首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Cryomicroscope studies of large unilamellar liposomes indicate that liposomes are an excellent model for studying membrane response to freezing and thawing. Liposomes are attractive for such use because they can be custom-manufactured for a particular investigation. In addition, liposome responses to freezing and thawing mimic real cell behavior in a number of significant ways. Analogous behavior includes osmotic shrinkage at slow cooling rates, internal ice formation at fast cooling rates, comparable nucleation temperatures, and a variety of comparable thawing responses. Experimental determination has been made of the equilibrium osmotic properties and the nonequilibrium water transport properties of the egg lecithin liposomes used in the freezing studies. These properties have been used in a computer model to simulate volume changes resulting from water transport during freezing and thawing. Comparison between computer model predictions and experimental data for the liposome volume response during freezing indicates reasonable agreement whereas computer simulations of volume response during thawing do not match experimental data well.  相似文献   

2.
Liposomes represent an attractive model system to study the freeze/thaw-induced alterations in biological membranes primarily because liposomes may be custom-manufactured for a particular investigation.This paper has reviewed briefly the degree of flexibility possible in terms of manufacturing liposomes with desired membrane composition and intraliposomal markers.Earlier research using liposomes as a model to study the freezing response of biological cells demonstrated their usefulness in this respect. Combining these earlier results with new results obtained in our laboratory, many analogies between the responses of biological cells and liposomes have been demonstrated. These analogies are summarized in Table 3.It is significant to note that in virtually every category thus far examined the relevant cryobiological behavior of biological cells can be mimicked qualitatively (and in some cases quantitatively) by a pure lipid membrane system. This is not to say that protein components of the membrane are insignificant. They are likely to be quite important in some cases. The liposome model system offers some interesting possibilities of examining the relative importance of lipids and proteins in model systems.Cryomicroscopic observation of liposome systems represents a promising approach to an improved understanding of membrane-related phenomena which occur during freezing and thawing. Especially interesting are the observations of membrane instabilities (“popping”) which appear to be induced osmotically.Real-time observation of well-defined membrane bilayer systems subjected to computer-controlled freeze/thaw protocols should lead to valuable insights into the nature of membrane freezing injury in the future.  相似文献   

3.
Manifestations of cell damage after freezing and thawing   总被引:5,自引:1,他引:4  
The nature of the primary lesions suffered by cells during freezing and thawing is unclear, although the plasma membrane is often considered the primary site for freezing injury. This study was designed to investigate the nature of damage immediately after thawing, by monitoring several functional tests of the cell and the plasma membrane. Hamster fibroblasts, human lymphocytes, and human granulocytes were subjected to a graded freeze-thaw stress in the absence of cryoprotective compound by cooling at -1 degree C/min to a temperature between -10 and -40 degrees C, and then were either warmed directly in water at 37 degrees C or cooled rapidly to -196 degrees C before rapid warming. Mitochondrial function in the cells was then assessed using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT), fluorescein diacetate (FDA), colony growth, and osmometric response in a hypertonic solution. Cells behaved as osmometers after cooling at -1 degree C/min to low temperatures at which there were no responses measured by other assays, indicating that the plasma membrane is not a primary site for injury sustained during slow cooling. These results also indicate that the FDA test does not measure membrane integrity, but reflects the permeability of the channels through which fluorescein leaves the cells. Fewer cells could respond osmotically after cooling under conditions where intracellular freezing was likely, implying that the plasma membrane is directly damaged by the conditions leading to intracellular freezing. A general model of freezing injury to nucleated mammalian cells is proposed in which disruption of the lysosomes constitutes the primary lesion in cells cooled under conditions where the cells are dehydrated at low temperatures.  相似文献   

