首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
B May  P M Grewe 《Génome》1993,36(4):725-730
The effects of gamma irradiation on nuclear DNA and mitochondrial DNA (mtDNA) were examined by exposing unfertilized salmonid eggs to a 60Co source. Brown trout (Salmo trutta) eggs exposed to 60Co were fertilized with sperm from brook trout (Salvelinus fontinalis), and brook trout eggs exposed to 60Co were fertilized with sperm from splake males (S. namaycush x S. fontinalis). In both types of matings only paternal allozymes were found in embryos, confirming the inactivation of the nuclear genome in the eggs. Analysis of mtDNA in these same embryos showed exclusively maternal mtDNA. The absence of paternal mtDNA among any of the embryos supports the predominance of maternal inheritance of mtDNA in vertebrates and suggests that mtDNAs are more resistant to cobalt inactivation than nuclear DNAs based on structure or numerical superiority to maternal nuclear DNA. Inactivation of maternal nuclear DNA, fertilization, and an induced return to the diploid state provide a means for producing an inbred organism having the nuclear genome of the paternal parent (androgenetic) and the mitochondrial genome of the female.  相似文献   

3.
Seed development in flowering plants is initiated after a double fertilization event with two sperm cells fertilizing two female gametes, the egg cell and the central cell, leading to the formation of embryo and endosperm, respectively. In most species the endosperm is a polyploid tissue inheriting two maternal genomes and one paternal genome. As a consequence of this particular genomic configuration the endosperm is a dosage sensitive tissue, and changes in the ratio of maternal to paternal contributions strongly impact on endosperm development. The FERTILIZATION INDEPENDENT SEED (FIS) Polycomb Repressive Complex 2 (PRC2) is essential for endosperm development; however, the underlying forces that led to the evolution of the FIS-PRC2 remained unknown. Here, we show that the functional requirement of the FIS-PRC2 can be bypassed by increasing the ratio of maternal to paternal genomes in the endosperm, suggesting that the main functional requirement of the FIS-PRC2 is to balance parental genome contributions and to reduce genetic conflict. We furthermore reveal that the AGAMOUS LIKE (AGL) gene AGL62 acts as a dosage-sensitive seed size regulator and that reduced expression of AGL62 might be responsible for reduced size of seeds with increased maternal genome dosage.  相似文献   

4.
5.
6.
7.
8.
9.
We have recently shown that the exclusion process causing the replacement of DNA ligases II by DNA ligase I in amphibian eggs after fertilization does not occur in the case of Xenopus laevis [Hardy, S., Aoufouchi, S., Thiebaud, P., and Prigent, C., (1991) Nucleic Acids Res. 19, 701-705]. Since this result is in contradiction with the situation reported in axolotl and Pleurodeles we decided to reinvestigate such results in both species. Three different approaches have been used: (1) the substrate specificity of DNA ligase I; (2) the DNA ligase-AMP adduct reaction and (3) the immunological detection using antibodies raised against the X.laevis DNA ligase I. Our results clearly demonstrate that DNA ligase I activity is associated with a single polypeptide which is present in oocyte, unfertilized egg and embryo of both amphibians. Therefore, the hypothesis of a change in DNA ligase forms, resulting from an expression of the DNA ligase I gene in axolotl and Pleurodeles early development must be rejected. We also show that, in contradiction with published data, the unfertilized sea urchin egg contains a DNA ligase activity able to join blunt ended DNA molecules.  相似文献   

10.
Genetic tests for parental effects were performed on 24 temperature-sensitive embryonic-lethal mutants of the nematode Caenorhabditis elegans. For 21 of these mutants, maternal expression of the wild-type allele is sufficient for embryonic survival, regardless of the embryo's genotype. For 11 of these 21 mutants, maternal expression of the wild-type allele is necessary for embryonic survival (strict maternals). For the remaining 10, either maternal or embryonic expression is sufficient for survival (partial maternals). One mutant shows a paternal effect; that is, a wild-type extragenic sperm function appears to rescue homozygous mutant embryos. Similar parental-effect tests were performed on 11 larval-lethal mutants. In 4 mutants, 1 of which blocks as late as the second larval stage after hatching, maternal contributions still can rescue mutant larvae. The remaining 3 embryonic lethals and 8 larval lethals show no parental effects; that is, zygotic expression of the wild-type allele is necessary and sufficient for embryonic survival. Temperatureshift experiments on embryonic-lethal embryos showed that all but 1 of the strict maternal mutants are temperature sensitive only before gastrulation. One of the partial maternal mutants is temperature sensitive prior to gastrulation, suggesting that some zygotic genes can function early in embryogenesis. At the nonpermissive temperature, 7 of the strict maternal mutants either show cleavage abnormalities in early divisions or stop cleavage at less than 100 cells, or both.  相似文献   

