  相似文献   

19.
Testes of vitamin A-deficient Wistar rats before and after vitamin A replacement, of rats irradiated in utero, and of control rats were investigated by in vivo 31P magnetic resonance (MR) spectroscopy. The testicular phosphomonoester/ATP (PM/ATP) ratio ranged from 0.79 +/- 0.05 for testes that contained only interstitial tissue and Sertoli cells to 1.64 +/- 0.04 for testes in which spermatocytes were the most advanced cell types present. When new generations of spermatids entered the seminiferous epithelium, this ratio decreased. The testicular phosphodiester/ATP (PD/ATP) ratio amounted to 0.16 +/- 0.06 for testes in which Sertoli cells, spermatogonia, or spermatocytes were the most advanced cell type present. When new generations of spermatids entered the seminiferous epithelium, the PD/ATP ratio rapidly increased and finally reached a value of 0.71 +/- 0.06 for fully developed testes. Taken together, specific patterns of the PM/ATP ratio, the PD/ATP ratio, and pH were obtained that were correlated to the presence of spermatogonia, spermatocytes, round spermatids, and elongated spermatids or to the absence of spermatogenic cells. Hence, a good impression of the status of the seminiferous epithelium in the rat can be obtained by in vivo 31P MR spectroscopy.  相似文献   

20.
The present study has used methoxyacetic acid (MAA)-induced depletion of specific germ cell types in the rat and in situ hybridization with nonradioactive riboprobes to determine the stages of the spermatogenic cycle at which there is expression of the mRNA for the basic chromosomal protein transition protein 2 (TP2). On Northern blots, an abundant mRNA was detectable in samples from control adult rats, but the amount of message was markedly reduced when RNA was extracted from the testes of rats treated 14 and 21 days previously with methoxyacetic acid. These testes were depleted specifically of step 7-12 spermatids, suggesting that these cells contain TP2 mRNA. When tissue sections were subjected to in situ hybridization, the TP2 mRNA was localized at the cellular and subcellular levels. Messenger RNA for TP2 was first detectable in spermatids at step 7. In these spermatids, at high magnification, in addition to some positive reaction in the cytoplasm, intense staining was located to a perinuclear structure consistent with localization of mRNA within the chromatoid body. The amount of TP2 mRNA in the cytoplasm increased as remodelling of the early spermatid nucleus progressed and was highest in step 10 and 11 spermatids at stages X and XI. Thereafter, the mRNA decreased until it was undetectable in step 14 spermatids at stage XIV. The localization of TP2 mRNA to the chromatoid body of step 7 spermatids would be consistent with this organelle being a storage site for long-lived mRNAs utilized later in spermiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号