4.
Lipid bilayer vesicles (liposomes) with and without glycoprotein incorporated into the membranes were tested for stability during freezing and thawing, in presence and absence of the cryoprotective agents (CPA) glycerol and dimethyl sulfoxide. Changes in turbidity and loss of energy transfer between fluorescent probes present in the bilayers were used to estimate membrane integrity.Freezing caused a 30 to 40% destruction of protein-free liposomes, in absence of CPA. CPA at 10 to 20% concentration prevented such losses, but at higher concentrations destabilized liposomes even without freezing. Protein-containing liposomes suffered no loss on freezing in absence or presence of CPA at moderate concentrations.Lowering of the storage temperature of frozen samples within the range of ?5 to ?27 °C increased the freeze damage. Slower rates of cooling and warming caused a slightly greater loss.The results are interpreted in terms of the liquid mosaic model for lipid bilayers. CPA at higher concentrations destabilize bilayers by dissolving phospholipids. At moderate concentrations, however, they prevent the damaging effect of dehydration of the lipid on freezing. Proteins appear to stabilize bilayers by providing increased hydration at the membrane surface, and by additional hydrophobic binding in the membrane interior.  相似文献   

5.
The cryopreservation of Chlamydomonas.   总被引:2,自引:0,他引:2  
A cryophilic strain of the unicellular green alga Chlamydomonas, C. nivalis was found to be more resistant to the stresses both of freezing and thawing and of shrinkage and rehydration than was a mesophilic strain C. reinhardii. C. nivalis was found to have a higher degree of unsaturation of phospholipid fatty acids. Following freezing and thawing of C. reinhardii there was a direct correlation between reduction in cell viability and loss of membrane selective permeability. Activation of intracellular phospholipases occurred at an early stage of freezing injury. Attempts to cold harden C. reinhardii were unsuccessful. For C. reinhardii methanol was the only effective cryoprotectant for freezing to and thawing from ?196 °C and the effects of cooling rate upon cellular survival are presented.  相似文献   

6.
A study was conducted to determine the effects of freezing on the major membrane proteins of isolated human erythrocyte membranes. Membranes in low or normal ionic strength medium were frozen at slow or fast freezing rates. The membrane protein composition and elution of proteins from the membranes were studied utilizing polyacrylamide-gel electrophoresis in a sodium dodecyl sulfate or an acetic acid-urea-phenol solvent system. Neither a change in the composition of the membrane proteins nor any elution of membrane protein during freezing and thawing was observed. The data indicate that any human erythrocyte membrane damage during freezing and thawing was not related to a change in major membrane protein composition. Human red cell membranes were stable at ?80 or ?196 °C in the absence of a cryoprotective agent.  相似文献   

7.
Maintaining proper membrane phase and fluidity is important for preserving membrane structure and function, and by altering membrane lipid composition many organisms can adapt to changing environmental conditions. We compared the phospholipid and cholesterol composition of liver and brain plasma membranes in the freeze-tolerant wood frog, Rana sylvatica, from southern Ohio and Interior Alaska during summer, fall, and winter. We also compared membranes from winter-acclimatized frogs from Ohio that were either acclimated to 0, 4, or 10 °C, or frozen to ?2.5 °C and sampled before or after thawing. Lipids were extracted from isolated membranes, separated by one-dimensional thin-layer chromatography, and analyzed via densitometry. Liver membranes underwent seasonal changes in phospholipid composition and lipid ratios, including a winter increase in phosphatidylethanolamine, which serves to increase fluidity. However, whereas Ohioan frogs decreased phosphatidylcholine and increased sphingomyelin, Alaskan frogs only decreased phosphatidylserine, indicating that these phenotypes use different adaptive strategies to meet the functional needs of their membranes. Liver membranes showed no seasonal variation in cholesterol abundance, though membranes from Alaskan frogs contained relatively less cholesterol, consistent with the need for greater fluidity in a colder environment. No lipid changed seasonally in brain membranes in either population. In the thermal acclimation experiment, cold exposure induced an increase in phosphatidylethanolamine in liver membranes and a decrease in cholesterol in brain membranes. No changes occurred during freezing and thawing in membranes from either organ. Wood frogs use tissue-specific membrane adaptation of phospholipids and cholesterol to respond to changing environmental factors, particularly temperature, though not with freezing.  相似文献   