11.
Serial passage of the non-defective form of a simian virus 40-like virus (DAR) isolated from human brain results in the appearance of three distinct classes of supercoiled DNAs: RI resistant, RI sensitive (one cleavage site) and RI “supersensitive” (three cleavage sites). The RI cleavage product of the “super sensitive” form is one-third the physical size of simian virus 40 DNA (10.4 S) and reassociates about three times more rapidly than “standard” viral DNA. To identify the portions of the DAR genome present in the 10.4 S segment, the plus strand of each of the 11 fragments of 32P-labeled simian virus 40 DNA, produced by cleavage with the Hemophilus influenzae restriction endonuclease, was hybridized in solution with the sheared RI cleavage product of the “supersensitive” class of viral DNA. Reaction was observed with fragments located in two distinct regions of the simian virus 40 genome: (1) Hin-A and C; (2) Hin-G, J, F and K.Further studies indicated that simian virus 40 complementary RNA transcribed in vitro with Escherichia coli RNA polymerase from one strand of simian virus 40 DNA reacts with both strands of the denatured 10.4 S cleavage product when hybridization is monitored with hydroxyapatite. Treatment of the 10.4 S DNA-simian virus 40 cRNA hybrid with the single-strand spcific nuclease, S1, converted approximately 50% of the radioactive counts to an acid-soluble product. These results indicate that the 10.4 S product contains a transposition of sequences originally present on one of the DAR DNA strands to the other strand. Examination of heteroduplexes formed between the 10.4 S segment and unique linear forms of DAR DNA produced with the R · Eco RI restriction endonuclease have confirmed these observations. Thus it appears that a molecular rearrangement(s) has resulted in the recombination and inversion of viral DNA sequences from two separate loci on the parental DAR genome. This 1.1 × 106 dalton segment is reiterated three times in a supercoiled molecule equivalent in physical size to parental DAR DNA.  相似文献   

12.
Mitochondrial (mt) and chloroplast (ct) genome inheritance was studied in barley-wheat hybrids, as were their progenies obtained from backcrosses with different common wheat cultivars, by monitoring the composition of 4 mtDNA (coxI, a 5'-flanking region of cob, nad3-orf156, and 5'-upstream region of 18S/5S) and 2 ctDNA (simple-sequence repeat locus downstream of trnS and a 3'-flanking region of rbcL) loci. In male sterile F1 and BC1 plants, maternal barley mtDNA fragments were mainly detected and very low levels of paternal wheat fragments were occasionally detected by PCR in coxI, a 5'-flanking region of cob and nad3-orf156, whereas a 5'-upstream region of 18S/5S showed clear heteroplasmy, containing both maternal and paternal copies, with maternal copies prevailing. Plants showing such heteroplasmic mtDNA composition remained either semisterile or became completely sterile in the later backcross generations. Only maternal ctDNA copies were detected in these plants. In 3 stable, self-fertile, and vigourous lines obtained in the advanced backcross generations and possessing recombinant wheat nuclear genome, however, only mt- and ctDNA copies of wheat parents were detected; thus, the original alloplasmic condition appeared to be lost. Our results suggest that transmission followed by selective replication of the paternal wheat organellar DNA leads to a paternally oriented shift of the organellar DNA composition in barley-wheat hybrids, which correlates with the restoration of fertility and plant vigour. These 2 processes seem to be related to nucleocytoplasmic compatibility and to be under the control of the nuclear genome composition.  相似文献   

13.
14.
Several species from a number of bivalve molluscan families are known to have a paternally transmitted mitochondrial genome, along with the standard maternally transmitted one. The main characteristic of the phenomenon, known as doubly uniparental inheritance (DUI), is the coupling of sex and mtDNA inheritance: males receive both genomes but transmit only the paternal to their progeny; females either do not have the paternal genome or, if they do, they do not transmit it to their progeny. In the families Mytilidae and Veneridae, both of which have DUI, a female individual is either female‐biased (it produces only, or nearly so, female progeny), male‐biased (it produces mainly male progeny) or non‐biased (it produces both genders in intermediate frequencies). Here we present evidence for a same pattern in the freshwater mussel, Unio delphinus (Unionidae). These results suggest that the maternal control of whether a fertilized egg will develop into a male or a female individual (and the associated feature of whether it will inherited or not inherit the paternal mtDNA) is a general characteristic of species with DUI.  相似文献   

15.
16.
17.
Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) ovules were used to study male gamete formation, insemination of the egg, and free nuclear and cellular proembryo development. Two male nuclei form as the pollen tube either reaches the megaspore wall or as it enters the archegonial chamber. No cell wall separates them. They are contained within the body-cell cytoplasm. A narrow extension of the pollen tube separates the neck cells and penetrates the ventral canal cell. The pollen tube then releases its contents into the egg cytoplasm. The two male gametes and a cluster of paternal organelles (plastids and mitochondria) migrate within the remains of the body-cell cytoplasm toward the egg nucleus. Microtubules are associated with this complex. The leading male gamete fuses with the egg nucleus. The zygote nucleus undergoes free nuclear division, but the cluster of paternal organelles remains discrete. Free nuclei, paternal and maternal nucleoplasm, maternal perinuclear cytoplasm, and the cluster of paternal organelles migrate en masse to the chalazal end of the archegonium. There, paternal and maternal organelles intermingle to form the neocytoplasm, the nuclei divide, and a 12-cell proembryo is formed. The importance of male nuclei or cells, the perinuclear zone, and large inclusions in cytoplasmic inheritance are discussed in the Pinaceae and in other conifer families. This completes a two-part study to determine the fate of paternal and maternal plastids and mitochondria during gamete formation, fertilization, and proembryo development in Douglas fir.  相似文献   