8.
Survival of Frozen Mycoplasmas   总被引:5,自引:0,他引:5       下载免费PDF全文
Cooling to -70 C killed a higher percentage of Acholeplasma laidlawii and Mycoplasma mycoides var. capri cells than cooling to -20 C. However, to preserve cell viability for prolonged periods storage at -70 C was much more preferable. The percentage of cells surviving freezing could be increased by increasing the initial cell concentration or by the addition of dimethyl sulfoxide or glycerol as cryoprotective agents. In the presence of 1.5 M of any one of these agents survival rates of up to 100% could be obtained. The optimal cooling rates for maximal survival of A. laidlawii under the experimental conditions tested were 11 C/min for cooling to -20 C and about 15 C/min for cooling to -70 C. Increasing the warming rate during thawing from 0.6 to 67 C/min increased survival by 3 log. Oleic acid enrichment of A. laidlawii membrane lipids, or reduction in the cholesterol content of M. mycoides var. capri membranes, increased the percentage of organisms surviving freezing. Hence, the composition of membrane lipids appears to have a marked influence on the susceptibility of mycoplasmas to freezing injury.  相似文献   

9.
Thermal shock and dilution shock as the causes of freezing injury   总被引:7,自引:0,他引:7  
J Farrant  G J Morris 《Cryobiology》1973,10(2):134-140
We suggest that during slow freezing, cellular membranes are altered by the hypertonic solutions produced. This alteration in itself does not cause membrane leakage of normally impermeant solutes but it renders the cells susceptible to solute leakage on the application of a stress, which is provided during freezing by the reduction in temperature (thermal shock) and during thawing by dilution (dilution shock).During slow freezing the effects of cooling rate changes are due to the different times available for the hypertonic solutions to affect the membrane. At a given cooling rate cryoprotective agents reduce the effect on the cells at each temperature during freezing perhaps by reducing the ionic strength. The thermal shock stress during cooling and the dilution shock during thawing thus damages the cells less. With rapid freezing, there is insufficient time for these effects to take place during cooling, which allows the cells to reach low temperatures without thermal shock damage. However, the presence of extracellular ice and the formation of intracellular ice provide hypertonic conditions that render the cells liable to dilution shock on thawing. The slower the rate of thawing of rapidly cooled cells the greater will be the damage from this dilution shock.  相似文献   

10.
Anzar M  Graham EF  Iqbal N 《Theriogenology》1997,47(4):845-856
Previous experiments have established that filtration of bovine semen through a Sephadex ion-exchange column improves its quality before and after freezing. The present study was conducted to determine the post-thaw membrane integrity of bull spermatozoa separated with a Sephadex ion-exchange column and to determine the kind of protection to spermatozoa is provided by glycerol during freezing and thawing. Semen from Holstein bulls diluted in TEST-yolk extender (with and without glycerol) was filtered through a Sephadex ion-exchange column and frozen in liquid nitrogen (-196 degrees C). After thawing, there were more normal acrosomes in filtered spermatozoa than nonfiltered (P < 0.01). Post-thaw plasma membrane integrity and swelling ability in a hypoosmotic solution revealed that the filtered spermatozoa had a stronger (P < 0.005) plasma membranes than the nonfiltered. Filtered spermatozoa demonstrated higher zona-free hamster oocyte penetration than the nonfiltered (30.5 vs 11.5%; P < 0.0005). Spermatozoa extended in TEST-yolk without glycerol had the lowest (P < 0.001) normal acrosomes, intact plasma membranes and swelling ability. Plasma membrane over the post-acrosomal region of the head and post-midpiece region of the tail was more sensitive to damages caused by freezing and thawing than acrosomal and midpiece regions of spermatozoa. Glycerol in the extender provided significant (P < 0.05) protection to the sensitive regions of filtered and nonfiltered spermatozoa during freezing and thawing. Filtered plus glycerolated spermatozoa had the highest (P < 0.01) normal acrosomes, intact plasma membranes and swelling ability. In conclusion, the pre-freezing filtration of bovine semen harvested the spermatozoa possessing stronger plasma membranes which enabled them to endure freezing and thawing stresses. The addition of glycerol to the extender protected the post-acrosomal region of the head and post-midpiece region of the tail of spermatozoa from freezing and thawing shocks.  相似文献   

11.
The stability of cellular membranes during dehydration can be strongly influenced by the partitioning of amphiphilic solutes from the aqueous phase into the membranes. The effects of partitioning on membrane stability depend in a complex manner on the structural properties of the amphiphiles and on membrane lipid composition. Here, we have investigated the effects of the amphiphilic aromatic amino acids Trp and Phe on membrane stability during freezing. Both amino acids were cryotoxic to isolated chloroplast thylakoid membranes and to large unilamellar liposomes, but Trp had a much stronger effect than Phe. In liposomes, both amino acids induced solute leakage and membrane fusion during freezing. The presence of the chloroplast galactolipids monogalactosyldiacylglycerol or digalactosyldiacylglycerol in egg phosphatidylcholine (EPC) membranes reduced leakage from liposomes during freezing in the presence of up to 5 mM Trp, as compared to membranes composed of pure EPC. The presence of the nonbilayer-forming lipid phosphatidylethanolamine increased leakage. Membrane fusion followed a similar trend, but was dramatically reduced when the anthracycline antibiotic daunomycin was incorporated into the membranes. Daunomycin has been shown to stabilize the bilayer phase of membranes in the presence of nonbilayer lipids and was therefore expected to reduce fusion. Surprisingly, this had only a small influence on leakage. Collectively, these data indicate that Trp and Phe induce solute leakage from liposomes during freezing by a mechanism that is largely independent of fusion events.  相似文献   

12.
The stability of cellular membranes during dehydration can be strongly influenced by the partitioning of amphiphilic solutes from the aqueous phase into the membranes. The effects of partitioning on membrane stability depend in a complex manner on the structural properties of the amphiphiles and on membrane lipid composition. Here, we have investigated the effects of the amphiphilic aromatic amino acids Trp and Phe on membrane stability during freezing. Both amino acids were cryotoxic to isolated chloroplast thylakoid membranes and to large unilamellar liposomes, but Trp had a much stronger effect than Phe. In liposomes, both amino acids induced solute leakage and membrane fusion during freezing. The presence of the chloroplast galactolipids monogalactosyldiacylglycerol or digalactosyldiacylglycerol in egg phosphatidylcholine (EPC) membranes reduced leakage from liposomes during freezing in the presence of up to 5 mM Trp, as compared to membranes composed of pure EPC. The presence of the nonbilayer-forming lipid phosphatidylethanolamine increased leakage. Membrane fusion followed a similar trend, but was dramatically reduced when the anthracycline antibiotic daunomycin was incorporated into the membranes. Daunomycin has been shown to stabilize the bilayer phase of membranes in the presence of nonbilayer lipids and was therefore expected to reduce fusion. Surprisingly, this had only a small influence on leakage. Collectively, these data indicate that Trp and Phe induce solute leakage from liposomes during freezing by a mechanism that is largely independent of fusion events.  相似文献   

13.
The behavior of dehydroergosterol in -α-dimyristoylphosphatidylcholine (DMPC) unsonicated multilamellar liposomes was characterized by absorption spectroscopy and fluorescence measurements. Dehydroergosterol exhibited a lowered absorption coefficient in multilamellar liposomes whiel the steady-state fluorescence anisotropy of dehydroergosterol in these membranes decreased significantly with increasing dehydroergosterol concentration, suggesting membrane sterol-sterol interactions. The comparative steady-state anisotropy of 0.9 mole percent dehydroergosterol in multilamellar liposomes was lower than in small unilamellar vesicles suggesting different sterol environments for dehydroergosterol. Dehydroergosterol fluorescence lifetime was relatively independent of membrane sterol content and yielded similar values in sonicated and unsonicated model membranes. In multilamellar liposomes containing 5 mole percent cholesterol, the gel-to-liqui crystalline phase transition of DMPC detected by 0.9 mole percent dehydroergosterol was significantly broadened when compared to the phase transition detected by dehydroergosterol in the absence of membrane cholesterol (Smutzer, G. et al. (1986) Biochim. Biophys. Acta 862, 361–371). In multilamellar liposomes containing 10 mole percent cholesterol, the major fluorescence lifetime of dehydroergosterol did not detect the gel-to-liquid crystalline phase transition of DMPC. Time-correlated fluorescence anisotropy decays of dehydroergosterol in DMPC multilamellar liposomes in the absence and presence of 5 mole percent cholesterol exhibited a single rotational correlation time near one nanosecond that was relatively independent of temperature and low concentrations of membrane cholesterol. The limiting anisotropy of 0.9 mole percent dehydroergosterol decreased above the gel-to-liquid crystalline phase transition in membranes without cholesterol and was not significantly affected by the phase transition in membranes containing 5 mole percent cholesterol. These results suggested hindered rotational diffusion of dehydroergosterol in multilamellar liposomes. Lifetime and time-correlated fluorescence measurements of 0.9 mole percent dehydroergosterol in multilamellar liposomes further suggested this fluorophore was detecting physical properties of the bulk membrane phospholipids in membranes devoid of cholesterol and was detecting sterol-rich regions in membranes of low sterol concentration.  相似文献   