18.
C. Saavedra  M. I. Reyero    E. Zouros 《Genetics》1997,145(4):1073-1082
We have investigated sex ratio and mitochondrial DNA inheritance in pair-matings involving five female and five male individuals of the Mediterranean mussel Mytilus galloprovincialis. The percentage of male progeny varied widely among families and was found to be a characteristic of the female parent and independent of the male to which it was mated. Thus sex-ratio in Mytilus appears to be independent of the nuclear genotype of the sperm. With a few exceptions, doubly uniparental inheritance (DUI) of mtDNA was observed in all families fathered by four of the five males: female and male progeny contained the mother's mtDNA (the F genome), but males contained also the father's paternal mtDNA (the M genome). Two hermaphrodite individuals found among the progeny of these crosses contained the F mitochondrial genome in the female gonad and both the F and M genomes in the male gonad. All four families fathered by the fifth male showed the standard maternal inheritance (SMI) of animal mtDNA: both female and male progeny contained only the maternal mtDNA. These observations illustrate the intimate linkage between sex and mtDNA inheritance in species with DUI and suggest different major roles for each gender. We propose a model according to which development of a male gonad requires the presence in the early germ cells of an agent associated with sperm-derived mitochondria, these mitochondria are endowed with a paternally encoded replicative advantage through which they overcome their original minority in the fertilized egg and this advantage (and, therefore, the chance of an early entrance into the germ line) is countered by a maternally encoded egg factor.  相似文献   

19.
Inter‐ and intraspecific variation in eggshell colouration has long fascinated evolutionary biologists. Among species, such variation may accomplish different functions, the most obvious of which is camouflage and background matching. Within species, it has been proposed that inter‐female variation in eggshell pigmentation patterns can reflect egg, maternal or paternal traits and hence may provide cues to conspecifics about egg, maternal or paternal phenotypic quality. However, the relationship between protoporphyrin‐based eggshell pigmentation and egg or maternal/paternal traits appears to be highly variable among species. We investigated patterns of intraspecific variation in Eurasian barn swallow Hirundo r. rustica protoporphyrin‐based eggshell pigmentation, and analysed its association with egg and clutch characteristics, maternal/paternal phenotypic traits and parental feeding effort. Eggshell pigmentation pattern significantly varied between breeding colonies, was significantly repeatable in first clutches laid by the same females in different years (intraclass correlation coefficient ranging between 0.56 and 0.63), but it was not significantly associated with egg traits, such as position in the laying sequence, egg mass, yolk testosterone concentration and antioxidant capacity. It was weakly or non‐significantly associated with female and male traits (sexual ornaments), but females laying darker (higher pigment intensity) first clutches had higher hatching success, suggesting that eggshell pigment intensity may predict fitness. Male nestling feeding effort was not predicted by eggshell pigmentation. In addition, females with darker breast plumage colouration (a melanin‐based trait related to fitness) laid highly protoporphyrin‐covered eggs, suggesting the presence of a previously unappreciated link between protoporphyrin biosynthesis and plumage melanisation. Moreover, the proportion of male offspring increased in clutches originating from highly protoporphyrin‐covered eggs, suggesting that parents could acquire visual cues about their future brood sex composition before egg hatching. Our results support the idea that intraspecific signalling via eggshell pigmentation is a species‐specific rather than a general feature of avian taxa.  相似文献   

20.
A P Dyban  A V Sorokin 《Ontogenez》1983,14(3):238-246
The mouse metaphase chromosomes of the 1st and 2nd cleavage divisions were prepared without colchicine and stained with trypsin-Giemsa. Both the homologues had the same pattern of differential staining (position and number of bands and interbands) in all pairs of chromosomes. The measurements of homologues of the 1st, 2nd, 3rd, 4th and 5th pairs of autosomes have shown that at the first cleavage division metaphase the paternal chromosomes are 1.2 times, on the average longer than the maternal ones, whereas at the second division metaphase no reliable differences in the length of homologues were found. In mice, thus, the heterocyclic pattern of the paternal and maternal sets of chromosomes manifested itself during the 1st cleavage division only and disappeared fully beginning from the 2nd division. This appears to be due to the early functional activity of chromosomes, i.e. to the fact that already in the 2-cell embryos both the maternal and paternal genes are expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号