14.
Diluents containing sonicated liposomes of purified phosphatidylserine (PS), phosphatidylcholine (PC) with varying fatty acyl chain lengths and double bonds and cholesterol (CH) alone or in combination, or egg yolk lecithin were evaluated for protection of bull sperm during cold shock produced by rapid cooling from 25 to 0 degrees C and during freezing and thawing. Bull semen was washed twice and diluted to 50 X 10(6) sperm/ml in diluents containing no lipid, 0.5 or 5 mM sonicated lipid or 20% egg yolk and plunged into ice water to cold shock the sperm. Sperm so treated were frozen using conventional methods. The percentage of progressively motile sperm (MS) was estimated prior to cooling, after cold shock, and after freezing and thawing. Lipids with fatty acyl chains of less than 12 carbons were toxic to sperm cells. Phosphatidylserine alone or in combination with PC or CH, but not PC or CH alone, protected sperm from cold shock as well as did egg yolk lecithin liposomes or egg yolk. Liposomes of PS/PC or PS/CH were not better than PS in protecting sperm from cold shock. Lipid concentrations of 0.5 mM were more effective than liposomes at 5 mM in protecting sperm during freezing and thawing. During freezing, PS alone or in combination with PC partially protected sperm, but only PS/CH was as effective as egg yolk in protecting sperm from freeze-thaw damage. It is concluded that defined diluents, particularly those containing PS, may be useful in studies of cryobiology of spermatozoa.  相似文献   

15.
Following a shift from autotrophic to heterotrophic nutrition, cells of Chlorella protothecoides become sensitive to the stresses of freezing and thawing. The injury then observed at slow rates of cooling cannot be explained by the cellular response to hypertonic solutions, and at faster cooling rates intracellular ice formation was not demonstrated to be damaging. These findings are at variance with suggested mechanisms of injury in other cellular systems. The results are compared with alterations in ultrastructure and in the composition of the cellular fatty acids.Abbreviations BHT butylated hydroxy toluene - TLC thin layer chromatography - AW-DMCS acid washed and silanized  相似文献   

16.
Purified plasma membranes prepared from yeast cells by mechanical agitation with glass beads exhibit no detectable sugar transport activity. However, the addition of phospholipid (asolectin) liposomes to the purified plasma membranes followed by freezing, thawing, and brief sonication produces membrane vesicles which exhibit D-glucose-specific transport activity. The characteristics of zero trans, equilibrium exchange, and influx counterflow exhibited by the membrane vesicles are similar to those of intact cells.  相似文献   

17.
Semen from 6 bulls was examined under the transmission electron microscope immediately after collection, after dilution and cooling to 5 degrees C and after freezing and thawing. Conception rates were determined following artificial insemination of the frozen and thawed semen. Dilution and cooling to 5 degrees C caused acrosomal swelling in about 50% of the spermatozoa. Subsequent freezing and thawing caused considerable ultrastructural changes to the acrosomes (disruption of the plasma and outer acrosomal membranes and dispersion of the acrosomal contents) and middle pieces (breakage of the plasma membrane and a reduction in the electron density of the mitochondrial matrix) of a high proportion of spermatozoa. The average non-return rate following insemination of semen from 5 of the bulls was 61.6% and higher (P greater than 0.001) than for the sixth bull (15%). Although this difference in semen viability was also demonstrated in the structural studies (acrosome, P greater than 0.05: middle piece, P greater than 0.001), more work is required to assess the relationship between structure and function of spermatozoa.  相似文献   

18.
Cryopreservation induces partially irreversible damage to equine sperm membranes. Part of this damage occurs due to membrane alterations induced by the membrane changing from the fluid to the gel-state as the temperature is reduced lower than the membrane transition temperature. One way to prevent this damage is to increase the membrane fluidity at low temperatures by adding cholesterol to the membrane. Different concentrations of cholesterol-loaded-cyclodextrins (CLC) were added to stallion sperm to determine the CLC concentration that optimizes cryosurvival. Higher percentages of motile sperm were maintained after thawing when 1.5 mg CLC was added to sperm from stallions whose sperm do not survive freezing well, compared to control sperm from those same stallions (67% vs. 50%; P<0.05). Addition of CLCs increased the percentages of membrane intact sperm surviving cryopreservation compared to untreated sperm for all stallions (P<0.05). The amount of cholesterol that incorporated into the membranes of the sperm cells increased in a polynomial fashion (R2=0.9978) and incorporated into all sperm membranes. In addition, there was a significant loss of cholesterol from sperm membranes after cryopreservation; however, addition of CLCs to sperm prior to cryopreservation maintained higher cholesterol levels in the sperm after freezing and thawing than untreated sperm (P<0.05). Addition of CLCs also resulted in more sperm binding to the zona pellucida of bovine oocytes after cryopreservation than control sperm (48 vs. 15; P<0.05). In conclusion, CLCs improved the percentage of post-thaw viability in equine sperm as well as increased the number of sperm that bind to zona pellucida. Addition of CLCs to stallion sperm prior to cryopreservation is a simple procedure that increases the cryosurvival of cells.  相似文献   

19.
Membrane status of boar spermatozoa after cooling or cryopreservation   总被引:2,自引:0,他引:2  
This study tested the hypothesis that sperm membrane changes during cooling contribute substantially to the membrane damage observed after cryopreservation of boar spermatozoa. Flow cytometry was used to assess viability (percentages of live and dead cells) of boar sperm cells after staining with SYBR-14 and propidium iodide (PI) and acrosome status after staining with FITC-pisum sativum agglutenin and PI. Incubation (38 degrees C, 4 h), cooling (to 15 or 5 degrees C) and freezing reduced the proportion of live spermatozoa compared with those in fresh semen. There were more membrane changes in spermatozoa cooled to 5 degrees C than to 15 degrees C. The proportion of live spermatozoa decreased during processing for cryopreservation and cooling to 5 degrees C, but was unaffected by freezing and thawing if held at 15 degrees C for 3.5 h during cooling. Spermatozoa not held during cooling exhibited further loss of viability after freezing and thawing. Holding the spermatozoa also increased the proportion of acrosome-intact spermatozoa at both 15 degrees C and 5 degrees C and at thawing compared with that of the unheld controls. The results of this study suggest that a substantial proportion of the membrane changes associated with cryopreservation of boar spermatozoa may be attributed to the cooling of the cells to 5 degrees C rather than to the freezing and thawing process, and that sperm membrane changes are reduced when semen is held at 15 degrees C during cooling.  相似文献   

20.
In blood banks, platelets are stored at 20–24°C, which limits the maximum time they can be stored. Platelets are chilling sensitive, and they activate when stored at temperatures below 20°C. Cryopreservation could serve as an alternative method for long term storage of platelet concentrates. Recovery rates using dimethyl sulfoxide (DMSO) as cryoprotective agent, however, are low, and removal of DMSO is required before transfusion. In this study, we have explored the use of trehalose for cryopreservation of human platelets while using different cooling rates. Recovery of membrane intact cells and the percentage of nonactivated platelets were used as a measure for survival. In all cases, survival was optimal at intermediate cooling rates of 20°C min?1. Cryopreservation using DMSO resulted in high percentages of activated platelets; namely 54% of the recovered 94%. When using trehalose, 98% of the platelets had intact membranes after freezing and thawing, whereas 76% were not activated. Using Fourier transform infrared spectroscopy, subzero membrane phase behavior of platelets has been studied in the presence of trehalose and DMSO. Furthermore, membrane hydraulic permeability parameters were derived from these data to predict the cell volume response during cooling. Both trehalose and DMSO decrease the activation energy for subzero water transport across cellular membranes. Platelets display a distinct lyotropic membrane phase transition during freezing, irrespective of the presence of cryoprotective agents. We suggest that concomitant uptake of trehalose during freezing could explain the increased survival of platelets cryopreserved with trehalose. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号